1
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024; 16:924. [PMID: 38612964 PMCID: PMC11013850 DOI: 10.3390/nu16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
2
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Antinociceptive Non-Opioid Active Principles for Medicinal Chemistry and Drug Design. Molecules 2024; 29:815. [PMID: 38398566 PMCID: PMC10892999 DOI: 10.3390/molecules29040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pain is associated with many health problems and a reduced quality of life and has been a common reason for seeking medical attention. Several therapeutics are available on the market, although side effects, physical dependence, and abuse limit their use. As the process of pain transmission and modulation is regulated by different peripheral and central mechanisms and neurotransmitters, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery due to their chemical structural variety and different analgesic mechanisms. Numerous studies suggested that some chemicals from medicinal plants could be alternative options for pain relief and management. Previously, we conducted a literature search aimed at identifying natural products interacting either directly or indirectly with opioid receptors. In this review, instead, we have made an excursus including active ingredients derived from plants whose mechanism of action appears from the literature to be other than the modulation of the opioid system. These substances could, either by themselves or through synthetic and/or semi-synthetic derivatives, be investigated in order to improve their pharmacokinetic characteristics and could represent a valid alternative to the opioid approach to pain therapy. They could also be the basis for the study of new mechanisms of action in the approach to this complex and disabling pathology.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology and Toxicology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Carmela Parenti
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
3
|
Mishra G, Singh P, Pottoo FH, Javed MN, Zeleke MM, Yimer YS. Nutraceuticals for Fibromyalgia and Neuropathic Pain. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:133-191. [DOI: 10.4018/978-1-7998-4120-3.ch007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Both neuropathic pain and fibromyalgia are horrific painful conditions arising due to impairment in the somatosensory nervous system and the musculoskeletal system, respectively. They share some common symptoms like hyperalgesia, allodynia, insomnia, cognitive deficits, and mood disturbances. It is believed that fibromyalgia is the consequence of dysfunction of the central nervous system, autonomic nervous system, imbalance in neurotransmitters, and psychological and emotional stress. Henceforth, these pain syndromes have become a major challenge for healthcare professionals due to their complex etiology and poor availability and effectiveness of the drugs. Notably, the available synthetic drugs possess serious side effects including physical dependence and tolerance. Therefore, researchers are now seeking natural-based therapy for modulating chronic pain conditions. This chapter has been written with the intention of exploring the beneficial effects of various nutraceuticals including herbal dietary supplements in neuropathic pain and fibromyalgia.
Collapse
Affiliation(s)
- Garima Mishra
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | - Pradeep Singh
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | - Faheem Hyder Pottoo
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Md Noushad Javed
- School of Pharmaceutical Sciences and Research, Jamia Hamdard, India
| | - Mulugeta Molla Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | | |
Collapse
|
4
|
Tosun F, Göger F, İşcan G, Kürkçüoğlu M, Kuran FK, Miski M. Biological Activities of the Fruit Essential Oil, Fruit, and Root Extracts of Ferula drudeana Korovin, the Putative Anatolian Ecotype of the Silphion Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:830. [PMID: 36840178 PMCID: PMC9959981 DOI: 10.3390/plants12040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
In the present study, preliminary phytochemical investigations were performed on the fruit essential oil and antioxidant-rich methanolic extracts of the fruits and roots of Ferula drudeana, the putative Anatolian ecotype of the Silphion plant, to corroborate its medicinal plant potential and identify its unique characteristics amongst other Ferula species. The essential oil from the fruits of the endemic species Ferula drudeana collected from Aksaray was analyzed by GC and GC/MS. The main components of the oil were determined as shyobunone (44.2%) and 6-epishyobunone (12.6%). The essential oil of the fruits and various solvent extracts of the fruits and roots of F. drudeana were evaluated for their antibacterial and anticandidal activity using microbroth dilution methods. The essential oil of the fruits, methanol, and methylene chloride extracts of the fruits and roots showed weak to moderate inhibitory activity against all tested microorganisms with MIC values of 78-2000 µg/mL. However, the petroleum ether extract of the roots showed remarkable inhibitory activity against Candida krusei and Candida utilis with MIC values of 19.5 and 9.75 µg/mL, respectively. Furthermore, all the samples were tested for their antioxidant activities using DPPH• TLC spot testing, online HPLC-ABTS screening, and DPPH/ABTS radical scavenging activity assessment assays. Methanolic extracts of the fruits and roots showed strong antioxidant activity in both systems.
Collapse
Affiliation(s)
- Fatma Tosun
- Department of Pharmacognosy, School of Pharmacy, İstanbul Medipol University, İstanbul 34083, Turkey
| | - Fatih Göger
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Gökalp İşcan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Mine Kürkçüoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Fadıl Kaan Kuran
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul 34116, Turkey
| | - Mahmut Miski
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul 34116, Turkey
| |
Collapse
|
5
|
Chahardoli F, Pourmoslemi S, Soleimani Asl S, Tamri P, Haddadi R. Preparation of polyvinyl alcohol hydrogel containing chlorogenic acid microspheres and its evaluation for use in skin wound healing. J Biomater Appl 2023; 37:1667-1675. [PMID: 36601681 DOI: 10.1177/08853282221150845] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chlorogenic acid (CGA) is a phenolic compound widely found in plants. Several studies have shown that CGA possesses antioxidant, antibacterial, anti-inflammatory and wound healing properties. Because of their three-dimensional structure, good permeability, excellent biocompatibility and moisturizing properties, hydrogels are ideal candidates for wound dressing. The aim of the present study was to preparation and characterization of Polyvinyl alcohol (PVA) hydrogel containing CGA microspheres and evaluation its wound healing activity. The double-emulsion solvent evaporation technique was applied for preparing the CGA containing microspheres. The microspheres were characterized using scanning electron microscopy (SEM) and Fourier transformation infrared spectroscopy (FTIR) and subsequently incorporated in the structure of a PVA hydrogel. The effects of prepared hydrogel on NIH3T3 cell line viability were evaluated using MTT method and wound healing activity was investigated in full thickness wound model in rabbit. SEM images showed formation of homogenous CGA microspheres with diameters in the range of 1-2 μm, embedded in the porous structure of the hydrogel. Infra-red results indicated successful incorporation of CGA microspheres into PVA hydrogel. The NIH3T3 cell viability percentage in CGA 2.5% hydrogel treated group significantly (p < .05) increased after 24 h and 48 h comparing to control group. In vivo studies showed that CGA hydrogel significantly (p < .001) stimulated the rate of wounds closures. Histological studies revealed that administration of CGA hydrogel significantly increased epithelialization and production of collagen fibers compared to the control group. It can be concluded that the CGA microsphere loaded PVA hydrogel has the potential for wound healing.
Collapse
Affiliation(s)
- Faezeh Chahardoli
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Pourmoslemi
- Department of Pharmaceutics, School of Pharmacy, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomical Sciences, School of Medicine, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pari Tamri
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Soler-Martínez R, Deulofeu M, Bagó-Mas A, Dubový P, Verdú E, Fiol N, Boadas-Vaello P. Central Neuropathic Pain Development Modulation Using Coffee Extract Major Polyphenolic Compounds in Spinal-Cord-Injured Female Mice. BIOLOGY 2022; 11:1617. [PMID: 36358318 PMCID: PMC9687351 DOI: 10.3390/biology11111617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 08/18/2024]
Abstract
It was recently shown that coffee polyphenolic extract exerts preventive effects on central neuropathic pain development, but it is unknown whether its beneficial effects are associated with only one of its major polyphenolic compounds or if the whole extract is needed to exert such effects. The main objective of this study was to determine whether the separate administration of major polyphenols from coffee extract exerts preventive effects on the development of central neuropathic pain in mice compared with the effects of the whole coffee extract. Thus, spinal-cord-injured female ICR-CD1 mice were daily treated with either coffee extract or its major polyphenolic compounds during the first week, and reflexive and nonreflexive pain responses were evaluated within the acute phase of spinal cord injury. In addition, the injury-induced gliosis and dorsal horn sprouting were evaluated with immunohistochemistry. The results showed that the coffee extract prevented spinal cord injury-induced neuropathic pain, whereas its major polyphenolic compounds resulted in reflexive pain response attenuation. Both preventive and attenuation effects were associated with gliosis and afferent fiber sprouting modulation. Overall, the results suggested that coffee extract effects may be associated with potential synergistic mechanisms exerted by its major polyphenolic compounds and not by the sole effect of only one of them.
Collapse
Affiliation(s)
- Roger Soler-Martínez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| |
Collapse
|
7
|
Nutraceuticals: A source of benefaction for neuropathic pain and fibromyalgia. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Bagó-Mas A, Korimová A, Deulofeu M, Verdú E, Fiol N, Svobodová V, Dubový P, Boadas-Vaello P. Polyphenolic grape stalk and coffee extracts attenuate spinal cord injury-induced neuropathic pain development in ICR-CD1 female mice. Sci Rep 2022; 12:14980. [PMID: 36056079 PMCID: PMC9440260 DOI: 10.1038/s41598-022-19109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
More than half of spinal cord injury (SCI) patients develop central neuropathic pain (CNP), which is largely refractory to current treatments. Considering the preclinical evidence showing that polyphenolic compounds may exert antinociceptive effects, the present work aimed to study preventive effects on SCI-induced CNP development by repeated administration of two vegetal polyphenolic extracts: grape stalk extract (GSE) and coffee extract (CE). Thermal hyperalgesia and mechanical allodynia were evaluated at 7, 14 and 21 days postinjury. Then, gliosis, ERK phosphorylation and the expression of CCL2 and CX3CL1 chemokines and their receptors, CCR2 and CX3CR1, were analyzed in the spinal cord. Gliosis and CX3CL1/CX3CR1 expression were also analyzed in the anterior cingulate cortex (ACC) and periaqueductal gray matter (PAG) since they are supraspinal structures involved in pain perception and modulation. GSE and CE treatments modulated pain behaviors accompanied by reduced gliosis in the spinal cord and both treatments modulated neuron-glia crosstalk-related biomolecules expression. Moreover, both extracts attenuated astrogliosis in the ACC and PAG as well as microgliosis in the ACC with an increased M2 subpopulation of microglial cells in the PAG. Finally, GSE and CE prevented CX3CL1/CX3CR1 upregulation in the PAG, and modulated their expression in ACC. These findings suggest that repeated administrations of either GSE or CE after SCI may be suitable pharmacologic strategies to attenuate SCI-induced CNP development by means of spinal and supraspinal neuroinflammation modulation.
Collapse
Affiliation(s)
- Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Andrea Korimová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, Girona, Spain
| | - Viktorie Svobodová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.
| |
Collapse
|
9
|
Basit A, Ahmad S, Khan KUR, Naeem A, Usman M, Ahmed I, Shahzad MN. Chemical profiling of Justicia vahlii Roth. (Acanthaceae) using UPLC-QTOF-MS and GC-MS analysis and evaluation of acute oral toxicity, antineuropathic and antioxidant activities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114942. [PMID: 34968664 DOI: 10.1016/j.jep.2021.114942] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia vahlii Roth. (Acanthaceae), also called as kodasoori and bhekkar is an annual therophyte erect or decumbent herb used traditionally in toothache, skin diseases (itching, topical inflammation) and for the treatment of various respiratory disorders. AIM OF THE STUDY The current study aimed at exploring pain cessation potential of J. vahlii Roth. via murine model of neuropathic pain and its phytochemical, toxicological and antioxidant profiles. MATERIALS AND METHODS The hydro-alcoholic extract of J. vahlii (HAEJv) prepared by maceration technique was subjected to preliminary phytochemical screening, total bioactive content determination, UPLC-QTOF-MS and GC-MS analysis. Toxicity assessment was carried out by using brine shrimp lethality assay and acute oral toxicity test. Murine model of neuropathic pain was applied to assess the antineuropathic potential of the species. Furthermore effect of the extract on catalase, superoxide oxide dismutase (SOD), Glutathione (GSH), interleukin-1beta (IL-1β) and total necrosis factor-alpha (TNF-α) was also studied. In vitro antioxidant profile was explored by using four methods; 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethylbenothiazoline)-6-sulfonic acid (ABTS), CUPric reducing antioxidant capacity (CUPRAC) and Ferric reducing antioxidant power (FRAP) assay. RESULTS The phytochemical screening revealed the presence of phenols, flavonoids, coumarins, alkaloids and lignans as the major classes of secondary metabolites. The extract was found rich in total phenolics content (TPC) and total flavonoids content (TFC) with identification of total 59 bioactives in UPLC-QTOF-MS and 40 compounds in GC-MS analysis. The extract was found nontoxic up to 4000 mg/kg (p.o.) in mice and no mortality observed in brine shrimp lethality assay. The HAEJv significantly reduced number of acetic acid induced abdominal constrictions at 100 mg/kg (p < 0.01) and 200 mg/kg (p < 0.001) and increased paw withdrawal threshold p < 0.05 at 100 mg/kg and p < 0.001 at 200 mg/kg, and an increase in tail withdrawal latency time p < 0.001 at 200 mg/kg was observed. The extract significantly increased levels of catalase, SOD and GSH while decreased IL-1β and TNF-α levels in sciatic nerve tissue of mice. HAEJv showed highest antioxidant activity through CUPRAC method 121.32 ± 1.22 mg trolox equivalent per gram of dry extract (mg TE/g DE) followed by DPPH 81.334 ± 4.35 mg TE/g DE, FRAP 69.89 ± 3.05 mg TE/g DE and ABTS 38.17 ± 2.12 mg TE/g DE. CONCLUSION The current study back the traditional use of J. vahlii in pain cessation through antioxidant based antineuropathic pain activity and revealed the extract non-toxic with number of functional phytoconstituents and warrants further research on isolation of the compounds and sub-acute toxicity studies.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Muhammad Usman
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Imtiaz Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
10
|
Nwafor EO, Lu P, Zhang Y, Liu R, Peng H, Xing B, Liu Y, Li Z, Zhang K, Zhang Y, Liu Z. Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer. Transl Oncol 2021; 15:101294. [PMID: 34861551 PMCID: PMC8640119 DOI: 10.1016/j.tranon.2021.101294] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrosis and cancer is described by some epidemiological studies as chronic stages of different disease conditions typically characterized by uncontrolled accumulation of extra-cellular matrix (ECM), thereby leading to inflammation of tissues and organ (lungs, heart, liver and kidney) dysfunction. It is highly prevalent, and contributes to increased mortality rate worldwide. Currently, the therapeutical approaches involving selected medications (bemcentinib, pirfenidone and nintedanib) obtained synthetically, and used in clinical practices for fibrosis and cancer management and treatment has shown to be unsatisfactorily, especially during progressive stages of the disease. With regards to finding a more potent, effective, and promising curative for fibrosis and cancer, there is need for continuous experimental studies universally. However, phytochemical constituents’ particularly phenolic compounds [Chlorogenic acid (CGA)] obtained from coffee, and coffee beans have been predominantly utilized in experimental studies, due to its multiple pharmacological properties against various disease forms. Considering its natural source alongside minimal toxicity level, CGA, a major precursor of coffee have gained considerable attention nowadays from researchers worldwide, owing to its wide, efficacious and beneficial action against fibrosis and cancer. Interestingly, the safety of CGA has been proven. Furthermore, numerous experimental studies have also deduced massive remarkable outcomes in the use of CGA clinically, as a potential drug candidate against treatment of fibrosis and cancer. In the course of this review article, we systematically discussed the beneficial contributions of CGA with regards to its source, absorption, metabolism, mechanistic effects, and molecular mechanisms against different fibrosis and cancer categorization, which might be a prospective remedy in the future. Moreover, we also highlighted CGA (in vitro and in vivo analytical studies) defensive effects against various disorders.
Collapse
Affiliation(s)
- Ebuka-Olisaemeka Nwafor
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Rui Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Hui Peng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Yiting Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Ziwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Kuibin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Yukun Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China.
| |
Collapse
|
11
|
Dulai JS, Smith ESJ, Rahman T. Acid-sensing ion channel 3: An analgesic target. Channels (Austin) 2021; 15:94-127. [PMID: 33258401 PMCID: PMC7801124 DOI: 10.1080/19336950.2020.1852831] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acid-sensing ion channel 3 (ASIC3) belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. There are 7 different ASIC subunits encoded by 5 different genes. Most ASIC subunits form trimeric ion channels that upon activation by extracellular protons mediate a transient inward current inducing cellular excitability. ASIC subunits exhibit differential tissue expression and biophysical properties, and the ability of subunits to form homo- and heteromeric trimers further increases the complexity of currents measured and their pharmacological properties. ASIC3 is of particular interest, not only because it exhibits high expression in sensory neurones, but also because upon activation it does not fully inactivate: a transient current is followed by a sustained current that persists during a period of extracellular acidity, i.e. ASIC3 can encode prolonged acidosis as a nociceptive signal. Furthermore, certain mediators sensitize ASIC3 enabling smaller proton concentrations to activate it and other mediators can directly activate the channel at neutral pH. Moreover, there is a plethora of evidence using transgenic mouse models and pharmacology, which supports ASIC3 as being a potential target for development of analgesics. This review will focus on current understanding of ASIC3 function to provide an overview of how ASIC3 contributes to physiology and pathophysiology, examining the mechanisms by which it can be modulated, and highlighting gaps in current understanding and future research directions.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Grewal AS, Thapa K, Kanojia N, Sharma N, Singh S. Natural Compounds as Source of Aldose Reductase (AR) Inhibitors for the Treatment of Diabetic Complications: A Mini Review. Curr Drug Metab 2021; 21:1091-1116. [PMID: 33069193 DOI: 10.2174/1389200221666201016124125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aldol reductase (AR) is the polyol pathway's main enzyme that portrays a crucial part in developing 'complications of diabetes' involving cataract, retinopathy, nephropathy, and neuropathy. These diabetic abnormalities are triggered tremendously via aggregation of sorbitol formation (catalyzed by AR) in the polyol pathway. Consequently, it represents an admirable therapeutic target and vast research was done for the discovery of novel molecules as potential AR inhibitors for diabetic complications. OBJECTIVE This review article has been planned to discuss an outline of diabetic complications, AR and its role in diabetic complications, natural compounds reported as AR inhibitors, and benefits of natural/plant derived AR inhibitors for the management of diabetic abnormalities. RESULTS The goal of AR inhibition remedy is to stabilize the increased flux of blood glucose and sorbitol via the 'polyol pathway' in the affected tissues. A variety of synthetic inhibitors of AR have been established such as tolrestat and sorbinil, but both of these face limitations including low permeability and health problems. Pharmaceutical industries and other scientists were also undertaking work to develop newer, active, and 'safe' AR inhibitors from natural sources. Therefore, several naturally found molecules were documented to possess a potent inhibitory action on AR activity. CONCLUSION Natural inhibitors of AR appeared as harmless pharmacological agents for controlling diabetic complications. The detailed literature throughout this article shows the significance of herbal extracts and phytochemicals as prospective useful AR inhibitors in treating diabetic complications.
Collapse
Affiliation(s)
- Ajmer Singh Grewal
- Chitkara School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Komal Thapa
- Chitkara School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
13
|
Kale MB, Bajaj K, Umare M, Wankhede NL, Taksande BG, Umekar MJ, Upaganlawar A. Exercise and Nutraceuticals: Eminent approach for Diabetic Neuropathy. Curr Mol Pharmacol 2021; 15:108-128. [PMID: 34191703 DOI: 10.2174/1874467214666210629123010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
Diabetic neuropathy is an incapacitating chronic pathological condition that encompasses a large group of diseases and manifestations of nerve damage. It affects approximately 50% of patients with diabetes mellitus. Autonomic, sensory, and motor neurons are affected. Disabilities are severe, along with poor recovery and diverse pathophysiology. Physical exercise and herbal-based therapies have the potential to decrease the disabilities associated with diabetic neuropathy. Aerobic exercises like walking, weight lifting, the use of nutraceuticals and herbal extracts are found to be effective. Literature from the public domain was studied emphasizing various beneficial effects of different exercises, use of herbal and nutraceuticals for their therapeutic action in diabetic neuropathy. Routine exercises and administration of herbal and nutraceuticals, either the extract of plant material containing the active phytoconstituent or isolated phytoconstituent at safe concentration, have been shown to have promising positive action in the treatment of diabetic neuropathy. Exercise has shown promising effects on vascular and neuronal health and has proven to be well effective in the treatment as well as prevention of diabetic neuropathy by various novel mechanisms, including herbal and nutraceuticals therapy is also beneficial for the condition. They primarily show the anti-oxidant effect, secretagogue, anti-inflammatory, analgesic, and neuroprotective action. Severe adverse events are rare with these therapies. The current review investigates the benefits of exercise and nutraceutical therapies in the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Mayur Bhimrao Kale
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Komal Bajaj
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Mohit Umare
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Nitu L Wankhede
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | | | - Milind Janrao Umekar
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad-42310, Nasik, Maharashtra, India
| |
Collapse
|
14
|
Giordano R, Saii Z, Fredsgaard M, Hulkko LSS, Poulsen TBG, Thomsen ME, Henneberg N, Zucolotto SM, Arendt-Nielsen L, Papenbrock J, Thomsen MH, Stensballe A. Pharmacological Insights into Halophyte Bioactive Extract Action on Anti-Inflammatory, Pain Relief and Antibiotics-Type Mechanisms. Molecules 2021; 26:3140. [PMID: 34073962 PMCID: PMC8197292 DOI: 10.3390/molecules26113140] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
The pharmacological activities in bioactive plant extracts play an increasing role in sustainable resources for valorization and biomedical applications. Bioactive phytochemicals, including natural compounds, secondary metabolites and their derivatives, have attracted significant attention for use in both medicinal products and cosmetic products. Our review highlights the pharmacological mode-of-action and current biomedical applications of key bioactive compounds applied as anti-inflammatory, bactericidal with antibiotics effects, and pain relief purposes in controlled clinical studies or preclinical studies. In this systematic review, the availability of bioactive compounds from several salt-tolerant plant species, mainly focusing on the three promising species Aster tripolium, Crithmum maritimum and Salicornia europaea, are summarized and discussed. All three of them have been widely used in natural folk medicines and are now in the focus for future nutraceutical and pharmacological applications.
Collapse
Affiliation(s)
- Rocco Giordano
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Zeinab Saii
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Malthe Fredsgaard
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Laura Sini Sofia Hulkko
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Thomas Bouet Guldbæk Poulsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Mikkel Eggert Thomsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Nanna Henneberg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Silvana Maria Zucolotto
- Center of Health Sciences, Department of Pharmaceutical Science, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040–970 Florianópolis, Brazil;
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany;
| | - Mette Hedegaard Thomsen
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| |
Collapse
|
15
|
Wang X, Bai J, Wang W, Zhang G, Yin S, Wang D. A comparative metabolomics analysis of the halophyte Suaeda salsa and Salicornia europaea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1109-1122. [PMID: 32323170 DOI: 10.1007/s10653-020-00569-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/10/2020] [Indexed: 05/09/2023]
Abstract
Suaeda salsa and Salicornia europaea are both annual herbaceous species belonging to the Chenopodiaceae family, and often grow together through our observations in the Yellow River Delta Nature Reserve, and could be used as raw material to produce food and beverages in food industry due to its high nutritional value. In this study, we adopted widely targeted metabolomics to identify 822 and 694 metabolites in the leaves of S. salsa and S. europaea, respectively, to provide a basic data for the future development and utilization of these two species. We found that these two plants were rich in metabolic components with high medical value, such as flavonoids, alkaloids and coumarins. The high contents of branched chain amino acid in these two species may be an important factor for their adaptation to saline-alkali environments. In addition, the contents of glucosamine (FC = 7.70), maltose (FC = 9.34) and D-(+)-sucrose (FC = 7.19) increased significantly, and the contents of D-(+)-glucose, 2-propenyl (sinigrin) and fructose 1-phosphate were significantly increased in the leaves of S. salsa compared to S. europaea, indicating that some certain compounds in different plants have different sensitivity to salt stress. Our work provides new perspectives about important second metabolism pathways in salt tolerance between these two plants, which could be helpful for studying the tolerance mechanisms of wetland plants.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Guangliang Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shuo Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Dawei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
16
|
Miski M. Next Chapter in the Legend of Silphion: Preliminary Morphological, Chemical, Biological and Pharmacological Evaluations, Initial Conservation Studies, and Reassessment of the Regional Extinction Event. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10010102. [PMID: 33418989 PMCID: PMC7825337 DOI: 10.3390/plants10010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 05/04/2023]
Abstract
Silphion was an ancient medicinal gum-resin; most likely obtained from a Ferula species growing in the Cyrene region of Libya ca. 2500 years ago. Due to its therapeutic properties and culinary value, silphion became the main economic commodity of the Cyrene region. It is generally believed that the source of silphion became extinct in the first century AD. However, there are a few references in the literature about the cultivated silphion plant and its existence up to the fifth century. Recently, a rare and endemic Ferula species that produces a pleasant-smelling gum-resin was found in three locations near formerly Greek villages in Anatolia. Morphologic features of this species closely resemble silphion, as it appears in the numismatic figures of antique Cyrenaic coins, and conform to descriptions by ancient authors. Initial chemical and pharmacological investigations of this species have confirmed the medicinal and spice-like quality of its gum-resin supporting a connection with the long-lost silphion. A preliminary conservation study has been initiated at the growth site of this rare endemic Ferula species. The results of this study and their implications on the regional extinction event, and future development of this species will be discussed.
Collapse
Affiliation(s)
- Mahmut Miski
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| |
Collapse
|
17
|
Rosliuk D, Rutkaite R, Ivanauskas L, Jakstas V. Interaction between cross-linked cationic starch microgranules and chlorogenic acid isomers in artichoke and green coffee bean aqueous extracts. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1160:122385. [PMID: 32971368 DOI: 10.1016/j.jchromb.2020.122385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
In the present study, the adsorption of phenolic compounds, first of all, chlorogenic acid isomers (chlorogenic, neo-chlorogenic and crypto-chlorogenic acids) predominant in the artichoke (AE) or green coffee bean (GCBE) extracts on cross-linked cationic starch having quaternary ammonium groups (CCS) has been investigated. The equilibrium adsorption studies showed that adsorption closely followed the Langmuir adsorption model, i.e. anionic substances of the extracts were interacting with quaternary ammonium groups of CCS. The UPLC-UV-MS/MS analysis showed that 8% and 17% of chlorogenic acid isomers of the total amount of adsorbed phenolics form AE and GCBE, respectively, were immobilized on CCS. The desorption study of phenolics from AE/CCS and GCBE/CCS complexes revealed that amount of desorbed AE or GCBE phenolics depended on the desorption medium. The antioxidant activity investigation showed that the immobilization of active components of extracts on CCS prevented the rapid loss of antioxidant activity. The results suppose that adsorption on modified starch technique can be successfully employed to remove important amounts of bioactive compounds from plant extracts by employing effective, sustainable and environmental friendly procedures.
Collapse
Affiliation(s)
- Deimante Rosliuk
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania.
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
18
|
Bagdas D, Gul Z, Meade JA, Cam B, Cinkilic N, Gurun MS. Pharmacologic Overview of Chlorogenic Acid and its Metabolites in Chronic Pain and Inflammation. Curr Neuropharmacol 2020; 18:216-228. [PMID: 31631820 PMCID: PMC7327949 DOI: 10.2174/1570159x17666191021111809] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Natural phenolic compounds in medicinal herbs and dietary plants are antioxidants which play therapeutic or preventive roles in different pathological situations, such as oxidative stress and inflammation. One of the most studied phenolic compounds in the last decade is chlorogenic acid (CGA), which is a potent antioxidant found in certain foods and drinks. OBJECTIVE This review focuses on the anti-inflammatory and antinociceptive bioactivities of CGA, and the putative mechanisms of action are described. Ethnopharmacological reports related to these bioactivities are also reviewed. MATERIALS AND METHODS An electronic literature search was conducted by authors up to October 2019. Original articles were selected. RESULTS CGA has been shown to reduce inflammation and modulate inflammatory and neuropathic pain in animal models. CONCLUSION The consensus of the literature search was that systemic CGA may facilitate pain management via bolstering antioxidant defenses against inflammatory insults.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States.,Yale Tobacco Center of Regulatory Science, Yale University, New Haven, CT, United States
| | - Zulfiye Gul
- Department of Pharmacology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Julie A Meade
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Betul Cam
- Department of Physiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Nilufer Cinkilic
- Department of Biology, Faculty of Science and Arts, Uludag University, Bursa, Turkey
| | - Mine Sibel Gurun
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
19
|
Chlorogenic acid attenuates cyclophosphamide-induced rat interstitial cystitis. Life Sci 2020; 254:117590. [DOI: 10.1016/j.lfs.2020.117590] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 12/30/2022]
|
20
|
Tian L, Su CP, Wang Q, Wu FJ, Bai R, Zhang HM, Liu JY, Lu WJ, Wang W, Lan F, Guo SZ. Chlorogenic acid: A potent molecule that protects cardiomyocytes from TNF-α-induced injury via inhibiting NF-κB and JNK signals. J Cell Mol Med 2019; 23:4666-4678. [PMID: 31033175 PMCID: PMC6584503 DOI: 10.1111/jcmm.14351] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/16/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
The traditional Chinese herb Lonicerae Japonicae Flos has shown significant clinical benefits in the treatment of heart failure, but the mechanism remains unclear. As the main active ingredient found in the plasma after oral administration of Lonicerae Japonicae Flos, chlorogenic acid (CGA) has been reported to possess anti‐inflammatory, anti‐oxidant and anti‐apoptosis function. We firstly confirmed the cardioprotective effects of CGA in transverse aortic constriction (TAC)‐induced heart failure mouse model, through mitigating the TNF‐α–induced toxicity. We further used TNF‐α‐induced cardiac injury in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) to elucidate the underlying mechanisms. CGA pre‐treatment could reverse TNF‐α–induced cellular injuries, including improved cell viability, increased mitochondrial membrane potential and inhibited cardiomyocytes apoptosis. We then examined the NF‐κB/p65 and major mitogen‐activated protein kinases (MAPKs) signalling pathways involved in TNF‐α–induced apoptosis of hiPSC‐CMs. Importantly, CGA can directly inhibit NF‐κB signal by suppressing the phosphorylation of NF‐κB/p65. As for the MAPKs, CGA suppressed the activity of only c‐Jun N‐terminal kinase (JNK), but enhanced extracellular signal‐regulated kinase1/2 (ERK1/2) and had no effect on p38. In summary, our study revealed that CGA has profound cardioprotective effects through inhibiting the activation of NF‐κB and JNK pathway, providing a novel therapeutic alternative for prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Lei Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fu-Jian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Rui Bai
- Beijing Laboratory for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui-Min Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Jing Lu
- Beijing Laboratory for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shu-Zhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Kakita K, Tsubouchi H, Adachi M, Takehana S, Shimazu Y, Takeda M. Local subcutaneous injection of chlorogenic acid inhibits the nociceptive trigeminal spinal nucleus caudalis neurons in rats. Neurosci Res 2018; 134:49-55. [DOI: 10.1016/j.neures.2017.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022]
|
22
|
Surface imprinted polymers based on amino-hyperbranched magnetic nanoparticles for selective extraction and detection of chlorogenic acid in Honeysuckle tea. Talanta 2018; 181:271-277. [DOI: 10.1016/j.talanta.2018.01.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
|
23
|
Tiwari R, Siddiqui MH, Mahmood T, Bagga P, Ahsan F, Shamim A. Herbal Remedies: A Boon for Diabetic Neuropathy. J Diet Suppl 2018; 16:470-490. [PMID: 29580105 DOI: 10.1080/19390211.2018.1441203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diabetic neuropathy is a chronic complication of diabetes mellitus affecting about 50% of patients. Its symptoms include decreased motility and severe pain in peripheral parts. The pathogenesis involved is an abnormality in blood vessels that supply the peripheral nerves, metabolic disorders such as myo-inositol depletion, and increased nonenzymatic glycation. Moreover, oxidative stress in neurons results in activation of multiple biochemical pathways, which results in the generation of free radicals. Apart from available marketed formulations, extensive research is being carried out on herbal-based natural products to control hyperglycemia and its associated complications. This review is focused to provide a summary on diabetic neuropathy covering its etiology, types, and existing work on herbal-based therapies, which include pure compounds isolated from plant materials, plant extracts, and Ayurvedic preparations.
Collapse
Affiliation(s)
- Reshu Tiwari
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Mohd Haris Siddiqui
- b Associate Professor & Head, Department of Bioengineering , Integral University , Dasauli, Lucknow , India
| | - Tarique Mahmood
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Paramdeep Bagga
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Farogh Ahsan
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Arshiya Shamim
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| |
Collapse
|
24
|
Nam SH, Ko JA, Jun W, Wee YJ, Walsh MK, Yang KY, Choi JH, Eun JB, Choi J, Kim YM, Han S, Nguyen TTH, Kim D. Enzymatic synthesis of chlorogenic acid glucoside using dextransucrase and its physical and functional properties. Enzyme Microb Technol 2017; 107:15-21. [DOI: 10.1016/j.enzmictec.2017.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
|
25
|
Chlorogenic Acid Enhances Abdominal Skin Flap Survival Based on Epigastric Artery in Nondiabetic and Diabetic Rats. Ann Plast Surg 2017; 77:e21-5. [PMID: 25356637 DOI: 10.1097/sap.0000000000000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous studies showed that chlorogenic acid (CGA) accelerates wound healing via its antioxidant activity. We aimed to investigate the effect of CGA in an experimental epigastric abdominal skin flap model in nondiabetic and diabetic rats. Rats were firstly divided into 2 groups: nondiabetic and diabetic. Diabetes was induced by streptozotocin. Then, 4 subgroups were created for each group: vehicle as well as 0.2 mg/0.5 mL, 1 mg/0.5 mL, and 5 mg/0.5 mL CGA treatments. Right epigastric artery-based abdominal skin flaps were elevated and sutured back into their original position. Chlorogenic acid or vehicle was injected once into the femoral arteries by leaving the epigastric artery as the single artery feeding the flaps during the injection. On postoperative day 7, flap survivals were evaluated, and the rats were killed. Distal flap tissues were collected for histopathological and biochemical assays. Chlorogenic acid showed greater flap survival in both nondiabetic and diabetic rats. Capillary density was increased, and necrosis was reduced in the CGA-treated rats. Chlorogenic acid decreased malondialdehyde levels as well as increased reduced glutathione and superoxide dismutase levels in the flap tissues. This study showed that CGA significantly improved flap survival by its antioxidant activities with intra-arterial local injections.
Collapse
|
26
|
Arctium minus crude extract presents antinociceptive effect in a mice acute gout attack model. Inflammopharmacology 2017; 26:505-519. [DOI: 10.1007/s10787-017-0384-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022]
|
27
|
Tajik N, Tajik M, Mack I, Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr 2017; 56:2215-2244. [PMID: 28391515 DOI: 10.1007/s00394-017-1379-1] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/10/2017] [Indexed: 02/08/2023]
Abstract
Chlorogenic acid (CGA), an important biologically active dietary polyphenol, is produced by certain plant species and is a major component of coffee. Reduction in the risk of a variety of diseases following CGA consumption has been mentioned in recent basic and clinical research studies. This systematic review discusses in vivo animal and human studies of the physiological and biochemical effects of chlorogenic acids (CGAs) on biomarkers of chronic disease. We searched PubMed, Embase, Amed and Scopus using the following search terms: ("chlorogenic acid" OR "green coffee bean extract") AND (human OR animal) (last performed on April 1st, 2015) for relevant literature on the in vivo effects of CGAs in animal and human models, including clinical trials on cardiovascular, metabolic, cancerogenic, neurological and other functions. After exclusion of editorials and letters, uncontrolled observations, duplicate and not relevant publications the remaining 94 studies have been reviewed. The biological properties of CGA in addition to its antioxidant and anti-inflammatory effects have recently been reported. It is postulated that CGA is able to exert pivotal roles on glucose and lipid metabolism regulation and on the related disorders, e.g. diabetes, cardiovascular disease (CVD), obesity, cancer, and hepatic steatosis. The wide range of potential health benefits of CGA, including its anti-diabetic, anti-carcinogenic, anti-inflammatory and anti-obesity impacts, may provide a non-pharmacological and non-invasive approach for treatment or prevention of some chronic diseases. In this study, the effects of CGAs on different aspects of health by reviewing the related literatures have been discussed.
Collapse
Affiliation(s)
- Narges Tajik
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Frondsbergstr 23, 72076, Tuebingen, Germany
| | - Mahboubeh Tajik
- Faculty of Physical Education and Sport Sciences, International Branch of Ferdowsi University of Mashhad, Mashhad, Iran
| | - Isabelle Mack
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Frondsbergstr 23, 72076, Tuebingen, Germany
| | - Paul Enck
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Frondsbergstr 23, 72076, Tuebingen, Germany.
| |
Collapse
|
28
|
Phytochemical Composition, Antioxidant Activity, and the Effect of the Aqueous Extract of Coffee ( Coffea arabica L.) Bean Residual Press Cake on the Skin Wound Healing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1923754. [PMID: 27965732 PMCID: PMC5124758 DOI: 10.1155/2016/1923754] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/09/2016] [Accepted: 10/17/2016] [Indexed: 11/20/2022]
Abstract
The world coffee consumption has been growing for its appreciated taste and its beneficial effects on health. The residual biomass of coffee, originated in the food industry after oil extraction from coffee beans, called coffee beans residual press cake, has attracted interest as a source of compounds with antioxidant activity. This study investigated the chemical composition of aqueous extracts of coffee beans residual press cake (AE), their antioxidant activity, and the effect of topical application on the skin wound healing, in animal model, of hydrogels containing the AE, chlorogenic acid (CGA), allantoin (positive control), and carbopol (negative control). The treatments' performance was compared by measuring the reduction of the wound area, with superior result (p < 0.05) for the green coffee AE (78.20%) with respect to roasted coffee AE (53.71%), allantoin (70.83%), and carbopol (23.56%). CGA hydrogels reduced significantly the wound area size on the inflammatory phase, which may be associated with the well known antioxidant and anti-inflammatory actions of that compound. The topic use of the coffee AE studied improved the skin wound healing and points to an interesting biotechnological application of the coffee bean residual press cake.
Collapse
|
29
|
Food-Derived Natural Compounds for Pain Relief in Neuropathic Pain. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7917528. [PMID: 27891521 PMCID: PMC5116524 DOI: 10.1155/2016/7917528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/29/2016] [Accepted: 10/16/2016] [Indexed: 12/17/2022]
Abstract
Neuropathic pain, defined as pain caused by a lesion or disease of the somatosensory nervous system, is characterized by dysesthesia, hyperalgesia, and allodynia. The number of patients with this type of pain has increased rapidly in recent years. Yet, available neuropathic pain medicines have undesired side effects, such as tolerance and physical dependence, and do not fully alleviate the pain. The mechanisms of neuropathic pain are still not fully understood. Injury causes inflammation and immune responses and changed expression and activity of receptors and ion channels in peripheral nerve terminals. Additionally, neuroinflammation is a known factor in the development and maintenance of neuropathic pain. During neuropathic pain development, the C-C motif chemokine receptor 2 (CCR2) acts as an important signaling mediator. Traditional plant treatments have been used throughout the world for treating diseases. We and others have identified food-derived compounds that alleviate neuropathic pain. Here, we review the natural compounds for neuropathic pain relief, their mechanisms of action, and the potential benefits of natural compounds with antagonistic effects on GPCRs, especially those containing CCR2, for neuropathic pain treatment.
Collapse
|
30
|
Hamann FR, Zago AM, Rossato MF, Beck VR, Mello CF, de Brum TF, de Carvalho LM, Faccin H, Oliveira SM, Rubin MA. Antinociceptive and antidepressant-like effects of the crude extract of Vitex megapotamica in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:210-216. [PMID: 27435374 DOI: 10.1016/j.jep.2016.07.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vitex megapotamica (Spreng) Moldenke has been used in South American folk medicine to treat inflammatory diseases. However, the effects of V. megapotamica on animal models of nociception and depression have not been evaluated. AIM OF THE STUDY This study investigated whether the crude leaf extract of V. megapotamica exhibits antinociceptive and antidepressant-like effects in a Freund's adjuvant-induced chronic inflammation and depression model. MATERIALS AND METHODS Chronic inflammation was induced in rats by the intraplantar administration of complete Freund's adjuvant (CFA; 100μl). The effect of oral crude extract of V. megapotamica (VmE; 3-30mg/kg, p.o.) on nociception (thermal hyperalgesia, mechanical allodynia and arthritis score), inflammation (edema, myeloperoxidase activity), immobility (forced swimming test), locomotor activity (open field), gastrointestinal transit, hyperalgesia and naloxone-precipitated morphine withdrawal syndrome was evaluated. Naloxone (0.4mg/kg, i.p.) was used to investigate the involvement of opioid system in the currently described effects of VmE. RESULTS Crude extract caused antinociceptive/antidepressant-like effects in the CFA-induced chronic inflammation model, which was prevented by naloxone. The VmE extract (10mg/kg, p.o.) did not alter the locomotor activity, gastrointestinal function and inflammatory parameters and did not cause hyperalgesia. CONCLUSION V. megapotamica induces opioid-dependent antinociception and antidepressant-like effect, without anti-inflammatory activity. The results support the use of VmE as analgesic and antidepressant.
Collapse
Affiliation(s)
- Fernanda Regina Hamann
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Adriana Maria Zago
- Pharmacy Undergraduation Program, Centro Universitário Franciscano - UNIFRA, Santa Maria, RS, Brazil
| | - Mateus Fortes Rossato
- Center of Innovation and Pre-clinical Pharmacology - CIEnP, Florianopolis, SC, Brazil
| | - Veronica Rubert Beck
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carlos Fernando Mello
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Thiele Faccim de Brum
- Graduate Program in Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leandro Machado de Carvalho
- Graduate Program in Chemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henrique Faccin
- Graduate Program in Chemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Maribel Antonello Rubin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
31
|
Sałaga M, Fichna J, Socała K, Nieoczym D, Pieróg M, Zielińska M, Kowalczuk A, Wlaź P. Neuropharmacological characterization of the oneirogenic Mexican plant Calea zacatechichi aqueous extract in mice. Metab Brain Dis 2016; 31:631-41. [PMID: 26821073 PMCID: PMC4863909 DOI: 10.1007/s11011-016-9794-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/12/2016] [Indexed: 11/25/2022]
Abstract
This study evaluates the neuropharmacological effects of the aqueous extract of the Mexican plant Calea zacatechichi Schltdl., which is commonly used in folk medicine to treat cough, asthma, and gastrointestinal disorders. Moreover, it has been used for centuries in traditional rituals based on divination and is thought to possess hallucinogenic activity. To test the neuropharmacological effects of the aqueous extract of C. zacatechichi we used mouse models of convulsions, an elevated plus-maze test and measured locomotor activity. We also evaluated the effect of the extract on antidepressant-like behavior in forced swim test, as well as on muscular strength in a grip test. Moreover the antinociceptive action of the extract was evaluated in the hot-plate and writhing tests. The chemical composition of the extract was evaluated using LC-MS techniques. The aqueous extract of C. zacatechichi did not affect any of the parameters measured in seizure models. It had also no influence on anxiety, exploratory behavior and muscular strength in the applied doses. On the other hand, the extract exhibited antinociceptive effect in the mouse model of abdominal pain. Chemical characterization of the extract showed the presence of chlorogenic acid, acacetin, and germacranolides. Based on this report we suggest that aqueous extract of C. zacatechichi has insignificant neuropharmacological effects in vivo and reduces abdominal pain perception. Our results, together with previous studies showing beneficial effects of the extracts obtained from C. zacatechichi suggest that these preparations may be used to treat medical conditions.
Collapse
Affiliation(s)
- Maciej Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, PL, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, PL, Poland
| | - Mateusz Pieróg
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, PL, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | | | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, PL, Poland.
| |
Collapse
|
32
|
Beneficial effects of chlorogenic acid on alcohol-induced damage in PC12 cells. Biomed Pharmacother 2016; 79:254-62. [DOI: 10.1016/j.biopha.2016.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 11/18/2022] Open
|
33
|
Abstract
OBJECTIVES The aim of this review was to provide an overview of studies conducted to determine the effects of chlorogenic acid (CGA) on cognition and neurological health. METHODS A literature search was conducted using PubMed and various search terms including chlorogenic acid, CGA, memory, neuroscience, cognition, nutrition, antioxidant, pharmacokinetics, neuroprotection, and neurodegeneration. RESULTS Many studies have linked CGA consumption to a wide range of health benefits, including neuroprotection, cardioprotection, weight loss, chemopreventive properties, anti-inflammatory activity, decreased blood pressure, decreased diet-induced insulin resistance, decreased blood pressure, anxiolytic effects, and antihyperalgesic effects. Pre-clinical and clinical studies both provide evidence that CGA supplementation could protect against neurological degeneration and the resulting diseases associated with oxidative stress in the brain; however, no formal, well-controlled studies have been performed to date. DISCUSSION Recent research suggests that dietary consumption of CGA could produce a wide range of health benefits and physiological effects. There is also mounting evidence that the consumption of polyphenols, including CGA, in the diet could reduce the risk of developing neurodegenerative conditions. Further studies should be conducted with a focus on the effects of CGA on cognition and the nervous system and employing well-designed clinical studies.
Collapse
Affiliation(s)
- Erin Heitman
- a Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, LSU System , Baton Rouge , LA , USA
| | - Donald K Ingram
- a Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, LSU System , Baton Rouge , LA , USA
| |
Collapse
|
34
|
Nucci-Martins C, Martins DF, Nascimento LF, Venzke D, Oliveira AS, Frederico MJS, Silva FRMB, Brighente IMC, Pizzolatti MG, Santos ARS. Ameliorative potential of standardized fruit extract of Pterodon pubescens Benth on neuropathic pain in mice: Evidence for the mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:273-286. [PMID: 26386380 DOI: 10.1016/j.jep.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/31/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The medicinal plant Pterodon pubescens Benth has been traditionally used for a long time to treat rheumatic diseases due to its anti-inflammatory and analgesic activities. The present study aims to evaluate the antinociceptive effect of ethanolic extract from P. pubescens fruits (EEPp) in a model of neuropathic pain in mice. MATERIALS AND METHODS The phytochemical analysis of EEPp was performed through GC-MS, HPLC and colorimetric analysis. The antinociceptive effects of EEPp (30-300 mg/kg, i.g.) were evaluated on mechanical and thermal (cold or heat) hyperalgesia in neuropathic pain induced by partial sciatic nerve ligation (PSNL) in mice. We also investigated the effects of EEPp on the nociceptive response induced by intrathecal injection (i.t.) of ionotropic (AMPA, NMDA and kainate) and metabotropic (trans-ACPD) glutamate receptor agonists, proinflammatory cytokines such as IL-1β and TNF-α, as well as TRPV1 and TRPA1 agonists. In addition, we also investigated the safety profile of prolonged treatment with EEPp in mice. RESULTS The phytochemical analysis showed a higher amount terpenes, being nine sesquiterpenes and seven diterpenes with vouacapan skeletons, as well as a small amount of phenols and flavonoids. The exact mechanism by which EEPp promotes its antinociceptive effect is not yet fully understood, but its oral administration causes significant inhibition of glutamate-, kainate-, NMDA-, trans-ACPD-induced biting responses, as well as of proinflammatory cytokines (TNF-α and IL-1β) and TRPV1 and TRPA1 channels activators (capsaicin and cinnamaldehyde, respectively). These results may indicate, at least in part, some of the mechanisms that are involved in this effect. In particular, EEPp decreases neuropathic pain and clearly shows, for the first time, a thermal and mechanical hyperalgesia reduction in the model of partial sciatic nerve ligation (PSNL), without inducing tolerance. Furthermore, the prolonged treatment with EEPp (300 mg/kg, i.g.) showed a cumulative effect over 24h, in the 15th day, after last treatment. In addition, the open-field test showed that doses up to 300 mg/kg in both treatments, acute and/or prolonged, did not affect the motor activity of mice. Also, EEPp showed no toxicity according to the serum levels of the renal and hepatic injury indicators or observed macroscopic organs, after PSNL. CONCLUSIONS Taken together, these results provide the first experimental evidence of the significant antinociceptive effect of EEPp on neuropathic pain without causing side effects, such as sedation or locomotor dysfunction. Moreover, these results appear to be mediated, at least in part, by the inhibition of glutamatergic receptors, TRPV1 and TRPA1 channels and proinflammatory cytokines. Thus, this study adds new scientific evidence and highlights the therapeutic potential of the medicinal plant P. pubescens in the development of phytomedicines for the management of neuropathic pain.
Collapse
Affiliation(s)
- Catharina Nucci-Martins
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil; Graduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Daniel F Martins
- Laboratory of Experimental Neuroscience, Graduate Program in Health Sciences, University of Southern Santa Catarina, Pedra Branca, Palhoça, SC 88137-270, Brazil
| | - Leandro F Nascimento
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil; Graduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Dalila Venzke
- Department of Chemistry, Center of Physical and Mathematical Sciences, Federal University of Santa Catarina, Trindade Florianópolis, SC 88040-900, Brazil
| | - Aldo S Oliveira
- Department of Chemistry, Center of Physical and Mathematical Sciences, Federal University of Santa Catarina, Trindade Florianópolis, SC 88040-900, Brazil
| | - Marisa J S Frederico
- Graduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Fátima R M B Silva
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Inês M C Brighente
- Department of Chemistry, Center of Physical and Mathematical Sciences, Federal University of Santa Catarina, Trindade Florianópolis, SC 88040-900, Brazil
| | - Moacir G Pizzolatti
- Department of Chemistry, Center of Physical and Mathematical Sciences, Federal University of Santa Catarina, Trindade Florianópolis, SC 88040-900, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil; Graduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
35
|
In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile. Food Chem Toxicol 2015; 81:54-61. [DOI: 10.1016/j.fct.2015.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 01/26/2023]
|
36
|
Zhang YJ, Lu XW, Song N, Kou L, Wu MK, Liu F, Wang H, Shen JF. Chlorogenic acid alters the voltage-gated potassium channel currents of trigeminal ganglion neurons. Int J Oral Sci 2014; 6:233-40. [PMID: 25394592 PMCID: PMC5153590 DOI: 10.1038/ijos.2014.58] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 02/05/2023] Open
Abstract
Chlorogenic acid (5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to its notable biological functions against cardiovascular diseases, type-2 diabetes and inflammatory conditions, CGA was recently hypothesized to be an alternative for the treatment of neurological diseases such as Alzheimer's disease and neuropathic pain disorders. However, its mechanism of action is unclear. Voltage-gated potassium channel (Kv) is a crucial factor in the electro-physiological processes of sensory neurons. Kv has also been identified as a potential therapeutic target for inflammation and neuropathic pain disorders. In this study, we analysed the effects of CGA on the two main subtypes of Kv in trigeminal ganglion neurons, namely, the IK,A and IK,V channels. Trigeminal ganglion (TRG) neurons were acutely disassociated from the rat TRG, and two different doses of CGA (0.2 and 1 mmol⋅L−1) were applied to the cells. Whole-cell patch-clamp recordings were performed to observe alterations in the activation and inactivation properties of the IK,A and IK,V channels. The results demonstrated that 0.2 mmol⋅L−1 CGA decreased the peak current density of IK,A. Both 0.2 mmol⋅L−1 and 1 mmol⋅L−1 CGA also caused a significant reduction in the activation and inactivation thresholds of IK,A and IK,V. CGA exhibited a strong effect on the activation and inactivation velocities of IK,A and IK,V. These findings provide novel evidence explaining the biological effects of CGA, especially regarding its neurological effects.
Collapse
Affiliation(s)
- Yu-Jiao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Ning Song
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Kou
- Ningbo Dental Hospital, Ningbo, China
| | - Min-Ke Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Bagdas D, Gul NY, Topal A, Tas S, Ozyigit MO, Cinkilic N, Gul Z, Etoz BC, Ziyanok S, Inan S, Turacozen O, Gurun MS. Pharmacologic overview of systemic chlorogenic acid therapy on experimental wound healing. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:1101-16. [PMID: 25129377 DOI: 10.1007/s00210-014-1034-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/04/2014] [Indexed: 12/27/2022]
Abstract
Chlorogenic acid (CGA) is a well-known natural antioxidant in human diet. To understand the effects of CGA on wound healing by enhancing antioxidant defense in the body, the present study sought to investigate the potential role of systemic CGA therapy on wound healing and oxidative stress markers of the skin. We also aimed to understand whether chronic CGA treatment has side effects on pivotal organs or rat bone marrow during therapy. Full-thickness experimental wounds were created on the backs of rats. CGA (25, 50, 100, 200 mg/kg) or vehicle was administered intraperitoneally for 15 days. All rats were sacrificed on the 16th day. Biochemical, histopathological, and immunohistochemical examinations were performed. Possible side effects were also investigated. The results suggested that CGA accelerated wound healing in a dose-dependent manner. CGA enhanced hydroxyproline content, decreased malondialdehyde and nitric oxide levels. and elevated reduced glutathione, superoxide dismutase, and catalase levels in wound tissues. Epithelialization, angiogenesis, fibroblast proliferation, and collagen formation increased by CGA while polymorph nuclear leukocytes infiltration decreased. CGA modulated matrix metalloproteinase-9 and tissue inhibitor-2 expression in biopsies. Otherwise, high dose of CGA increased lipid peroxidation of liver and kidney without affecting the heart and muscle samples. Chronic CGA increased micronuclei formation and induced cytotoxicity in the bone marrow. In conclusion, systemic CGA has beneficial effects in improving wound repair. Antioxidant, free radical scavenger, angiogenesis, and anti-inflammatory effects of CGA may ameliorate wound healing. High dose of CGA may induce side effects. In light of these observations, CGA supplementation or dietary CGA may have benefit on wound healing.
Collapse
Affiliation(s)
- Deniz Bagdas
- Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Qu ZW, Liu TT, Qiu CY, Li JD, Hu WP. Inhibition of acid-sensing ion channels by chlorogenic acid in rat dorsal root ganglion neurons. Neurosci Lett 2014; 567:35-9. [PMID: 24680850 DOI: 10.1016/j.neulet.2014.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 12/22/2022]
Abstract
Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, it is demonstrated to have potent antinociceptive effect. However, little is understood about the mechanism underlying CGA analgesia. Here, we have found that CGA can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. First, CGA decreased the peak amplitude of proton-gated currents mediated by ASICs in a concentration-dependent manner. Second, CGA shifted the proton concentration-response curve downward, with a decrease of 41.76 ± 8.65% in the maximum current response to protons but with no significant change in the pH0.5 value. Third, CGA altered acidosis-evoked membrane excitability of rat DRG neurons and caused a significant decrease in the amplitude of the depolarization and the number of action potentials induced by acid stimuli. Finally, peripheral administered CGA attenuated nociceptive response to intraplantar injection of acetic acid in rats. ASICs are distributed in peripheral sensory neurons and participate in nociception. Our findings CGA inhibition of native ASICs indicated that CGA may exert analgesic action by modulating ASICs in the primary afferent neurons, which revealed a novel cellular and molecular mechanism underlying CGA analgesia.
Collapse
Affiliation(s)
- Zu-Wei Qu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Ting-Ting Liu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Chun-Yu Qiu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Jia-Da Li
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Wang-Ping Hu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China.
| |
Collapse
|
39
|
Bagdas D, Ozboluk HY, Cinkilic N, Gurun MS. Antinociceptive effect of chlorogenic acid in rats with painful diabetic neuropathy. J Med Food 2014; 17:730-2. [PMID: 24611441 DOI: 10.1089/jmf.2013.2966] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study aimed to evaluate possible antinociceptive effects of chlorogenic acid in streptozotocin-induced diabetic neuropathic pain in rats. Chlorogenic acid (100 mg/kg) was administered daily for 14 days. Our study showed for the first time that both single and chronic chlorogenic acid treatments produced significant antinociceptive effects in diabetic rats. In contrast, single dose of chlorogenic acid showed no signs of an antinociceptive effect, but chronic treatment exerted antinociceptive potential in nondiabetic rats. Additionally, chronic treatment effectively reduced hyperglycemia that induced by diabetes. In conclusion, chlorogenic acid has beneficial effects for the management of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Deniz Bagdas
- 1 Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University , Bursa, Turkey
| | | | | | | |
Collapse
|
40
|
Chlorogenic acid administered intrathecally alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Eur J Pharmacol 2013; 723:459-64. [PMID: 24184666 DOI: 10.1016/j.ejphar.2013.10.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/20/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022]
Abstract
Chlorogenic acid (CGA), one of the most abundant dietary polyphenols, is known to have various physiological properties. Although CGA is reported to have an antinociceptive effect on acute and inflammatory pain, little is known about its effect on neuropathic pain or its action site. The aim of the present study was to determine whether intrathecally administered CGA can ameliorate hyperalgesia in a neuropathic pain model. Chronic constriction injury to the sciatic nerve was induced in male Sprague-Dawley rats. CGA (0.5, 1, or 2mg) was administered intrathecally to examine the effects on mechanical, thermal, and cold hyperalgesia using the electronic von Frey test, plantar test, and cold plate test, respectively. A rotarod test was also performed to assess motor function. To identify the neurotransmitter pathway involved in the spinal action of CGA, the present study examined the effect of intrathecal pretreatment with several antagonists of spinal pain processing receptors on the action of CGA in the electronic von Frey test and cold plate test. Spinally applied CGA dose-dependently alleviated mechanical and cold hyperalgesia. Conversely, CGA had no effect on thermal hyperalgesia. At the highest dose, CGA affected motor performance. The antihyperalgesic action of CGA was partially reversed by bicuculline, an γ-aminobutyric acidA (GABAA) receptor antagonist, at a dose that did not affect baseline behavioral responses. These findings suggest that CGA ameliorates mechanical and cold hyperalgesia partly by activating GABAergic transmission in the spinal cord, and that CGA may be useful for novel treatments for neuropathic pain.
Collapse
|