1
|
Wang ZH, Liu X, Cui Y, Wang YH, Lv ZL, Cheng L, Liu B, Liu H, Liu XY, Deyholos MK, Han ZM, Yang LM, Xiong AS, Zhang J. Genomic, transcriptomic, and metabolomic analyses provide insights into the evolution and development of a medicinal plant Saposhnikovia divaricata (Apiaceae). HORTICULTURE RESEARCH 2024; 11:uhae105. [PMID: 38883332 PMCID: PMC11179723 DOI: 10.1093/hr/uhae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/31/2024] [Indexed: 06/18/2024]
Abstract
Saposhnikovia divaricata, 2n = 2x = 16, as a perennial species, is widely distributed in China, Mongolia, Russia, etc. It is a traditional Chinese herb used to treat tetanus, rubella pruritus, rheumatic arthralgia, and other diseases. Here, we assembled a 2.07 Gb and N50 scaffold length of 227.67 Mb high-quality chromosome-level genome of S. divaricata based on the PacBio Sequel II sequencing platform. The total number of genes identified was 42 948, and 42 456 of them were functionally annotated. A total of 85.07% of the genome was composed of repeat sequences, comprised mainly of long terminal repeats (LTRs) which represented 73.7% of the genome sequence. The genome size may have been affected by a recent whole-genome duplication event. Transcriptional and metabolic analyses revealed bolting and non-bolting S. divaricata differed in flavonoids, plant hormones, and some pharmacologically active components. The analysis of its genome, transcriptome, and metabolome helped to provide insights into the evolution of bolting and non-bolting phenotypes in wild and cultivated S. divaricata and lays the basis for genetic improvement of the species.
Collapse
Affiliation(s)
- Zhen-Hui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiao Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yi Cui
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yun-He Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ze-Liang Lv
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lin Cheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Yang Liu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Okanagan V1V1V7, Canada
| | - Zhong-Ming Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Li-Min Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department of Biology, University of British Columbia, Okanagan V1V1V7, Canada
| |
Collapse
|
2
|
Gao XY, Li XY, Zhang CY, Bai CY. Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity. Front Pharmacol 2024; 15:1268464. [PMID: 38464713 PMCID: PMC10923241 DOI: 10.3389/fphar.2024.1268464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Scopoletin is a coumarin synthesized by diverse medicinal and edible plants, which plays a vital role as a therapeutic and chemopreventive agent in the treatment of a variety of diseases. In this review, an overview of the pharmacology, pharmacokinetics, and toxicity of scopoletin is provided. In addition, the prospects and outlook for future studies are appraised. Scopoletin is indicated to have antimicrobial, anticancer, anti-inflammation, anti-angiogenesis, anti-oxidation, antidiabetic, antihypertensive, hepatoprotective, and neuroprotective properties and immunomodulatory effects in both in vitro and in vivo experimental trials. In addition, it is an inhibitor of various enzymes, including choline acetyltransferase, acetylcholinesterase, and monoamine oxidase. Pharmacokinetic studies have demonstrated the low bioavailability, rapid absorption, and extensive metabolism of scopoletin. These properties may be associated with its poor solubility in aqueous media. In addition, toxicity research indicates the non-toxicity of scopoletin to most cell types tested to date, suggesting that scopoletin will neither induce treatment-associated mortality nor abnormal performance with the test dose. Considering its favorable pharmacological activities, scopoletin has the potential to act as a drug candidate in the treatment of cancer, liver disease, diabetes, neurodegenerative disease, and mental disorders. In view of its merits and limitations, scopoletin is a suitable lead compound for the development of new, efficient, and low-toxicity derivatives. Additional studies are needed to explore its molecular mechanisms and targets, verify its toxicity, and promote its oral bioavailability.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Xu-Yang Li
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| | - Cong-Ying Zhang
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Chun-Ying Bai
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| |
Collapse
|
3
|
Ozaki H, Nishidono Y, Fujii A, Okuyama T, Nakamura K, Maesako T, Shirako S, Nakatake R, Tanaka K, Ikeya Y, Nishizawa M. Identification of Anti-Inflammatory Compounds from Peucedanum praeruptorum Roots by Using Nitric Oxide-Producing Rat Hepatocytes Stimulated by Interleukin 1β. Molecules 2023; 28:5076. [PMID: 37446738 DOI: 10.3390/molecules28135076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The roots of Peucedanum praeruptorum Dunn and Angelica decursiva Franchet et Savatier are designated Zenko, which is a crude drug defined by the Japanese Pharmacopoeia. This crude drug is used as an antitussive and an expectorant and is included in the Kampo formula Jinsoin, which improves cough, fever, and headache. Although the anti-inflammatory effects of this crude drug have been determined, the constituents responsible for this effect remain unknown. To investigate biologically active compounds, rat hepatocytes were used, which produce proinflammatory mediator nitric oxide (NO) in response to proinflammatory cytokine interleukin 1β (IL-1β). A methanol extract of P. praeruptorum roots, which suppressed IL-1β-induced NO production, was fractionated into three crude fractions (ethyl acetate (EtOAc)-soluble, n-butanol-soluble, and water-soluble fractions) based on hydrophobicity. The EtOAc-soluble fraction markedly inhibited NO production. After this fraction was purified, three biologically active compounds were identified as praeruptorins A, B, and E, the contents of which were high. A comparison of their activities indicated that praeruptorin B exhibited the highest potency to inhibit NO production by decreasing inducible NO synthase expression and suppressed the expression of mRNAs encoding proinflammatory cytokines. Collectively, the three praeruptorins may primarily contribute to the anti-inflammatory effects of P. praeruptorum roots.
Collapse
Affiliation(s)
- Hiromu Ozaki
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Airi Fujii
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Tetsuya Okuyama
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kaito Nakamura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Takanori Maesako
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Saki Shirako
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Richi Nakatake
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yukinobu Ikeya
- Faculty of Pharmacy, Daiichi University of Pharmacy, Fukuoka 815-8511, Fukuoka, Japan
- Asia-Japan Research Institute, Ritsumeikan Asia-Japan Research Organization, Ritsumeikan University, Ibaraki 567-8570, Osaka, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
4
|
Zhu H, Xu C, Dong Y, Lu S, Guo L. Chai-Gui Decoction and its representative components ameliorate spontaneous hypertension rats by modulating lipid metabolism and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116116. [PMID: 36603783 DOI: 10.1016/j.jep.2022.116116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypertension coincides with the category of "vertigo" and/or "headache" on the basis clinical manifestations and traditional Chinese medicine (TCM) theory. Chai-Gui Decoction (CGD), which is in usage for relieving "vertigo" and/or "headache", had been demonstrated to be useful in ameliorating hypertension. AIM OF STUDY This study was planned to investigate the mechanism of CGD and its components in hypertension by using spontaneous hypertension rat (SHR). MATERIALS AND METHODS CGD extract and its classification component samples (compounds in plasma, CP; compounds in gut, CG; compounds in plasma and gut, CPG) were prepared for animal experiment. SHR rats were induced with CGD extract (3 g/kg/d BW, 5 g/kg/d BW, 15 g/kg/d BW) and CGD-component classes (CP = 19.501 mg/kg/d, CG = 5.240 mg/kg/d, CPG = 24.741 mg/kg/d) for 4 weeks. Blood pressure (BP) and indexes of renin-angiotensin-aldosterone system (RAAS system) were measured. Histopathology was carried out to assess the efficacy of CGD and its components on aorta tissues. Untargeted metabolomics of lipid from rat serum samples were applied by Ultra-High performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and chemometric analysis to explore the relationship between metabolic pathways and hypertension. 16S rRNA gene sequencing of rat colon content and bioinformatics analysis were used to characterize the effects of CGD and its components on the gut microbiota composition of SHR rats. RESULTS CGD and its component mixtures showed antihypertensive effect on SHR rats, decreased the blood pressure and reduced the aortic wall thickness in SHR rats. CGD and its component mixtures could improve the RAAS in SHR rats, including increase the percentage of angiotensin 1-7 (Ang 1-7), decrease the percentage of angiotensin II (Ang II), and decrease the Ang Ⅱ/Ang 1-7 ratio. CGD and its component mixtures could regulate the metabolome in SHR rats, mainly as decreasing the higher serum levels of Lysophosphatidylcholine (LPC) 16: 0, LPC 20: 4, and LPC 22: 6. In addition, bacteria from family S24-7 were negatively correlated with levels of LPE 16:0, LPE 18:0, LPE 18:1, and LPE 18:2. CONCLUSION CGD and its component mixtures exhibited antihypertensive effect on SHR rats. The underlying mechanism could be related to modulation on RAAS, LPC metabolism and the bacterial abundance of family S24-7 in gut.
Collapse
Affiliation(s)
- Hongjun Zhu
- Nanjing University of Chinese Medicine Wuxi Affiliated Hospital: Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China
| | - Chen Xu
- Nanjing University of Chinese Medicine Wuxi Affiliated Hospital: Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China
| | - Yun Dong
- Nanjing University of Chinese Medicine Wuxi Affiliated Hospital: Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China
| | - Shu Lu
- Nanjing University of Chinese Medicine Wuxi Affiliated Hospital: Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China
| | - Linxiu Guo
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Zhou C, An K, Zhang X, Tong B, Liu D, Kong D, Bian F. Sporogenesis, gametophyte development and embryogenesis in Glehnia littoralis. BMC PLANT BIOLOGY 2023; 23:114. [PMID: 36823547 PMCID: PMC9948529 DOI: 10.1186/s12870-023-04105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Glehnia littoralis is an economic herb with both medicinal and edible uses. It also has important ecological value and special phylogenetic status as it is a monotypic genus species distributing around beach. Little information on its reproductive biology has been reported so far, which has hindered conservation and application of this species. In this study, we observed morphological changes from buds emergence to seeds formation and internal changes during sporogenesis, gametophyte development and embryo and endosperm development of G. littoralis using paraffin-embedded-sectioning and stereo microscope. RESULTS The results showed that the stages of internal development events of G. littoralis corresponded to obvious external morphological changes, most of developmental features were consistent with other Apiaceae species. The development of male and female gametophytes was not synchronized in the same flower, however, exhibited temporal overlap. From mid-late April to mid-May, the anther primordial and ovule primordial developed into the trinucleate pollen grain and eight-nuclear embryo sac, respectively. From late-May to mid-July, the zygote developed into mature embryo. In addition, some defects in gynoecium or ovule development and abnormal embryo and endosperm development were found. We induced that the possible causes of abortion in G. littoralis were as follows: nutrient limitation, poor pollination and fertilization, and bad weather. CONCLUSIONS This study revealed the whole process and morphological characteristics of the development of reproductive organ in G. littoralis, which not only provided important data for the study of systematic and conservation biology, but also provided a theoretical basis for cross breeding.
Collapse
Affiliation(s)
- Chunxia Zhou
- College of Life Science, Yantai University, Yantai, 264005, China
| | - Kang An
- College of Life Science, Yantai University, Yantai, 264005, China
| | - Xin Zhang
- College of Life Science, Yantai University, Yantai, 264005, China
| | - Boqiang Tong
- Shandong Forestry and Grass Germplasm Resource Center, Jinan, 250102, China
| | - Dan Liu
- Shandong Forestry and Grass Germplasm Resource Center, Jinan, 250102, China
| | - Dongrui Kong
- College of Life Science, Ludong University, Yantai, 264025, China.
| | - Fuhua Bian
- College of Life Science, Yantai University, Yantai, 264005, China.
| |
Collapse
|
6
|
Cao S, Shi L, Shen Y, He L, Meng X. Ecological roles of secondary metabolites of Saposhnikovia divaricata in adaptation to drought stress. PeerJ 2022; 10:e14336. [PMID: 36353606 PMCID: PMC9639429 DOI: 10.7717/peerj.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Saposhnikovia divaricata is a traditional Chinese herb that mainly grows in arid grasslands and strongly adapts to various stresses. Drought is not only a major abiotic stress factor but also a typical feature conducive to producing high-quality medicinal material. The present study investigated by treating S. divaricata plants with polyethylene glycol (PEG-6000). Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) identified 146 compounds from the roots of S. divaricata, among which seven primary metabolites and 28 secondary metabolites showed significant changes after drought treatment. UV-Vis spectrophotometer detected the activity of antioxidant enzymes and the content of superoxide anion (O2 -.) and malondialdehyde (MDA). The differential primary metabolites revealed that drought promotes glycolysis, reducing primary metabolism and enhancing secondary metabolism. Meanwhile, the differential secondary metabolites showed an increase in the content of compounds upstream of the secondary metabolic pathway, and other glycosides and increased that of the corresponding aglycones. The activities of antioxidant enzymes and the content of O2 -. and MDA shown different changes duing the drought treatment. These observations indicate that drought promotes the biosynthesis and transformation of the secondary metabolites and activity of antioxidant enzymes, improving plant adaptability. The present study also analyzed a few primary and secondary metabolites of S. divaricata under different degrees and durations of drought and speculated on the metabolic pathways in an arid environment. The findings indicate the biological nature, diversity, and complexity of secondary metabolites and the mechanisms of plant adaptation to ecological stress.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Medical College, Harbin Vocational & Technical College, Harbin, Heilongjiang, China
| | - Lei Shi
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ying Shen
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Luwen He
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Ningsih FN, Okuyama T, To S, Nishidono Y, Okumura T, Tanaka K, Ikeya Y, Nishizawa M. Comparative Analysis of Anti-inflammatory Activity of the Constituents of the Rhizome of Cnidium officinale Using Rat Hepatocytes. Biol Pharm Bull 2021; 43:1867-1875. [PMID: 33268704 DOI: 10.1248/bpb.b20-00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rhizome of Cnidium officinale (Umbelliferae) (known as Senkyu in Japan; COR) has been used as a crude drug in Japanese Kampo formulas, such as Jumihaidokuto (to treat eczema and urticaria) and Kakkontokasenkyushin'i (to treat rhinitis). COR contains phthalides, which are thought to be potent principal constituents. Few studies have been reported about the comparison of anti-inflammatory activity of COR constituents. We aimed to identify the constituents in COR and compare their anti-inflammatory activity. COR was extracted with methanol and fractionated into ethyl acetate (EtOAc)-soluble, n-butanol-soluble, and water-soluble fractions. Primary cultured rat hepatocytes were used to assess anti-inflammatory activity by monitoring the interleukin (IL)-1β-induced production of nitric oxide (NO), an inflammatory mediator. The EtOAc-soluble fraction significantly suppressed NO production without showing cytotoxicity in IL-1β-treated hepatocytes, whereas the n-butanol-soluble fraction showed less potency, and the water-soluble fraction did not significantly affect the NO levels. Four constituents were isolated from the EtOAc-soluble fraction and identified as senkyunolide A, (3S)-butylphthalide, neocnidilide, and cnidilide. Among these phthalides and (Z)-ligustilide, senkyunolide A and (Z)-ligustilide efficiently suppressed NO production in hepatocytes, whereas the others showed less potency in the suppression of NO production. Furthermore, senkyunolide A decreased the levels of the inducible nitric oxide synthase (iNOS) protein and mRNA, as well as the levels of mRNAs encoding proinflammatory cytokines (e.g., tumor necrosis factor α) and chemokine C-C motif ligand 20. These results suggest that senkyunolide A may cause the anti-inflammatory and hepatoprotective effects of COR by suppressing the genes involved in inflammation.
Collapse
Affiliation(s)
| | - Tetsuya Okuyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University
| | - Shoko To
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University
| | - Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University.,Department of Surgery, Kansai Medical University
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University
| | - Yukinobu Ikeya
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University
| |
Collapse
|
8
|
Boudreau A, Richard AJ, Harvey I, Stephens JM. Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Front Endocrinol (Lausanne) 2021; 12:727061. [PMID: 35211087 PMCID: PMC8861327 DOI: 10.3389/fendo.2021.727061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.
Collapse
Affiliation(s)
- Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
9
|
Sun X, Zhang T, Zhao Y, Cai E, Zhu H, Liu S. The protective effect of 5-O-methylvisammioside on LPS-induced depression in mice by inhibiting the over activation of BV-2 microglia through Nf-κB/IκB-α pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153348. [PMID: 33039720 DOI: 10.1016/j.phymed.2020.153348] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 5-O-methylvisammioside (MeV), also known as 4'-O-β-D-glucosyl-5-O-methylvisamminol, is a conventional marker compound for quality control of roots of Saposhnikovia diviaricata (Radix Saposhnikoviae), which exhibits anti-inflammatory and neuroprotective activities. PURPOSE According to the activity of MeV, we speculated that MeV may have antidepressant effect on LPS induced depression, and further explored its mechanism. STUDY DESIGN First, to explore the effect and mechanism of MeV on LPS-induced depression in mice, and then to further explore the effect and mechanism of MeV on LPS-activated BV-2 microglia. METHODS By the OFT, EPM, TST and FST behavioral tests, to explore the effect of MeV pretreatment on the behavior of LPS-induced depression mice. ELISA and Griess method were used to detect the changes of the serum TNF-α and IL-6 levels, the hippocampus SOD and MDA levels, and the NO, SOD, MDA, TNF-α and IL-6 levels in the culture medium of LPS-stimulated BV-2 microglia. Western blot was used to analyze the protein expression in the Nf-κB/IκB-α and BDNF/TrkB pathway in the hippocampus of mice and BV-2 microglia. RESULTS MeV (4 mg/kg, i.p.) pretreatment significantly improves the activity and exploration ability of LPS-induced depression mice, and reduces the immobility time. MeV inhibited the production of pro-inflammatory cytokines in the serum of mice induced by LPS, such as IL-6 and TNF-α. MeV also increased the levels of SOD and reduces the expression of MDA in the hippocampus, thus promoting the alleviation of depressive symptoms in mice. Western blotting analysis showed that the antidepressant activity of MeV was related to the decrease of Nf-κB nuclear transport, the inhibition of IκB-α phosphorylation, and the increase of BDNF and TrkB expression. MeV (40 μM) significantly reduced the contents of NO, MDA, TNF-α and IL-6 in the culture medium of LPS-stimulated BV-2 microglia, and increased the content of SOD. CONCLUSION MeV can regulate the neurotrophic factors in the mouse brain, reduce the content of inflammatory factors by the Nf-κB/IκB-α pathway, improve oxidative stress, and inhibit the excessive activation of LPS-stimulated BV -2 microglia. It effectively reversed the depression-like behAavior induced by LPS in mice.
Collapse
Affiliation(s)
- Xialin Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Tingwen Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.
| | - Enbo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Application, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Ding J, Guo Y, Jiang X, Li Q, Li K, Liu M, Fu W, Cao Y. Polysaccharides Derived from Saposhnikovia divaricata May Suppress Breast Cancer Through Activating Macrophages. Onco Targets Ther 2020; 13:10749-10757. [PMID: 33132702 PMCID: PMC7592155 DOI: 10.2147/ott.s267984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
Background Saposhnikovia divaricata (SD) has been used in traditional Chinese medicine to treat pain, inflammation, and arthritis. Recently, it has been reported that SD extract may inhibit tumor growth, but the mechanism involved is elusive. The aim of this study was to investigate the anti-tumor activity of polysaccharides derived from SD in breast cancer and the underlying mechanisms. Materials and Methods Polysaccharides isolated from SD were analyzed using Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Their effects on cell growth of U937, MCF-7, and MDA-MB-231, and tumor growth in a mouse MDA-MB 231 xenograft model were examined. Their role in U937 activation, MCF-7, and MDA-MB 231 cytokine release profiles were also tested. Results In vitro studies showed that SD polysaccharides (SDPs) promoted U937 cell growth dose-dependently, with no obvious effect on growth of breast cancer cell lines MCF-7 and MDA-MB-231. SDP also showed an antagonistic effect against the growth inhibition of U937 by the culture supernatants of MCF-7 and MDA-MB-231, and reversed the polarization status of U937. Treatment of SCID mice bearing MDA-MB-231-derived xenograft tumors with SDP significantly reduced tumor growth. At all tested concentrations, no obvious toxic side-effects were recorded. Discussion We tentatively concluded that SDPs potently promote the growth of U937 and activate it to inhibit the tumor growth of SCID mice bearing MDA-MB-231-derived xenograft tumors indirectly, with no obvious growth inhibition effects on MCF-7 and MDA-MB-231 in vitro. Our finding indicated that SDP could be a potential anticancer agent for breast cancer.
Collapse
Affiliation(s)
- Jingxian Ding
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Yonghong Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330003, China
| | - Xiaoliu Jiang
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Qingge Li
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Kai Li
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Min Liu
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Wenbing Fu
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Yali Cao
- Department of Breast Surgery, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| |
Collapse
|
11
|
Gu Y, Piao X, Zhu D. Simultaneous determination of calycosin, prim- O-glucosylcimifugin, and paeoniflorin in rat plasma by HPLC-MS/MS: application in the pharmacokinetic analysis of HQCF. J Int Med Res 2020; 48:300060520972902. [PMID: 33213240 PMCID: PMC7686626 DOI: 10.1177/0300060520972902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objective This study aimed to develop and validate a high-performance liquid
chromatography–tandem mass spectrometry method to simultaneously determine
three bioactive components of the Huangqi Chifeng decoction (HQCF) in rat
plasma. Methods Taxol was used as an internal standard in the developed method.
Chromatographic separation was performed on a C18 column using a
gradient elution with 0.1% formic acid in acetonitrile (v/v) and 0.1% formic
acid in water (v/v) as the mobile phases at a flow rate of
0.4 mL·minute−1. All compounds were monitored via selected
reaction monitoring with an electrospray ionization source. Results The lower limits of quantification of paeoniflorin, calycosin, and
prim-O-glucosylcimifugin were 15.0, 0.75, and
0.75 ng·mL−1, respectively. The calibration curves indicated
optimal linearity (r > 0.99) across the concentration
ranges. The specificity, precision, accuracy, recovery, matrix effect, and
stability of the method were validated. This method was successfully applied
in a pharmacokinetics study of the three compounds in rat plasma. Conclusion The pharmacokinetics results provide insights into the mechanisms of HQCF
in vivo and its future clinical application.
Collapse
Affiliation(s)
- Yulong Gu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Xianglan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Dan Zhu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| |
Collapse
|
12
|
Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Glehnia: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:1253493. [PMID: 31915441 PMCID: PMC6931029 DOI: 10.1155/2019/1253493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/20/2019] [Indexed: 11/18/2022]
Abstract
Glehnia littoralis Fr. Schmidt ex Miq, the sole species in the genus Glehnia (Apiaceae), has long been used in traditional Chinese medicine to treat fatigue, weakness, stomach-yin deficiency, lung heat, cough, dry throat, and thirst. Recently, G. littoralis has also been incorporated into a wide range of Chinese vegetarian cuisines. Based on the comprehensive information, advances in botany, known uses, phytochemistry, pharmacology, and toxicity of G. littoralis, we aim to highlight research gaps and challenges in studying G. littoralis as well as to explore its potential use in plant biotechnology. This may provide more efficient therapeutic agents and health products from G. littoralis. A literature search of SciFinder, ScienceDirect, Scopus, TPL, Google Scholar, Baidu Scholar, and Web of Science, books, PhD and MSc dissertations, and peer-reviewed papers on G. littoralis research was conducted and comprehensively analyzed. We confirmed that the ethnomedical uses of G. littoralis have been recorded in China, Japan, and Korea for thousands of years. A phytochemical investigation revealed that the primary active compounds were phenylpropanoids, coumarins, lignanoids, and flavonoids, organic acids and derivatives, terpenoids, polyacetylenes, steroids, nitrogen compounds, and others. Our analysis also confirmed that the extracts of G. littoralis possess immunoregulatory, antitumor, anti-inflammatory, hepatoprotective, antioxidant, neuroprotective, antibacterial, antifungal, and analgesic properties. Although further studies are required, there is strong evidence of the antitumor and immunoregulatory potential of G. littoralis. Also, more studies are needed to elucidate the mechanisms of action of its active compounds (e.g., falcarinol and panaxydiol) before any clinical studies can be carried out.
Collapse
|
13
|
Anti-inflammatory kavalactones from Alpinia zerumbet. Fitoterapia 2020; 140:104444. [DOI: 10.1016/j.fitote.2019.104444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 11/15/2022]
|
14
|
Batsukh Z, Toume K, Javzan B, Kazuma K, Cai SQ, Hayashi S, Kawahara N, Maruyama T, Komatsu K. Metabolomic profiling of Saposhnikoviae Radix from Mongolia by LC-IT-TOF-MS/MS and multivariate statistical analysis. J Nat Med 2019; 74:170-188. [PMID: 31578667 DOI: 10.1007/s11418-019-01361-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
Saposhnikoviae Radix (SR) is a commonly used crude drug that is obtained from the root and rhizome of Saposhnikovia divaricata which is distributed throughout China, Korea, Mongolia, and Russia. To evaluate the quality of Mongolian S. divaricata, metabolomic profiling of 43 plant specimens from different regions of Mongolia, as well as 8 SR samples and 2 plant specimens from China, were conducted by liquid chromatography-ion-trap-time-of-flight-mass spectrometer (LC-IT-TOF-MS). LC-MS profiles of the specimens showed uniformity and 30 compounds were tentatively identified, including 13 chromones and 17 coumarins. Among them, 16 compounds were isolated and unambiguously verified by comparing them with the spectroscopic data of standard compounds. Orthogonal partial least squares-discriminant analysis (OPLS-DA) based on LC-MS data from 7 Mongolian specimens and 8 Chinese SR samples as well as 2 plant specimens revealed that these 2 groups were clearly distinguishable and that Mongolian specimens were characterized by an abundance of prim-O-glucosylcimifugin (1). Moreover, the OPLS-DA of the Mongolian specimens showed that they can be discriminated by their growing regions based on the content of 8 chromones. The total content of dihydrofurochromones 1-3 was relatively higher in the specimens from Khalkhgol in the far eastern part of Mongolia, while contents of 10, 11, 15, and 16 were higher in those from Holonbuir in the eastern part. Based on this research, the roots of S. divaricata from Mongolia have potential as a new resource of SR in Kampo medicine.
Collapse
Affiliation(s)
- Zolboo Batsukh
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kazufumi Toume
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Batkhuu Javzan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar-46, Mongolia
| | - Kohei Kazuma
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shao-Qing Cai
- School of Pharmaceutical Sciences, Peking University, 38 Xue-yuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Shigeki Hayashi
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Takuro Maruyama
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Katsuko Komatsu
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
15
|
Ishii T, Okuyama T, Noguchi N, Nishidono Y, Okumura T, Kaibori M, Tanaka K, Terabayashi S, Ikeya Y, Nishizawa M. Antiinflammatory constituents of Atractylodes chinensis rhizome improve glomerular lesions in immunoglobulin A nephropathy model mice. J Nat Med 2019; 74:51-64. [PMID: 31270736 PMCID: PMC7176606 DOI: 10.1007/s11418-019-01342-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 11/06/2022]
Abstract
The crude drug Sojutsu, as defined by the Japanese Pharmacopoeia, is the rhizome of Atractylodes lancea De Candolle, Atractylodes chinensis Koidzumi, or their interspecific hybrids (Asteraceae). Sojutsu is one of the traditional Kampo formulas, which are administered to patients suffering from stomach disorders, edema, and nephrotic syndrome. Although antiinflammatory effects of Sojutsu have been reported, its effects on the liver and kidney have not been extensively investigated. Here, we used a Sojutsu sample identified as A. chinensis rhizome and isolated several constituents from its ethyl acetate (EtOAc)-soluble fraction that decreased production of the proinflammatory mediator nitric oxide (NO) in interleukin 1β-treated rat hepatocytes. Among the constituents in this fraction, atractylodin showed the highest activity to suppress NO production, whereas hinesol, β-eudesmol, and α-bisabolol showed low activity. Atractylodin decreased the levels of inducible nitric oxide synthase, tumor necrosis factor α, and lipocalin 2 messenger RNAs (mRNAs). The EtOAc-soluble fraction of the A. chinensis rhizome extract was administered daily for 20 weeks to high immunoglobulin A (HIGA) mice, whose pathological findings resemble human immunoglobulin A nephropathy. This fraction decreased the weight of white adipose tissue and decreased mesangial proliferation and immunoglobulin A deposition in glomeruli. These results indicate that the EtOAc-soluble fraction, which included antiinflammatory constituents, may be responsible for improvement of the mesangial lesions in HIGA mice.
Collapse
Affiliation(s)
- Toshinari Ishii
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Nao Noguchi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.,Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Susumu Terabayashi
- Laboratory of Pharmacognosy and Medicinal Resources, Yokohama University of Pharmacy, Totsuka-ku, Yokohama, Japan
| | - Yukinobu Ikeya
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan.
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
16
|
Lin J, Li X, Qi W, Yan Y, Chen K, Xue X, Xu X, Feng Z, Pan X. Isofraxidin inhibits interleukin-1β induced inflammatory response in human osteoarthritis chondrocytes. Int Immunopharmacol 2018; 64:238-245. [PMID: 30205322 DOI: 10.1016/j.intimp.2018.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is the most prevalent disease of knee especially in the aged people. Isofraxidin (IF) is a coumarin compound refined from traditional Chinese medicines with potential anti-inflammatory ability. This study aimed to evaluate protective anti-inflammatory effects of IF in human OA chondrocytes. The chondrocytes were isolated from OA patients and pretreated with IF before treatment with IL-1β. The results showed that IF blocked IL-1β-stimulated production of NO and PGE2. In addition, IF inhibited the expression of COX-2, iNOs, MMP-1, MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5, and increased the levels of aggrecan and collagen-II. Mechanistically, IF suppressed IL-1β-induced IκB-α degradation and NF-κB activation. In conclusion, our results demonstrate that IF inhibits inflammation in OA via the regulation of NF-κB signaling, and suggest that IF may be a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Jian Lin
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, China
| | - Xiaobin Li
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, China
| | - Weihui Qi
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, China
| | - Yingzhao Yan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, China
| | - Kai Chen
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, China
| | - Xinghe Xue
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, China
| | - Xinxian Xu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, China
| | - Zhenhua Feng
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, China
| | - Xiaoyun Pan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, China.
| |
Collapse
|
17
|
Xu Y, Cai H, Cao G, Duan Y, Pei K, Zhou J, Xie L, Zhao J, Liu J, Wang X, Shen L. Discrimination of volatiles in herbal formula Baizhu Shaoyao San before and after processing using needle trap device with multivariate data analysis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171987. [PMID: 30110475 PMCID: PMC6030309 DOI: 10.1098/rsos.171987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
To characterize the chemical differences of volatile components between crude and processed Baizhu Shaoyao San (BSS), a classical Chinese herbal formula that is widely applied in the treatment of gastrointestinal diseases, we developed a gas chromatography-mass spectrometry-based needle trap device combined with multivariate data analysis to globally profile volatile components and rapidly identify differentiating chemical markers. Using a triple-bed needle packed with Carbopack X, DVB and Carboxen 1000 sorbents, we identified 121 and 123 compounds, respectively, in crude and processed BSS. According to the results of principal component analysis and orthogonal partial least-squares discriminant analysis, crude and processed BSS were successfully distinguished into two groups with good fitting and predicting parameters. Furthermore, 21 compounds were identified and adopted as potential markers that could be employed to quickly differentiate these two types of samples using S-PLOT and variable importance in projection analyses. The established method can be applied to explain the chemical transformation of Chinese medicine processing in BSS and further control the quality and understand the processing mechanism of Chinese herbal formulae. Besides, the triple-bed needle selected and optimized in this study can provide a valuable reference for other plant researches with similar components. Furthermore, the systematic research on compound identification and marker discrimination of the complex components in crude and processed BSS could work as an example for other similar studies, such as composition changes in one plant during different growth periods, botanical characters of different medicinal parts in same kind of medicinal herbs and quality identification of one species of medicinal herb from different regions.
Collapse
Affiliation(s)
- Yangyang Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Hao Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Yu Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Ke Pei
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, People's Republic of China
| | - Jia Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Li Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jiayu Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Xiaoqi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Lin Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| |
Collapse
|
18
|
Identification of anti-inflammatory constituents in Phellodendri Cortex and Coptidis Rhizoma by monitoring the suppression of nitric oxide production. J Nat Med 2017; 71:745-756. [DOI: 10.1007/s11418-017-1107-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023]
|
19
|
Nakano Y, Nasu M, Kano M, Kameoka H, Okuyama T, Nishizawa M, Ikeya Y. Lignans from guaiac resin decrease nitric oxide production in interleukin 1β-treated hepatocytes. J Nat Med 2016; 71:190-197. [DOI: 10.1007/s11418-016-1048-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/21/2016] [Indexed: 02/02/2023]
|