1
|
Lim DW, Yoo G, Kim YT, Lee C. Antidepressant-like Effects of Chinese Quince ( Chaenomeles sinensis) Fruit Based on In Vivo and Molecular Docking Studies. Int J Mol Sci 2024; 25:5838. [PMID: 38892026 PMCID: PMC11172133 DOI: 10.3390/ijms25115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, we examined the potential antidepressant-like effects of Chinese quince fruit extract (Chaenomeles sinensis fruit extract, CSFE) in an in vivo model induced by repeated injection of corticosterone (CORT)-induced depression. HPLC analysis determined that chlorogenic acid (CGA), neo-chlorogenic acid (neo-CGA), and rutin (RT) compounds were major constituents in CSFE. Male ICR mice (5 weeks old) were orally administered various doses (30, 100, and 300 mg/kg) of CSFE and selegiline (10 mg/kg), a monoamine oxidase B (MAO-B) inhibitor, as a positive control following daily intraperitoneal injections of CORT (40 mg/kg) for 21 days. In our results, mice treated with CSFE exhibited significant improvements in depressive-like behaviors induced by CORT. This was evidenced by reduced immobility times in the tail suspension test and forced swim test, as well as increased step-through latency times in the passive avoidance test. Indeed, mice treated with CSFE also exhibited a significant decrease in anxiety-like behaviors as measured by the elevated plus maze test. Moreover, molecular docking analysis indicated that CGA and neo-CGA from CSFE had stronger binding to the active site of MAO-B. Our results indicate that CSFE has potential antidepressant effects in a mouse model of repeated injections of CORT-induced depression.
Collapse
Affiliation(s)
| | | | | | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.W.L.); (G.Y.); (Y.T.K.)
| |
Collapse
|
2
|
Tian R, Liu X, Xiao Y, Jing L, Tao H, Yang L, Meng X. Huang-Lian-Jie-Du decoction drug-containing serum inhibits IL-1β secretion from D-glucose and PA induced BV2 cells via autophagy/NLRP3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117686. [PMID: 38160864 DOI: 10.1016/j.jep.2023.117686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du decoction (HLJDD), a famous traditional Chinese medicine prescription with heat-clearing and detoxifying effects, has been widely used to treat diabetes, dementia, stroke, and other diseases. However, the detailed mechanisms of HLJDD against type 2 diabetes associated cognitive dysfunction (DACD) through inhibiting interleukin-1β (IL-1β) mediated neuroinflammation remain to be further elucidated. AIM OF THE STUDY The aim of this study was to investigate the effect and potential mechanism of HLJDD on IL-1β secretion in a DACD model of BV2 cells induced by D-glucose and palmitic acid (PA). MATERIALS AND METHOD sUltra-performance liquid chromatography-quadrupole/electrostatic field orbital well high-resolution mass spectrometry technology was used to analyze the compounds in HLJDD drug-containing serum. The cytotoxicity was detected by cell counting kit-8. Enzyme-linked immunosorbent assay was used to measure the secretion of IL-1β in BV2 cells. Reactive oxygen species, glutathione, superoxide dismutase, and malondialdehyde kits were used to detect the intracellular oxidative stress levels. The autophagy level was determined by autophagy staining kit and transmission electron microscope. The expression levels of autophagy-related 7 (Atg7), P62, LC3, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3(NLRP3), Caspase1, and IL-1β were detected by real-time PCR, immunofluorescence, and western blotting. The Atg7siRNA was transfected into BV2 cells to produce autophagy inhibitory effect. Then the effect of HLJDD drug-containing serum on IL-1β secretion in D-glucose and PA induced BV2 cells and the potential mechanism of autophagy-NLRP3 inflammasome activation were further observed. RESULTS Eighty-eight compounds were preliminarily identified in HLJDD drug-containing serum, among which geniposide, baicalin, palmatine, berberine, wogonoside, wogonin, and geniposidic acid were identified as the main prototype components of HLJDD into the blood. In this study, the DACD model of BV2 cells induced by high concentrations of glucose and PA was successfully constructed. HLJDD drug-containing serum significantly reduced the secretion of IL-1β and the activity of NLRP3 inflammasome with improving the oxidative stress level. Interestingly, the enhanced autophagy level was also found. After transfection of Atg7siRNA into BV2 cells, the effect of HLJDD drug-containing serum on autophagy promotion was reversed, but the inhibitory effects on IL-1β secretion, NLRP3 inflammasome activation, and oxidative stress were reduced. CONCLUSIONS These results indicated that the inhibition of HLJDD drug-containing serum on the IL-1β secretion in D-glucose and PA induced BV2 cells was related to autophagy promotion, the decreased NLRP3 inflammasome activation, and the improved oxidative stress. Moreover, the improvement of HLJDD drug-containing serum on IL-1β secretion, NLRP3 inflammasome activation, and oxidative stress were all closely associated with Atg7 mediated autophagy promotion. Geniposide, baicalin, palmatine, berberine, wogonoside, wogonin, and geniposidic acid may be the potential active ingredients of HLJDD drug-containing serum.
Collapse
Affiliation(s)
- Ruimin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacology, North Sichuan Medical College, Nanchong, 637000, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lijia Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Hernandez M, Ghislin S, Lalonde R, Strazielle C. Corticosterone effects on postnatal cerebellar development in mice. Neurochem Int 2023; 171:105611. [PMID: 37704081 DOI: 10.1016/j.neuint.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Glucocorticoids administered early in infancy can affect the architectonic organization of brain structures, particularly those with a postnatal development and resulting in long-term deficits of neuromotor function and cognition. The present study was undertaken to study the effects of daily corticosterone (CORT) injections at a pharmacological dose from postnatal days 8-15 on cerebellar and hippocampal development in mouse pups. Gene expression status for trophic factors involved in synaptic development and function as well as measures of layer thickness associated with cytochrome oxidase labelling were analyzed in the hippocampus, hypothalamus, and specific cerebellar lobules involved in motor control. Repeated CORT injections dysregulated the HPA axis with increased Crh and Nr3c1 mRNA levels in the hypothalamus and a resulting higher serum corticosterone level. The CORT treatment altered the morphology of the hippocampus and down-regulated gene transcription for corticotropin-releasing hormone (Crh) and its type-1 receptor (Crhr1), glucocorticoid receptor (Nr3c1), and brain-derived neurotrophic factor Bdnf and its receptor Ntrk2 (neurotrophic receptor tyrosine kinase 2). Similar mRNA expression decreases were found in the cerebellum for Crhr1, Crhr2, Nr3c1, and Grid2 (glutamatergic δ2 receptor). Morphological alterations and metabolic activity variations were observed in specific cerebellar lobules involved in motor control. The paramedian lobule, normally characterized by mitotic activity in the external germinative layer during the second postnatal week, was atrophic but metabolically hyperactive in its granule cell and molecular layers. On the contrary, lobules with an earlier cell proliferation displayed neurogenesis but a hypoactivated granule cell layer, suggesting a developmental delay in synaptogenesis. The results indicate that glucocorticoid, administered daily during the second postnatal week modulated the developmental programming of the hippocampus and cerebellum. These growth and metabolic alterations may lead possibly to morphological and functional changes later in life.
Collapse
Affiliation(s)
- M Hernandez
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| | - S Ghislin
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - R Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - C Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
4
|
Lim DW, Yoo G, Lee C. Dried Loquat Fruit Extract Containing Chlorogenic Acid Prevents Depressive-like Behaviors Induced by Repeated Corticosteroid Injections in Mice. Molecules 2023; 28:5612. [PMID: 37513484 PMCID: PMC10385307 DOI: 10.3390/molecules28145612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Eriobotrya japonica (loquat tree) has been used in traditional medicine to treat respiratory ailments, inflammation, and skin diseases; however, its potential antidepressant-like effects have not been extensively investigated. In this study, we evaluated the antidepressant-like effects of E. japonica fruit extract (EJFE) in a mouse model of corticosterone (CORT)-induced depression. An HPLC analysis revealed that chlorogenic acid (CGA) is the major compound in EJFE. Male ICR mice (5weeks-old) were injected with CORT (40 mg/kg, intraperitoneally) once daily for 21 days to induce depressive-like behaviors. Various behavioral tests, including the open field test, rotarod test, elevated plus maze (EPM), passive avoidance test (PAT), tail suspension test (TST), and forced swim test (FST), were conducted 1 h after the oral administration of EJFE at different doses (30, 100, and 300 mg/kg) and CGA (30 mg/kg). High-dose EJFE and CGA significantly alleviated CORT-induced depressive-like behaviors, as indicated by the reduced immobility times in the TST and FST. A decrease in the step-through latency time in the PAT, without an effect on locomotor activity, suggested an improvement in cognitive function. Moreover, EJFE- and CGA-treated mice exhibited significantly reduced anxiety-like behaviors in the EPM. Our results imply the promising potential of EJFE containing CGA as a therapeutic candidate for depression.
Collapse
Affiliation(s)
- Dong Wook Lim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Guijae Yoo
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
5
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
6
|
Sur B, Lee B. Ginsenoside Rg3 modulates spatial memory and fear memory extinction by the HPA axis and BDNF-TrkB pathway in a rat post-traumatic stress disorder. J Nat Med 2022; 76:821-831. [PMID: 35982366 DOI: 10.1007/s11418-022-01636-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious mental disorder that can develop after exposure to extreme stress. Korean red ginseng, whose major active component is ginsenoside Rg3 (Rg3), is a widely used traditional antioxidant that has anti-inflammatory, anti-apoptotic and anxiolytics effects. This study investigated whether the administration of Rg3 ameliorated the memory deficit induced by a single prolonged stress (SPS) in rats. Male rats were dosed with Rg3 (25 or 50 mg/kg) once daily for 14 days after exposure to SPS. Rg3 administration improved fear memory and spatial memory might be involved in modulating the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and monoamine imbalance in the medial prefrontal cortex and hippocampus. It also increased the reduction in the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) mRNAs expression, and the ratio of p-Akt/Akt in the hippocampus. Thus, Rg3 exerted memory-improving actions might be involved in regulating HPA axis and activating BDNF-TrkB pathway. Our findings suggest that Rg3 could be useful for preventing traumatic stress, such as PTSD.
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Scutellaria baicalensis and its constituents baicalin and baicalein as antidotes or protective agents against chemical toxicities: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1297-1329. [PMID: 35676380 DOI: 10.1007/s00210-022-02258-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Scutellaria baicalensis (SB), also known as the Chinese skullcap, has a long history of being used in Chinese medicine to treat a variety of conditions ranging from microbial infections to metabolic syndrome and malignancies. Numerous studies have reported that treatment with total SB extract or two main flavonoids found in its root and leaves, baicalin (BA) and baicalein (BE), can prevent or alleviate the detrimental toxic effects of exposure to various chemical compounds. It has been shown that BA and BE are generally behind the protective effects of SB against toxicants. This paper aimed to review the protective and therapeutic effects of SB and its main components BA and BE against chemical compounds that can cause intoxication after acute or chronic exposure and seriously affect different vital organs including the brain, heart, liver, and kidneys. In this review paper, we had a look into a total of 221 in vitro and in vivo studies from 1995 to 2021 from the scientific databases PubMed, Scopus, and Web of Science which reported protective or therapeutic effects of BA, BE, or SB against drugs and chemicals that one might be exposed to on a professional or accidental basis and compounds that are primarily used to simulate disease models. In conclusion, the protective effects of SB and its flavonoids can be mainly attributed to increase in antioxidants enzymes, inhibition of lipid peroxidation, reduction of inflammatory cytokines, and suppression of apoptosis pathway.
Collapse
|
8
|
Unusual Bioactive Compounds with Antioxidant Properties in Adjuvant Therapy Supporting Cognition Impairment in Age-Related Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms221910707. [PMID: 34639048 PMCID: PMC8509433 DOI: 10.3390/ijms221910707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Cognitive function decline is strictly related to age, resulting in the loss of the ability to perform daily behaviors and is a fundamental clinical neurodegeneration symptom. It has been proven that an adequate diet, comprehensive nutrition, and a healthy lifestyle may significantly inhibit neurodegenerative processes, improving cognitive functions. Therefore, intensive research has been conducted on cognitive-enhancing treatment for many years, especially with substances of natural origin. There are several intervention programs aimed at improving cognitive functions in elderly adults. Cognitive functions depend on body weight, food consumed daily, the quality of the intestinal microflora, and the supplements used. The effectiveness in the prevention of dementia is particularly high before the onset of the first symptoms. The impact of diet and nutrition on age-associated cognitive decline is becoming a growing field as a vital factor that may be easily modified, and the effects may be observed on an ongoing basis. The paper presents a review of the latest preclinical and clinical studies on the influence of natural antioxidants on cognitive functions, with particular emphasis on neurodegenerative diseases. Nevertheless, despite the promising research results in animal models, the clinical application of natural compounds will only be possible after solving a few challenges.
Collapse
|
9
|
Lim DW, Han T, Um MY, Yoon M, Kim TE, Kim YT, Han D, Lee J, Lee CH. Administration of Asian Herb Bennet ( Geum japonicum) Extract Reverses Depressive-Like Behaviors in Mouse Model of Depression Induced by Corticosterone. Nutrients 2019; 11:E2841. [PMID: 31756901 PMCID: PMC6950235 DOI: 10.3390/nu11122841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022] Open
Abstract
Geum japonicum, commonly known as Asian herb bennet, has been used as a diuretic, astringent, anti-dizziness, and anti-headache agent in traditional medicine. Since the antidepressant-like effects of G. japonicum extract have not been well studied, we examined the antidepressant-like effects of G. japonicum extract using depressive-like behavior induced in mice through daily injection of corticosterone (CORT). ICR mice (male, 8 weeks old) were treated with CORT (40 mg/kg, i.p.) and orally administered using oral gavage needles with G. japonicum extract (30, 100, and 300 mg/kg) for 4 weeks. Behavioral experiments were performed 1 h after administration. The control mice exhibited a significant increase in the immobility times in the tail suspension and forced swim tests as well as the step-through latency time in the passive avoidance test. Further, the control group showed a significant decrease in their sucrose consumption. However, treatment with G. japonicum extract at doses of 100 and 300 mg/kg significantly improved these depression-like behaviors without altering the locomotor activity. Moreover, treatment with G. japonicum extract significantly prevented the decrease in the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. In addition, G. japonicum extract had neuroprotective effects against CORT-induced neurotoxicity in SH-SY5Y cells. Our study indicates that G. japonicum extract exhibits antidepressant-like activity in CORT-induced depressive mice, which might be as a result of increased BDNF expression.
Collapse
Affiliation(s)
- Dong Wook Lim
- Research Division of Functional Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.W.L.); (M.Y.U.); (M.Y.); (T.-E.K.); (Y.T.K.); (D.H.); (J.L.)
| | - Taewon Han
- Food Functional Evaluation Support Team, Korea Food Research Institute, Wanju 55365, Korea;
| | - Min Young Um
- Research Division of Functional Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.W.L.); (M.Y.U.); (M.Y.); (T.-E.K.); (Y.T.K.); (D.H.); (J.L.)
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| | - Minseok Yoon
- Research Division of Functional Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.W.L.); (M.Y.U.); (M.Y.); (T.-E.K.); (Y.T.K.); (D.H.); (J.L.)
| | - Tae-Eun Kim
- Research Division of Functional Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.W.L.); (M.Y.U.); (M.Y.); (T.-E.K.); (Y.T.K.); (D.H.); (J.L.)
| | - Yun Tai Kim
- Research Division of Functional Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.W.L.); (M.Y.U.); (M.Y.); (T.-E.K.); (Y.T.K.); (D.H.); (J.L.)
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| | - Daeseok Han
- Research Division of Functional Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.W.L.); (M.Y.U.); (M.Y.); (T.-E.K.); (Y.T.K.); (D.H.); (J.L.)
| | - Jaekwang Lee
- Research Division of Functional Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.W.L.); (M.Y.U.); (M.Y.); (T.-E.K.); (Y.T.K.); (D.H.); (J.L.)
| | - Chang Ho Lee
- Research Division of Functional Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.W.L.); (M.Y.U.); (M.Y.); (T.-E.K.); (Y.T.K.); (D.H.); (J.L.)
| |
Collapse
|
10
|
Zhou R, Wang J, Han X, Ma B, Yuan H, Song Y. Baicalin regulates the dopamine system to control the core symptoms of ADHD. Mol Brain 2019; 12:11. [PMID: 30736828 PMCID: PMC6368814 DOI: 10.1186/s13041-019-0428-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
We aimed to test the therapeutic effects of baicalin on attention deficit hyperactivity disorder (ADHD) in an animal model and to explain the potential mechanism. We investigated the therapeutic effects and mechanisms of baicalin in a spontaneously hypertensive rat (SHR) model of ADHD depending on the dopamine (DA) deficit theory. In this study, fifty SHRs were randomly divided into five groups: methylphenidate (MPH), baicalin (50 mg/kg, 100 mg/kg, or 150 mg/kg), and saline-treated. Ten Wistar Kyoto (WKY) rats were used as controls. All rats were orally administered the treatment for four weeks. Motor activity, spatial learning and memory ability were assessed with the open-field and Morris water-maze tests. The mRNA and protein levels of tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2), synaptosomal-associated protein of molecular mass 25kD (SNAP25) and synataxin 1a in synaptosomes were detected with real-time polymerase chain reaction (PCR) and Western blot. In addition, DA levels were measured in the prefrontal cortex and striatum. The results indicated that both MPH and baicalin at doses of 150 mg/kg and 100 mg/kg significantly decreased the hyperactivity and improved the spatial learning memory deficit in the SHRs and increased the synaptosomal mRNA and protein levels of TH, SNAP25, VMAT2 and synataxin 1a compared with saline treatment. MPH significantly increased DA levels in both the prefrontal cortex (PFC) and striatum, while baicalin significantly increased DA levels only in the striatum. The results of the present study showed that baicalin treatment was effective for controlling the core symptoms of ADHD. Baicalin increased DA levels only in the striatum, which suggested that baicalin may target the striatum. The increased DA levels may partially be attributed to the increased mRNA and protein expression of TH, SNAP25, VMAT2, and syntaxin 1a. Therefore, these results suggested that the pharmacological effects of baicalin were associated with the synthesis, vesicular localization, and release of DA and might be effective in treating ADHD. However, further studies are required to better understand the molecular mechanisms underlying these findings.
Collapse
Affiliation(s)
- Rongyi Zhou
- The First Affiliated Hospital of Henan University of Chinese Medicine, Renmin road no.19, Jinshui District, Zhengzhou City, 450000, Henan Province, China.
| | - Jiaojiao Wang
- Nanjing University of Chinese Medicine, Xianlin road no.138, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Xinmin Han
- Nanjing University of Chinese Medicine, Xianlin road no.138, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Bingxiang Ma
- The First Affiliated Hospital of Henan University of Chinese Medicine, Renmin road no.19, Jinshui District, Zhengzhou City, 450000, Henan Province, China
| | - Haixia Yuan
- Nanjing University of Chinese Medicine, Xianlin road no.138, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Yuchen Song
- Nanjing University of Chinese Medicine, Xianlin road no.138, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| |
Collapse
|
11
|
Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Yao WF, Gao H, Wei MJ. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Ther 2019; 25:575-590. [PMID: 30676698 PMCID: PMC6488900 DOI: 10.1111/cns.13086] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Aims Baicalin (BAI), a flavonoid compound isolated from the root of Scutellaria baicalensis Georgi, has been established to have potent anti‐inflammation and neuroprotective properties; however, its effects during Alzheimer's disease (AD) treatment have not been well studied. This study aimed to investigate the effects of BAI pretreatment on cognitive impairment and neuronal protection against microglia‐induced neuroinflammation and to explore the mechanisms underlying its anti‐inflammation effects. Methods To determine whether BAI plays a positive role in ameliorating the memory and cognition deficits in APP (amyloid beta precursor protein)/PS1 (presenilin‐1) mice, behavioral experiments were conducted. We assessed the effects of BAI on microglial activation, the production of proinflammatory cytokines, and neuroinflammation‐mediated neuron apoptosis in vivo and in vitro using Western blot, RT‐PCR, ELISA, immunohistochemistry, and immunofluorescence. Finally, to elucidate the anti‐inflammation mechanisms underlying the effects of BAI, the protein expression of NLRP3 inflammasomes and the expression of proteins involved in the TLR4/NF‐κB signaling pathway were measured using Western blot and immunofluorescence. Results The results indicated that BAI treatment attenuated spatial memory dysfunction in APP/PS1 mice, as assessed by the passive avoidance test and the Morris water maze test. Additionally, BAI administration effectively decreased the number of activated microglia and proinflammatory cytokines, as well as neuroinflammation‐mediated neuron apoptosis, in APP/PS1 mice and LPS (lipopolysaccharides)/Aβ‐stimulated BV2 microglial cells. Lastly, the molecular mechanistic study revealed that BAI inhibited microglia‐induced neuroinflammation via suppression of the activation of NLRP3 inflammasomes and the TLR4/NF‐κB signaling pathway. Conclusion Overall, the results of the present study indicated that BAI is a promising neuroprotective compound for use in the prevention and treatment of microglia‐mediated neuroinflammation during AD progression.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ping Qian
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| |
Collapse
|
12
|
Mondal AC, Fatima M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: role of antidepressants treatment. Int J Neurosci 2018; 129:283-296. [PMID: 30235967 DOI: 10.1080/00207454.2018.1527328] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Depression is one of the most prevalent, recurrent and life-threatening mental illnesses. However, the precise mechanism underlying the disorder is not yet clearly understood. It is therefore, essential to identify the novel biomarkers which may help in the development of effective treatment. METHODS In this milieu, the profile of the brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were considered as biomarkers in the light of pathophysiology of depression and its treatment. RESULTS Previously, we have reported that BDNF level in the postmortem brain of suicide victims was significantly lower than those of normal controls. We also found decreased BDNF levels in the specific brain regions of the learned helplessness model of depression in rat, and was found to increase normal level following chronic fluoxetine hydrochloride treatment. NGF is another important member of neurotrophin, which is dysregulated in the pathophysiology of depression in some models of peripheral nerve damage and stress. The results shown evidences of the effect of antidepressants on modulating depression via the NGF in preclinical and clinical models of depression, but conflicted, therefore make it currently difficult to affirm the therapeutic role of antidepressants. CONCLUSIONS Here, we review some of the preclinical and clinical studies aimed at disclosing the role of BDNF and NGF mediated pathophysiological mechanisms of depression and the new therapeutic approaches targeting those key molecules. In addition, an important link between BDNF, NGF and depression has been discussed in the light of current existing knowledge.
Collapse
Affiliation(s)
- Amal Chandra Mondal
- a Laboratory of Cellular and Molecular Neurobiology , School of Life Sciences, Jawaharlal Nehru University , New Delhi , India
| | - Mahino Fatima
- a Laboratory of Cellular and Molecular Neurobiology , School of Life Sciences, Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
13
|
Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review. Brain Sci 2018; 8:brainsci8060104. [PMID: 29891783 PMCID: PMC6025220 DOI: 10.3390/brainsci8060104] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb). In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.
Collapse
|
14
|
Raya J, Girardi CEN, Hipólide DC. Corticosterone Assimilation by a Voluntary Oral Administration in Palatable Food to Rats. J APPL ANIM WELF SCI 2018; 22:37-41. [PMID: 29749268 DOI: 10.1080/10888705.2018.1471605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Drug delivery in research on nonhuman animals in the laboratory is still challenging because it is usually invasive and stressful. Stress-free voluntary oral drug administration in water lacks precise control of dose and timing of substance ingestion. Voluntary oral consumption of corticosterone has been previously successfully applied in mice using oat flakes, but protocols for oral corticosterone administration in rats remain unavailable. This study assessed the effectiveness of voluntary oral administration to rats of a palatable piece of bread soaked with corticosterone that can be rapidly prepared and is reliably dose- and timing-controllable. After three familiarization days, all rats ate the bread within 120 seconds of presentation, irrespective of the presence or absence of corticosterone or vehicle. Corticosterone plasma levels remained at basal levels with consumption of vehicle-containing bread, and they were significantly increased with corticosterone-containing bread. Hence, the method enabled corticosterone bodily assimilation while avoiding stress, making it a possible alternative for invasive and stressful procedures. This article includes a methodological refinement that lessens unnecessary discomfort to laboratory animals and is potentially suitable for acute and chronic protocol studies.
Collapse
Affiliation(s)
- Juliana Raya
- a Department of Psychobiology , Universidade Federal de São Paulo , São Paulo , Brazil
| | | | | |
Collapse
|
15
|
Ding S, Zhuge W, Hu J, Yang J, Wang X, Wen F, Wang C, Zhuge Q. Baicalin reverses the impairment of synaptogenesis induced by dopamine burden via the stimulation of GABA AR-TrkB interaction in minimal hepatic encephalopathy. Psychopharmacology (Berl) 2018; 235:1163-1178. [PMID: 29404643 PMCID: PMC5869945 DOI: 10.1007/s00213-018-4833-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 01/08/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND It has been reported that D1 receptor (D1R) activation reduces GABAA receptor (GABAAR) current, and baicalin (BAI) displays therapeutic efficacy in diseases involving cognitive impairment. METHODS We investigated the mechanisms by which BAI could improve DA-induced minimal hepatic encephalopathy (MHE) using immunoblotting, immunofluorescence, and co-immunoprecipitation. RESULTS BAI did not induce toxicity on the primary cultured neurons. And no obvious toxicity of BAI to the brain was found in rats. DA activated D1R/dopamine and adenosine 3'5'-monophosphate-regulated phospho-protein (DARPP32) to reduce the GABAAR current; BAI treatment did not change the D1R/DARPP32 levels but blocked DA-induced reduction of GABAAR levels in primary cultured neurons. DA decreased the interaction of GABAAR with TrkB and the expression of downstream AKT, which was blocked by BAI treatment. Moreover, BAI reversed the decrease in the expression of GABAAR/TrkB/AKT and prevented the impairment of synaptogenesis and memory deficits in MHE rats. CONCLUSIONS These results suggest that BAI has neuroprotective and synaptoprotective effects on MHE which are not related to upstream D1R/DARPP32 signaling, but to the targeting of downstream GABAAR signaling to TrkB.
Collapse
Affiliation(s)
- Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Weishan Zhuge
- Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Jiangnan Hu
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107 USA
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Fangfang Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Chengde Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
16
|
Lu J, Wang W, Mi Y, Zhang C, Ying H, Wang L, Wang Y, Myatt L, Sun K. AKAP95-mediated nuclear anchoring of PKA mediates cortisol-induced PTGS2 expression in human amnion fibroblasts. Sci Signal 2017; 10:10/506/eaac6160. [PMID: 29162743 DOI: 10.1126/scisignal.aac6160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphorylation of the transcription factors cyclic adenosine monophosphate response element-binding protein (CREB) and signal transducer and activator of transcription 3 (STAT3) by protein kinase A (PKA) is required for the cortisol-induced production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in human amnion fibroblasts, which critically mediates human parturition (labor). We found that PKA was confined in the nucleus by A-kinase-anchoring protein 95 (AKAP95) in amnion fibroblasts and that this localization was key to the cortisol-induced expression of PTGS2, the gene encoding COX-2. Cortisol increased the abundance of nuclear PKA by stimulating the expression of the gene encoding AKAP95. Knockdown of AKAP95 not only reduced the amounts of nuclear PKA and phosphorylated CREB but also attenuated the induction of PTGS2 expression in primary human amnion fibroblasts treated with cortisol, whereas the phosphorylation of STAT3 in response to cortisol was not affected. The abundances of AKAP95, phosphorylated CREB, and COX-2 were markedly increased in human amnion tissue after labor compared to those in amnion tissues from cesarean sections without labor. These results highlight an essential role for PKA that is anchored in the nucleus by AKAP95 in the phosphorylation of CREB and the consequent induction of COX-2 expression by cortisol in amnion fibroblasts, which may be important in human parturition.
Collapse
Affiliation(s)
- Jiangwen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Yabing Mi
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P. R. China
| | - Luyao Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P. R. China
| | - Yawei Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P. R. China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| |
Collapse
|
17
|
Baicalin and ginsenoside Rb1 promote the proliferation and differentiation of neural stem cells in Alzheimer's disease model rats. Brain Res 2017; 1678:187-194. [PMID: 29038007 DOI: 10.1016/j.brainres.2017.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND This study aimed to explore the effects of ginsenoside Rb1 and baicalin on the proliferation and differentiation of neural stem cells (NSC) in Alzheimer's disease model rats. METHOD The healthy Sprague Dawley male rats were randomly divided into 4 groups: control group, model group, ginsenoside Rb1 group and baicalin group. Besides, the animal model of dementia was induced by the injection of Aβ1-40. 2 weeks later, the rats in the baicalin and ginsenoside Rb1 groups were injected with baicalin and ginsenoside Rb1, respectively. The contents, expression sites of Nestin, GFAP and NSE and the percentage of viable cells were detected by immunohistochemistry. In addition, the expression levels of Nestin, GFAP and NSE in hippocampus of rats were detected by western-blot and metrology analysis was performed using quantity. RESULTS Injection of Aβ1-40 significantly reduced the number of neuronal cells (p < .05). In addition, compared with the control group, the percentages of positive cells of NSCs, astrocytes and neuronal were increased. Besides, compared with the model group, the percentage of positive neural cells was improved by ginsenoside Rb1 (p < .05), and the percentages of astrocytes and neuronal were increased by ginsenoside Rb1 and baicalin (p < .05). Moreover, the expressions of Nestin and NSE were enhanced by ginsenoside Rb1 and baicalin (p < .05), while the GFAP level was only affected by ginsenoside Rb1 (p < .05) when compared with the model group. CONCLUSION Ginsenoside Rb1 and baicalin might promote the proliferation and differentiation of endogenous NSCs in AD rat model.
Collapse
|
18
|
Lui E, Salim M, Chahal M, Puri N, Marandi E, Quadrilatero J, Satvat E. Chronic corticosterone-induced impaired cognitive flexibility is not due to suppressed adult hippocampal neurogenesis. Behav Brain Res 2017; 332:90-98. [DOI: 10.1016/j.bbr.2017.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
|
19
|
Gong Y, Yang Y, Chen X, Yang M, Huang D, Yang R, Zhou L, Li C, Xiong Q, Xiong Z. Hyperoside protects against chronic mild stress-induced learning and memory deficits. Biomed Pharmacother 2017; 91:831-840. [PMID: 28501772 DOI: 10.1016/j.biopha.2017.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
Hyperoside (quercetin-3-O-b-d-galactosidepyranose) is a plant-derived flavonoid mainly found in fruits, fruit juices (most notably flavanols, flavanones, and anthocyanins) and Chinese traditional medicines. It has been applied to relieve pain and improve cardiovascular functions in clinic. However, the effects of hyperoside on cognitive impairment induced by chronic stress and the underlying molecular mechanisms remain unclear. In the current study, we used chronic mild stress (CMS) rats to investigate the effects of hyperoside on learning and memory and further explore the possible mechanisms. Our results demonstrated that hyperoside reduced the escape latency and the swimming distance of CMS rats in Morris water maze test and reversed depressive symptoms in forced swim test (FST) and sucrose preference test. In addition, hyperoside increased the expression of brain-derived neurotrophic factor (BDNF) in hippocampus of CMS rats without influencing the corticosterone (CORT) level in blood plasma. Furthermore, K252a, an inhibitor of the BDNF receptor TrkB, prevented the protective effects of hyperoside on learning and memory in CMS rats. Taken together, these results indicate that hyperoside reverses the cognitive impairment induced by CMS, which is associated with the regulation of BDNF signaling pathway.
Collapse
Affiliation(s)
- Yeli Gong
- Department of Immunology, Medical College, Jianghan University, Wuhan 430056, China
| | - Youhua Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Xiaoqing Chen
- Experimental Centre, Medical College, Jianghan University, Wuhan 430056, China
| | - Min Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Dan Huang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Rong Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Lianying Zhou
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Changlei Li
- Experimental Centre, Medical College, Jianghan University, Wuhan 430056, China
| | - Qiuju Xiong
- Department of Pain Management, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Zhe Xiong
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
20
|
Xiao Yao San against Corticosterone-Induced Stress Injury via Upregulating Glucocorticoid Receptor Reaction Element Transcriptional Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5850739. [PMID: 27822288 PMCID: PMC5086362 DOI: 10.1155/2016/5850739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/28/2016] [Accepted: 09/04/2016] [Indexed: 11/18/2022]
Abstract
Previous studies have revealed that uncontrollable stress can impair the synaptic plasticity and firing property of hippocampal neurons, which influenced various hippocampal-dependent tasks including memory, cognition, behavior, and mood. In this work, we had investigated the effects and mechanisms of the Chinese herbal medicine Xiao Yao San (XYS) against corticosterone-induced stress injury in primary hippocampal neurons (PHN) cells. We found that XYS and RU38486 could increase cell viabilities and decrease cell apoptosis by MTT, immunofluorescence, and flow cytometry assays. In addition, we observed that XYS notably inhibited the nuclear translocation of GR and upregulated the mRNA and protein expressions levels of Caveolin-1, GR, BDNF, TrkB, and FKBP4. However, XYS downregulated the FKBP51 expressions. Furthermore, the results of the electrophoretic mobility shift assay (EMSA) and double luciferase reporter gene detection indicated that FKBP4 promotes the transcriptional activity of GR reaction element (GRE) by binding with GR, and FKBP51 processed the opposite action. The in vivo experiment also proved the functions of XYS. These results suggested that XYS showed an efficient neuroprotection against corticosterone-induced stress injury in PHN cells by upregulating GRE transcriptional activity, which should be developed as a potential candidate for treating stress injury in the future.
Collapse
|
21
|
Zuo D, Lin L, Liu Y, Wang C, Xu J, Sun F, Li L, Li Z, Wu Y. Baicalin Attenuates Ketamine-Induced Neurotoxicity in the Developing Rats: Involvement of PI3K/Akt and CREB/BDNF/Bcl-2 Pathways. Neurotox Res 2016; 30:159-72. [PMID: 26932180 DOI: 10.1007/s12640-016-9611-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/29/2015] [Accepted: 02/19/2016] [Indexed: 12/22/2022]
Abstract
Ketamine is widely used as an anesthetic in pediatric clinical practice. However, numerous studies have reported that exposure to ketamine during the developmental period induces neurotoxicity. Here we investigate the neuroprotective effects of baicalin, a natural flavonoid compound, against ketamine-induced apoptotic neurotoxicity in the cortex and hippocampus of the Sprague-Dawley postnatal day 7 (PND7) rat pups. Our results revealed that five continuous injections of ketamine (20 mg/kg) at 90-min intervals over 6 h induced obvious morphological damages of neuron by Nissl staining and apoptosis by TUNEL assays in the prefrontal cortex and hippocampus of PND7 rat pups. Baicalin (100 mg/kg) pretreatment alleviated ketamine-induced morphological change and apoptosis. Caspase-3 activity and caspase-3 mRNA expression increase induced by ketamine were also inhibited by baicalin treatment. LY294002, an inhibitor of PI3K, abrogated the effect of baicalin against ketamine-induced caspase-3 activity and caspase-3 mRNA expression increase. In addition, Western blot studies indicated that baicalin not only inhibited ketamine-induced p-Akt and p-GSK-3β decrease, but also relieved ketamine-induced p-CREB and BDNF expression decrease. Baicalin also attenuated ketamine-induced Bcl-2/Bax decrease and caspase-3 expression increase. Further in vitro experiments proved that baicalin mitigated ketamine-induced cell viability decrease in the MTT assay, morphological change by Rosenfeld's staining, and caspase-3 expression increase by Western blot in the primary neuron-glia mixed cultures. LY294002 abrogated the protective effect of baicalin. These data demonstrate that baicalin exerts neuroprotective effect against ketamine-induced neuronal apoptosis by activating the PI3K/Akt and its downstream CREB/BDNF/Bcl-2 signaling pathways. Therefore, baicalin appears to be a promising agent in preventing or reversing ketamine's apoptotic neurotoxicity at an early developmental stage.
Collapse
Affiliation(s)
- Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Li Lin
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yumiao Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Chengna Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Jingwen Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Feng Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Lin Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
22
|
|
23
|
Darcet F, Gardier AM, Gaillard R, David DJ, Guilloux JP. Cognitive Dysfunction in Major Depressive Disorder. A Translational Review in Animal Models of the Disease. Pharmaceuticals (Basel) 2016; 9:ph9010009. [PMID: 26901205 PMCID: PMC4812373 DOI: 10.3390/ph9010009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Major Depressive Disorder (MDD) is the most common psychiatric disease, affecting millions of people worldwide. In addition to the well-defined depressive symptoms, patients suffering from MDD consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Among cognitive symptoms, impairments in attention, working memory, learning and memory or executive functions are often reported. However, available data about the heterogeneity of MDD patients and magnitude of cognitive symptoms through the different phases of MDD remain difficult to summarize. Thus, the first part of this review briefly overviewed clinical studies, focusing on the cognitive dysfunctions depending on the MDD type. As animal models are essential translational tools for underpinning the mechanisms of cognitive deficits in MDD, the second part of this review synthetized preclinical studies observing cognitive deficits in different rodent models of anxiety/depression. For each cognitive domain, we determined whether deficits could be shared across models. Particularly, we established whether specific stress-related procedures or unspecific criteria (such as species, sex or age) could segregate common cognitive alteration across models. Finally, the role of adult hippocampal neurogenesis in rodents in cognitive dysfunctions during MDD state was also discussed.
Collapse
Affiliation(s)
- Flavie Darcet
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Alain M Gardier
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Raphael Gaillard
- Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de Psychiatrie et Neurosciences U894, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Service de Psychiatrie, Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris 75015, France.
| | - Denis J David
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Jean-Philippe Guilloux
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| |
Collapse
|
24
|
Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 10:23-42. [PMID: 26730179 PMCID: PMC4694682 DOI: 10.2147/dddt.s96936] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the concomitant modulations of signaling pathways is useful for designing more effective agents for management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Li YC, Wang LL, Pei YY, Shen JD, Li HB, Wang BY, Bai M. Baicalin decreases SGK1 expression in the hippocampus and reverses depressive-like behaviors induced by corticosterone. Neuroscience 2015; 311:130-7. [DOI: 10.1016/j.neuroscience.2015.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/24/2015] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
|
26
|
Lee B, Sur B, Cho SG, Yeom M, Shim I, Lee H, Hahm DH. Effect of Beta-Asarone on Impairment of Spatial Working Memory and Apoptosis in the Hippocampus of Rats Exposed to Chronic Corticosterone Administration. Biomol Ther (Seoul) 2015; 23:571-81. [PMID: 26535083 PMCID: PMC4624074 DOI: 10.4062/biomolther.2015.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 02/02/2023] Open
Abstract
β-asarone (BAS) is an active component of Acori graminei rhizoma, a traditional medicine used clinically in treating dementia and chronic stress in Korea. However, the cognitive effects of BAS and its mechanism of action have remained elusive. The purpose of this study was to examine whether BAS improved spatial cognitive impairment induced in rats following chronic corticosterone (CORT) administration. CORT administration (40 mg/kg, i.p., 21 days) resulted in cognitive impairment in the avoidance conditioning test (AAT) and the Morris water maze (MWM) test that was reversed by BAS (200 mg/kg, i.p). Additionally, as assessed by immunohistochemistry and RT-PCR analysis, the administration of BAS significantly alleviated memory-associated decreases in the expression levels of brain-derived neurotrophic factor (BDNF) and cAMP-response element-binding protein (CREB) proteins and mRNAs in the hippocampus. Also, BAS administration significantly restored the expression of Bax and Bcl-2 mRNAs in the hippocampus. Thus, BAS may be an effective therapeutic for learning and memory disturbances, and its neuroprotective effect was mediated, in part, by normalizing the CORT response, resulting in regulation of BDNF and CREB functions and anti-apoptosis in rats.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Seong-Guk Cho
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447,
Republic of Korea
| |
Collapse
|
27
|
Ding H, Wang H, Zhao Y, Sun D, Zhai X. Protective Effects of Baicalin on Aβ₁₋₄₂-Induced Learning and Memory Deficit, Oxidative Stress, and Apoptosis in Rat. Cell Mol Neurobiol 2015; 35:623-32. [PMID: 25596671 DOI: 10.1007/s10571-015-0156-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
The accumulation and deposition of β-amyloid peptide (Aβ) in senile plaques and cerebral vasculature is believed to facilitate the progressive neurodegeneration that occurs in the Alzheimer's disease (AD). The present study sought to elucidate possible effects of baicalin, a natural phytochemical, on Aβ toxicity in a rat model of AD. By morris water maze test, Aβ1-42 injection was found to cause learning and memory deficit in rat, which was effectively improved by baicalin treatment. Besides, histological examination showed that baicalin could attenuate the hippocampus injury caused by Aβ. The neurotoxicity mechanism of Aβ is associated with oxidative stress and apoptosis, as revealed by increased malonaldehyde generation and TUNEL-positive cells. Baicalin treatment was able to increase antioxidant capabilities by recovering activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and up-regulating their gene expression. Moreover, baicalin effectively prevented Aβ-induced mitochondrial membrane potential decrease, Bax/Bcl-2 ratio increase, cytochrome c release, and caspase-9/-3 activation. In addition, we found that the anti-oxidative effect of baicalin was associated with Nrf2 activation. In conclusion, baicalin effectively improved Aβ-induced learning and memory deficit, hippocampus injury, and neuron apoptosis, making it a promising drug to preventive interventions for AD.
Collapse
Affiliation(s)
- Haitao Ding
- Linyi City Yishui Central Hospital, Linyi, 276400, Shandong, China
| | | | | | | | | |
Collapse
|
28
|
Šlamberová R, Macúchová E, Nohejlová K, Štofková A, Jurčovičová J. Effect of Amphetamine on Adult Male and Female Rats Prenatally Exposed to Methamphetamine. Prague Med Rep 2014; 115:43-59. [DOI: 10.14712/23362936.2014.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The aim of the present study was to examine the cross-sensitization induced by prenatal methamphetamine (MA) exposure to adult amphetamine (AMP) treatment in male and female rats. Rat mothers received a daily injection of MA (5 mg/kg) or saline throughout the gestation period. Adult male and female offspring (prenatally MA- or saline-exposed) were administered with AMP (5 mg/kg) or saline (1 ml/kg) in adulthood. Behaviour in unknown environment was examined in open field test (Laboras), active drug-seeking behaviour in conditioned place preference test (CPP), spatial memory in the Morris water maze (MWM), and levels of corticosterone (CORT) were analyzed by enzyme immunoassay (EIA). Our data demonstrate that in Laboras test, AMP treatment in adulthood increased general locomotion (time and distance travelled) regardless of the prenatal exposure and sex, while AMP increased exploratory activity (rearing) only in prenatally MA-exposed animals. AMP induced sensitization only in male rats, but not in females when tested drug-seeking behaviour in the CPP test. In the spatial memory MWM test, AMP worsened the performance only in females, but not in males. On the other hand, males swam faster after chronic AMP treatment regardless of the prenatal drug exposure. EIA analysis of CORT levels demonstrated higher level in females in all measurement settings. In males, prenatal MA exposure and chronic adult AMP treatment decreased CORT levels. Thus, our data demonstrated that adult AMP treatment affects behaviour of adult rats, their spatial memory and stress response in sex-specific manner. The effect is also influenced by prenatal drug exposure.
Collapse
|
29
|
Yun J, Jung YS. A Scutellaria baicalensis radix water extract inhibits morphine-induced conditioned place preference. PHARMACEUTICAL BIOLOGY 2014; 52:1382-1387. [PMID: 25068674 DOI: 10.3109/13880209.2014.892514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Scutellaria baicalensis Georgi (Lamiaceae) has been used as a traditional herbal preparation for the treatment of neuropsychiatric disorders in Asian countries for centuries. OBJECTIVE To evaluate the effects of S. baicalensis on morphine-induced drug dependence in rats. MATERIALS AND METHODS In order to evaluate the effect of S. baicalensis and baicalin on morphine-induced dependence-like behavior, a water extract of S. baicalensis [500 mg/kg, intraperitoneally (i.p.)] or baicalin (50 mg/kg, i.p., a flavonoid found in S. baicalensis) was administered prior to morphine injection [5 and 2.5 mg/kg, respectively, subcutaneously (s.c.)] to rats for 8 and 4 d, respectively. Morphine-induced conditioned place preference was assessed by measuring the time spent in a drug-paired chamber. The effect of S. baicalensis on dopamine receptor supersensitivity (locomotor activity) and dopamine agonist-induced climbing behavior due to a single apomorphine treatment (2 mg/kg, s.c.) was also measured. RESULTS At 50 mg/kg, a water extract of S. baicalensis decreased morphine (5 mg/kg)-induced conditioned place preference by 86% in rats. Apomorphine (2 mg/kg)-induced locomotor activity (dopamine receptor supersensitivity) in rats and climbing behavior in mice were attenuated after pretreatment with 500 mg/kg of S. baicalensis water extract by 41% and 56%, respectively. In addition, baicalin-reduced morphine-induced conditioned places preference by 86% in rats at 50 mg/kg. DISCUSSION AND CONCLUSION These results suggest that S. baicalensis can ameliorate drug addiction-related behavior through functional regulation of dopamine receptors.
Collapse
Affiliation(s)
- Jaesuk Yun
- Pharmaceutical Standardization Research and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Busan , Republic of Korea and
| | | |
Collapse
|