1
|
Gu XP, Yang LL, Qi DM, Zhang D, Liu TL, Dong CM. Regulation of gene expression in the secondary metabolic synthesis pathway of Lonicera japonica Flos by yeast polysaccharides. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1071-1084. [PMID: 39100882 PMCID: PMC11291845 DOI: 10.1007/s12298-024-01482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Lonicera japonica Flos is a valuable herb in the Lonicerae family. While transcriptomic studies on L. japonica have focused on different tissues (stems, leaves, flowers) or flowering stages, few have investigated the molecular mechanisms underlying chemical composition synthesis influenced by exogenous factors, such as foliar fertilization. Moreover, most transcriptomic studies on L. Japonica have been conducted on chlorogenic acid and luteoloside, and the molecular synthesis mechanism of the overall chemical composition has not been analyzed. Methods: We conducted a single-factor, four-level foliar fertilization experiment using yeast polysaccharides. Different yeast polysaccharides concentrations were sprayed on L. japonica for six consecutive days with dynamic sampling. High-performance liquid chromatography determined the active ingredients in each group. The two groups exhibiting the most significant differences were selected for transcriptomic analysis to identify key synthetic genes responsible for L. japonica's active ingredients. Key results: Principal component analysis conducted on samples collected on September 8 revealed significant differences in the active ingredient amounts between the 0.1 g/L yeast polysaccharides treatment group and the control group. Transcriptome sequencing analysis identified 218 significantly differentially expressed genes, including 60 upregulated and 158 downregulated genes. Twelve differential genes involved in the chemical components synthesis pathway of L. japonica under yeast polysaccharides treatment were identified: PAL1, PAL2, PAL3, 4CL1, 4CL, CHS1, CHS2, CHS, CHI1, CHI2, F3H, and SOH. Conclusions: This study contributes to the theoretical understanding of essential synthetic genes associated with L. japonica's active ingredients. It offers data support for further gene exploration and sheds light on the molecular mechanisms underlying L. japonica quality formation. These findings hold significant implications for enhancing the content of secondary metabolites of L. japonica. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01482-1.
Collapse
Affiliation(s)
- Xu-peng Gu
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmay, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Lin-lin Yang
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmay, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Da-ming Qi
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmay, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Di Zhang
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmay, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Tian-liang Liu
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmay, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Cheng-ming Dong
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmay, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| |
Collapse
|
2
|
Lin Y, Qi X, Wan Y, Chen Z, Fang H, Liang C. Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model. BMC Genomics 2023; 24:447. [PMID: 37553575 PMCID: PMC10408238 DOI: 10.1186/s12864-023-09509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mβ, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.
Collapse
Affiliation(s)
- Yi Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yan Wan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Li Y, Gao Y, Deng L, Lian H, Guo W, Wu W, Xue B, Li B, Su Y, Zhang H. Volatile Profiling and Transcriptome Sequencing Provide Insights into the Biosynthesis of α-Pinene and β-Pinene in Liquidambar formosana Hance Leaves. Genes (Basel) 2023; 14:163. [PMID: 36672904 PMCID: PMC9858688 DOI: 10.3390/genes14010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Liquidambar formosana Hance is a pinene-rich deciduous plant species in the Altingiaceae family that is used as a medicinal plant in China. However, the regulatory mechanisms underlying α-pinene and β-pinene biosynthesis in L. formosana leaves remain unknown. Here, a joint analysis of the volatile compounds and transcriptomes of L. formosana leaves was performed to comprehensively explore the terpene synthase (TPS) that may participate in α-pinene and β-pinene biosynthesis. Headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) jointly detected volatile L. formosana leaves. Trees with high and low levels of both α-pinene and β-pinene were defined as the H group and L group, respectively. RNA sequencing data revealed that DXR (1-deoxy-D-xylulose-5-phosphate reductoisomerase), HDS [(E)-4-hydroxy-3-methylbut-2-eny-l-diphosphate synthase], and TPS may be the major regulators of monoterpenoid biosynthesis. We identified three TPSs (LfTPS1, LfTPS2, and LfTPS3), which are highly homologous to α-pinene and β-pinene synthases of other species in phylogenetic analysis. Four TPS genes (LfTPS1, LfTPS2, LfTPS4, LfTPS5) may be critically involved in the biosynthesis and regulation of α-pinene and β-pinene in L. formosana. Bioinformatic and transcriptomic results were verified using quantitative real-time PCR. We identified LfTPS1, LfTPS2 as candidate genes for α-pinene and β-pinene biosynthesis that significantly improve the yield of beneficial terpenoids.
Collapse
Affiliation(s)
- Yongquan Li
- Department of Scarce and Quality Economic Forest Engineering Technology Research Center (2022GCZX002), College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| | - Yanfang Gao
- Department of Scarce and Quality Economic Forest Engineering Technology Research Center (2022GCZX002), College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
- Bijie Institute of Forestry Science, Bijie 551700, China
| | - Lin Deng
- Department of Scarce and Quality Economic Forest Engineering Technology Research Center (2022GCZX002), College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| | - Huiming Lian
- Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Wei Guo
- Department of Scarce and Quality Economic Forest Engineering Technology Research Center (2022GCZX002), College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| | - Wei Wu
- Department of Scarce and Quality Economic Forest Engineering Technology Research Center (2022GCZX002), College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| | - Bine Xue
- Department of Scarce and Quality Economic Forest Engineering Technology Research Center (2022GCZX002), College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| | - Baobin Li
- Dongjiang Forest Farm, Heyuan 517000, China
| | - Yuzhen Su
- Guangdong Lingnanyuan Exploration and Design Co., Ltd., Guangzhou 510500, China
| | - Hui Zhang
- Department of Scarce and Quality Economic Forest Engineering Technology Research Center (2022GCZX002), College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
4
|
Vasilev N. Medicinal Plants: Guests and Hosts in the Heterologous Expression of High-Value Products. PLANTA MEDICA 2022; 88:1175-1189. [PMID: 34521134 DOI: 10.1055/a-1576-4148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medicinal plants play an important dual role in the context of the heterologous expression of high-value pharmaceutical products. On the one hand, the classical biochemical and modern omics approaches allowed for the discovery of various genes encoding biosynthetic pathways in medicinal plants. Recombinant DNA technology enabled introducing these genes and regulatory elements into host organisms and enhancing the heterologous production of the corresponding secondary metabolites. On the other hand, the transient expression of foreign DNA in plants facilitated the production of numerous proteins of pharmaceutical importance. This review summarizes several success stories of the engineering of plant metabolic pathways in heterologous hosts. Likewise, a few examples of recombinant protein expression in plants for therapeutic purposes are also highlighted. Therefore, the importance of medicinal plants has grown immensely as sources for valuable products of low and high molecular weight. The next step ahead for bioengineering is to achieve more success stories of industrial-scale production of secondary plant metabolites in microbial systems and to fully exploit plant cell factories' commercial potential for recombinant proteins.
Collapse
Affiliation(s)
- Nikolay Vasilev
- TU Dortmund University, Biochemical and Chemical Engineering, Technical Biochemistry, Dortmund, Germany
| |
Collapse
|
5
|
Rattan S, Kumar P, Kaur E, Sood A, Acharya V, Warghat AR. Comparative transcriptome and tissue-specific expression analysis of genes reveal tissue-cultured plants as an alternative source for phenylethanoids and phenylpropanoids in Rhodiola imbricata (Edgew.). Gene X 2022; 836:146672. [PMID: 35714804 DOI: 10.1016/j.gene.2022.146672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Rhodiola imbricata (Crassulaceae) is a traditional trans-Himalayan endangered medicinal herb with immense therapeutic applications. Over the years, over-exploitation, un-managed harvesting, and lack of captive cultivation procedures persuaded threat to its wild habitat. Plant tissue culture and RNA-Seq-based molecular bioprospection of key regulatory genes aid the understanding of molecular dynamics involved in specialized metabolites (phenylethanoids and phenylpropanoids) biosynthesis and its sustainable production. Hence, comparative transcriptomic analysis was performed using leaf and root tissues from the wild and tissue-cultured plants, revealing tissue-specific production of salidroside and rosavin. The transcriptome profiling resulted in 345 million high-quality reads yielding 92,380 unique transcripts with an N50 of 1260 bp. Tissue-specific gene expression analysis revealed that both phenylethanoids and phenylpropanoids biosynthesis are predominantly associated with the shikimate pathway. In addition to RNA-Seq data, the downstream biosynthesis pathways genes viz., phospho-2-dehydro-3-deoxyheptonate aldolase (DAHPS), 3-dehydroquinate synthase (DHQS), shikimate kinase (SK), chorismate mutase (CM), arogenate dehydrogenase (TYRAAT), aromatic-L-amino-acid decarboxylase (TDC), phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4-CL), cinnamoyl-CoA reductase (CCR), and cinnamyl alcohol dehydrogenase (CAD) showed higher expression pattern in wild plant tissues compared to tissue-cultured plants. The transcript fold expression determined by RT-qPCR results followed similar patterns as those observed in RNA-seq and targeted metabolite profiling data. Salidroside and rosavin content in wild plants exhibited 2.40 fold and 1.77 fold increase accumulation compared to the tissue-cultured plant. The present investigation explained the tissue and condition-specific significant differences between the expression of proposed biosynthetic pathway genes and salidroside and rosavin content. Additionally, NAC, bHLH, and ARF were the most abundant transcription factor families found in the transcriptomic analysis of R. imbricata. The generated transcriptome dataset provides a valuable gene(s)/transcription factors hub that can be used for the sustainable production of salidroside and rosavin in R. imbricata under tissue culture conditions.
Collapse
Affiliation(s)
- Shiv Rattan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Ekjot Kaur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Archit Sood
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish R Warghat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Fang H, Zheng K, Zhang J, Gu X, Zhao Y, Zheng Y, Wang Q. Differences in gene expression and endophytic bacterial diversity in Atractylodes macrocephala Koidz. rhizomes from different growth years. Can J Microbiol 2022; 68:353-366. [PMID: 35080442 DOI: 10.1139/cjm-2021-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atractylodes macrocephala Koidz. (AMK) is widely used owing to its pharmacological activity in traditional Chinese medicine (TCM). Here, we aimed to characterize the differentially expressed genes (DEGs) of one- and three-year growth (OYG and TYG) rhizomes of AMK combined with the endophytic bacterial diversity analysis using high-throughput RNA-sequencing. 114,572 unigenes were annotated in six public databases. 3570 DEGs revealed a clear difference, of which 936 and 2634 genes were up- and down-regulated, respectively. The results of KEGG pathway analysis indicated that DEGs corresponding to the terpenoid synthesis gene were downregulated in TYG rhizomes. 414,424 sequences corresponding to the 16S rRNA gene were divided into 1267 operational taxonomic units (OTUs). Moreover, the diversity of endophytic bacteria changed with species in OYG (773) and TYG (1201) rhizomes at OTU level, and Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla. Comparison of species differences among different growth years revealed that some species were significantly different, such as Actinomycetes, Variovorax, Cloacibacterium, etc. Interestingly, the decrease in the function-related metabolism of terpenoids and polyketides was found to be correlated the low expression of terpene synthesis genes in TYG rhizomes assessed using PICRUSt2. These data provide a scientific basis for elucidating the mechanism underlying metabolite accumulation and endophytic bacterial diversity in relation to the growth years in AMK.
Collapse
Affiliation(s)
- Huiyong Fang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, College of Pharmacy, China;
| | - Kaiyan Zheng
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Jianyun Zhang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China, 050200.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China, 050200;
| | - Xian Gu
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yanyun Zhao
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yuguang Zheng
- Hebei Chemical and Pharmaceutical College, 118457, Shijiazhuang, Hebei, China.,Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China;
| | - Qian Wang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| |
Collapse
|
7
|
Cai Z, Wang C, Chen C, Zou L, Yin S, Liu S, Yuan J, Wu N, Liu X. Comparative transcriptome analysis reveals variations of bioactive constituents in Lonicera japonica flowers under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:87-96. [PMID: 35114506 DOI: 10.1016/j.plaphy.2022.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 05/25/2023]
Abstract
Lonicera japonica flowers (LJF) is a traditional Chinese medicine packed with phenols constituents and widely used in the treatments of various diseases throughout the world. However, there is still very little known on how LJF identifies and resists salt stress. Here in, we systematically investigated the effect of salt on the phenotypic, metabolite, and transcriptomic in LJF. During long term stress (35 days), 1055 differential expression genes (DEGs) involved in the biosynthesis of secondary metabolites were screened through transcriptome analysis, among which the candidate genes and pathways involved in phenols biosynthesis were highlighted; and performed by phylogenetic tree analysis and multiple nucleotide sequence alignment. Ninety compounds were identified and their relative levels were compared between the control and stressed groups based on the LC-MS analysis, Putative biosynthesis networks of phenolic acid and flavonoid were con-structed with structural DEGs. Strikingly, the expression patterns of structural DEGs were mostly consistent with the variations of phenols under salt stress. Notably, the upregulation of UDP-glycosyl transferases under salt stress indicated post-modification of glycosyl transferases may participate in downstream flavonoids synthesis. This study reveals the relationships of the gene regulation and the phenols biosynthesis in LJF under salt stress, paving the way for the use of gene-specific expression to improve the yield of biocomponent.
Collapse
Affiliation(s)
- Zhichen Cai
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengcheng Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cuihua Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lisi Zou
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengxin Yin
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengjin Liu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jiahuan Yuan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Wu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunhong Liu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
8
|
Pan Y, Zhao X, Wang Y, Tan J, Chen DX. Metabolomics integrated with transcriptomics reveals the distribution of iridoid and crocin metabolic flux in Gardenia jasminoides Ellis. PLoS One 2021; 16:e0256802. [PMID: 34506519 PMCID: PMC8432746 DOI: 10.1371/journal.pone.0256802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Gardenia jasminoides Ellis (G. jasminoides) fruits are used as a resource for obtaining natural colorants and in traditional Chinese herbal medicine. However, G. jasminoides presents a relatively long flowering period and different ripening periods, so there are significant differences in the accumulation of metabolites in fruits of different colors. In addition, the complete metabolic pathways of iridoidsand crocins, which are used as medicinal composition of G. jasminoides, are poorly understood at present. In this research, we comprehensively compared the transcriptome and metabolites profiles of the developmental stages and locations of iridoid and crocin biosynthesis. A large number of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were detected in four groups of samples, and clear variation in the pattern of metabolite abundance and gene expression were observed among different fruit colors and parts. Geniposide and gardenoside mainly accumulated in the sarcocarp of green fruit (GFS) and the sarcocarp of red fruit (FS), respectively. Crocin mainly accumulated in the peel and sarcocarp of red fruits. In the iridoid pathway, we hypothesized that there was a transport mechanism from the sarcocarp to the peel of G. jasminoides because of the inconsistent expression of G8O, 10-HGO and IS associated with differences in fruit ripening. UGTs play an important role in the biosynthesis of the active components of G. jasminoides. Combined transcriptome and metabonomics analysis showed a negative correlation between the biosynthesis of geniposide and crocin. The redirection of the metabolic flux and the regulation of key enzymes may be the main reasons for the changes in the biosynthesis of iridoid and crocin in G. jasminoides fruit. Our study expended valuable information for functional genomic library and provided new insights for metabolic engineering of secondary metabolite in G. Jasminoides.
Collapse
Affiliation(s)
- Yuan Pan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Xiao Zhao
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Jun Tan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Da-xia Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
- * E-mail:
| |
Collapse
|
9
|
Xiao Q, Li Z, Qu M, Xu W, Su Z, Yang J. LjaFGD: Lonicera japonica functional genomics database. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1422-1436. [PMID: 33982879 DOI: 10.1111/jipb.13112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Lonicera japonica Thunb., a traditional Chinese herb, has been used for treating human diseases for thousands of years. Recently, the genome of L. japonica has been decoded, providing valuable information for research into gene function. However, no comprehensive database for gene functional analysis and mining is available for L. japonica. We therefore constructed LjaFGD (www.gzybioinformatics.cn/LjaFGD and bioinformatics.cau.edu.cn/LjaFGD), a database for analyzing and comparing gene function in L. japonica. We constructed a gene co-expression network based on 77 RNA-seq samples, and then annotated genes of L. japonica by alignment against protein sequences from public databases. We also introduced several tools for gene functional analysis, including Blast, motif analysis, gene set enrichment analysis, heatmap analysis, and JBrowse. Our co-expression network revealed that MYB and WRKY transcription factor family genes were co-expressed with genes encoding key enzymes in the biosynthesis of chlorogenic acid and luteolin in L. japonica. We used flavonol synthase 1 (LjFLS1) as an example to show the reliability and applicability of our database. LjaFGD and its various associated tools will provide researchers with an accessible platform for retrieving functional information on L. japonica genes to further biological discovery.
Collapse
Affiliation(s)
- Qiaoqiao Xiao
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengmeng Qu
- Research Center for Clinical & Translational Medicine, Fifth Medical Center for General Hospital of PLA, Beijing, 100039, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiaotong Yang
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| |
Collapse
|
10
|
Transcriptomic and metabolomic analyses provide insights into the biosynthesis of chlorogenic acids in Lonicera macranthoides Hand.-Mazz. PLoS One 2021; 16:e0251390. [PMID: 34038434 PMCID: PMC8153468 DOI: 10.1371/journal.pone.0251390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/26/2021] [Indexed: 11/19/2022] Open
Abstract
Lonicera macranthoides Hand.-Mazz (L. macranthoides) is a medicinal herb that is widely distributed in South China. The developmental stage and corolla dehiscence of the flower are the important factors affecting the quality of medicinal ingredients. However, neither the regulatory mechanism controlling chlorogenic acids biosynthesis in L. macranthoides nor the molecular basis of effect of corolla dehiscence on the quality of medicinal materials is fully understood. In this study, metabolomics and transcriptomics were used to analyze the metabolic and transcriptional differences of two different cultivars closed bud type (Bt), and flowering type (Ft), as well as the effect of jasmonic acid methyl ester (MeJA) on chlorogenic acids (CGAs) biosynthesis. In total, large number of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were filtered among three lines of samples. Gene metabolite correlation analyses revealed a ‘core set’ of 30 genes and 54 genes that were strongly correlated with CGAs biosynthesis and regulating the flowering, respectively. Quantitative real-time polymerase chain reaction results proved the alterations in the expression levels of genes encoding the pathways involved in CGAs biosynthesis. The ion abundances of CGAs were most significantly increased, while some of the CGAs derived and Caffeoyl-CoA-derived substances showed the most largely reduced abundances in the closed bud type (Bt) compared to the flowering type (Ft). MeJA may leads to the activation of downstream genes in CGAs biosynthesis pathway. Overall, there were significant differences in the transcriptional and metabolic levels of CGAs biosynthesis pathway in flower buds of different flowering cultivars. The redirection of metabolic flux may contribute to increased accumulation of CGAs. However, whether MeJA and flowering have direct effects on the accumulation of CGAs needs further studied. These researches effectively expanded the functional genomic library and provide new insights into CGAs biosynthesis in L. macranthoides.
Collapse
|
11
|
Rai A, Rai M, Kamochi H, Mori T, Nakabayashi R, Nakamura M, Suzuki H, Saito K, Yamazaki M. Multiomics-based characterization of specialized metabolites biosynthesis in Cornus Officinalis. DNA Res 2021; 27:5840485. [PMID: 32426807 PMCID: PMC7320821 DOI: 10.1093/dnares/dsaa009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Cornus officinalis, an important traditional medicinal plant, is used as major constituents of tonics, analgesics, and diuretics. While several studies have focused on its characteristic bioactive compounds, little is known on their biosynthesis. In this study, we performed LC-QTOF-MS-based metabolome and RNA-seq-based transcriptome profiling for seven tissues of C. officinalis. Untargeted metabolome analysis assigned chemical identities to 1,215 metabolites and showed tissue-specific accumulation for specialized metabolites with medicinal properties. De novo transcriptome assembly established for C. officinalis showed 96% of transcriptome completeness. Co-expression analysis identified candidate genes involved in the biosynthesis of iridoids, triterpenoids, and gallotannins, the major group of bioactive metabolites identified in C. officinalis. Integrative omics analysis identified 45 cytochrome P450s genes correlated with iridoids accumulation in C. officinalis. Network-based integration of genes assigned to iridoids biosynthesis pathways with these candidate CYPs further identified seven promising CYPs associated with iridoids’ metabolism. This study provides a valuable resource for further investigation of specialized metabolites’ biosynthesis in C. officinalis.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.,Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan
| | - Megha Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hidetaka Kamochi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Michimi Nakamura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.,Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.,Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
12
|
Oesch F, Oesch-Bartlomowicz B, Efferth T. Toxicity as prime selection criterion among SARS-active herbal medications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153476. [PMID: 33593628 PMCID: PMC7840405 DOI: 10.1016/j.phymed.2021.153476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 05/06/2023]
Abstract
We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in second priority and ephedrine-free Herba Ephedrae extract in third priority (followed by several drugs in lower preferences). Rapid research on their efficacy in the therapy - as well as safety under the specific circumstances of COVID-19 - followed by equally rapid implementation will provide substantial advantages to Public Health including immediate availability, enlargement of medicinal possibilities, in cases where other means are not successful (non-responders), not tolerated (sensitive individuals) or just not available (as is presently the case) and thus minimize sufferings and save lives. Moreover, their moderate costs and convenient oral application are especially advantageous for underprivileged populations in developing countries.
Collapse
Affiliation(s)
- Franz Oesch
- Institute of Toxicology, Johannes Gutenberg University, 55131 Mainz, Germany.
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| |
Collapse
|
13
|
Liu Z, Mohsin A, Wang Z, Zhu X, Zhuang Y, Cao L, Guo M, Yin Z. Enhanced Biosynthesis of Chlorogenic Acid and Its Derivatives in Methyl-Jasmonate-Treated Gardenia jasminoides Cells: A Study on Metabolic and Transcriptional Responses of Cells. Front Bioeng Biotechnol 2021; 8:604957. [PMID: 33469531 PMCID: PMC7813945 DOI: 10.3389/fbioe.2020.604957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Chlorogenic acid and its derivatives (CQAs) are considered as important bioactive secondary metabolites in Gardenia jasminoides Ellis (G. jasminoides). However, few studies have investigated the biosynthesis and regulation of CQAs in G. jasminoides. In this study, methyl jasmonate (MeJA) was used to enhance CQAs accumulation in cultured G. jasminoides cells. Moreover, the possible molecular mechanism of MeJA-mediated accumulation of CQAs is also explored. To this end, time-course transcriptional profiles of G. jasminoides cells responding to MeJA were used to investigate the mechanism from different aspects, including jasmonate (JAs) biosynthesis, signal transduction, biosynthesis of precursor, CQAs biosynthesis, transporters, and transcription factors (TFs). A total of 57,069 unigenes were assembled from the clean reads, in which 80.7% unigenes were successfully annotated. Furthermore, comparative transcriptomic results indicated that differentially expressed genes (DEGs) were mainly involved in JAs biosynthesis and signal transduction (25 DEGs), biosynthesis of precursor for CQAs (18 DEGs), CQAs biosynthesis (19 DEGs), and transporters (29 DEGs). Most of these DEGs showed continuously upregulated expressions over time, which might activate the jasmonic acid (JA) signal transduction network, boost precursor supply, and ultimately stimulate CQAs biosynthesis. Additionally, various TFs from different TF families also responded to MeJA elicitation. Interestingly, 38 DEGs from different subgroups of the MYB family might display positive or negative regulations on phenylpropanoids, especially on CQAs biosynthesis. Conclusively, our results provide insight into the possible molecular mechanism of regulation on CQAs biosynthesis, which led to a high CQAs yield in the G. jasminoides cells under MeJA treatment.
Collapse
Affiliation(s)
- Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaofeng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liming Cao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Metabolomics Reveals Distinct Metabolites between Lonicera japonica and Lonicera macranthoides Based on GC-MS. J CHEM-NY 2020. [DOI: 10.1155/2020/6738571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lonicera japonica Thunb. (LJ) and Lonicera macranthoides Hand. -Mazz. (LM) have been widely used in Chinese medicine for thousands of years. Although the morphological characteristics of LJ and LM are quite similar, there are significant distinctions of medicinal ingredients (mainly the secondary metabolites) and clinical indications between them. However, the in-depth differences of primary metabolites have not thoroughly been studied yet. Therefore, gas chromatography-mass spectrometry- (GC-MS-) based metabolomics method combined with chemometric methods were performed to analyze the distinction in this study. The results showed that LJ and LM were obviously classified into two groups. 10 metabolites were obtained as biomarkers on account of their p values, pcorr values, and differing variable importance in projection (VIP) values. Metabolic pathway analysis showed that the galactose metabolism and starch and sucrose metabolism gathered as potential pathways caused these extraordinary differences of primary metabolites between LJ and LM. Further, we found that the differences of main medicinal ingredients between LJ and LM could be interpreted from these metabolites according to the analysis of mainly related pathways. The metabolites involved in the starch and sucrose metabolism presented upregulated in LJ, while almost all metabolites in the galactose metabolism, the TCA cycle, and the phenolic acid part of phenylpropanoid metabolism were downregulated in LJ. Therefore, the energy stored in the starch and sucrose metabolism may be saved to produce flavonoid, which could be the reason that the level of flavonoid of phenylpropanoid metabolism is higher in LJ compared to LM. Consequently, this study presented an effective tool for quality evaluation of LJ and LM and laid a foundation for further studies of the metabolic mechanisms and high-quality manufacturing of them.
Collapse
|
15
|
Pu X, Li Z, Tian Y, Gao R, Hao L, Hu Y, He C, Sun W, Xu M, Peters RJ, Van de Peer Y, Xu Z, Song J. The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. THE NEW PHYTOLOGIST 2020; 227:930-943. [PMID: 32187685 PMCID: PMC7116227 DOI: 10.1111/nph.16552] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/12/2020] [Indexed: 05/12/2023]
Abstract
Lonicera japonica is a widespread member of the Caprifoliaceae (honeysuckle) family utilized in traditional medical practices. This twining vine honeysuckle also is a much-sought ornamental, in part due to its dynamic flower coloration, which changes from white to gold during development. The molecular mechanism underlying dynamic flower coloration in L. japonica was elucidated by integrating whole genome sequencing, transcriptomic analysis and biochemical assays. Here, we report a chromosome-level genome assembly of L. japonica, comprising nine pseudochromosomes with a total size of 843.2 Mb. We also provide evidence for a whole-genome duplication event in the lineage leading to L. japonica, which occurred after its divergence from Dipsacales and Asterales. Moreover, gene expression analysis not only revealed correlated expression of the relevant biosynthetic genes with carotenoid accumulation, but also suggested a role for carotenoid degradation in L. japonica's dynamic flower coloration. The variation of flower color is consistent with not only the observed carotenoid accumulation pattern, but also with the release of volatile apocarotenoids that presumably serve as pollinator attractants. Beyond novel insights into the evolution and dynamics of flower coloration, the high-quality L. japonica genome sequence also provides a foundation for molecular breeding to improve desired characteristics.
Collapse
Affiliation(s)
- Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ya Tian
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ranran Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yating Hu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chunnian He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- Corresponding Authors: Jingyuan Song: , 86-10-57833199; Zhichao Xu: , 86-10-57833199
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, China
- Corresponding Authors: Jingyuan Song: , 86-10-57833199; Zhichao Xu: , 86-10-57833199
| |
Collapse
|
16
|
Li J, Ye C, Chang C. Comparative transcriptomics analysis revealing flower trichome development during flower development in two Lonicera japonica Thunb. cultivars using RNA-seq. BMC PLANT BIOLOGY 2020; 20:341. [PMID: 32680457 PMCID: PMC7368687 DOI: 10.1186/s12870-020-02546-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Lonicera japonica Thunb. (L. japonica) has the functions of clearing away heat and detoxifying, broad-spectrum antibacterial and anti-virus, etc. More than 70% of anti-inflammatory and cold Chinese patent medicines contain L. japonica. Trichomes comprise specialized multicellular structures that have the capacity to synthesize and secrete secondary metabolites and protect plants from biotic and abiotic stresses. The extraction of trichome secretions has great commercial value. However, little is known about the trichome formation mechanism in L. japonica. Therefore, the study of trichome development between different varieties provides a basis for selecting suitable planting resources. RESULTS Here, we present a genome-wide comparative transcriptome analysis between two L. japonica cultivars, toward the identification of biological processes and functional gene activities that occur during flowering stage trichome development. In this study, the density and average lengths of flower trichomes were at their highest during three-green periods (S2). Using the Illumina RNA-Seq method, we obtained 134,304 unigenes, 33,733 of which were differentially expressed. In an analysis of 40 differentially expressed unigenes (DEGs) involved in trichome development, 29 of these were transcription factors. The DEGs analysis of plant hormone signal transduction indicated that plant growth and development may be independent of gibberellin (GA) and cytokinine (CTK) signaling pathways, and plant stress may be independent of jasmonic acid (JA) and ethylene (ET) signaling pathways. We screened several genes involved in the floral biosynthesis of odors, tastes, colors, and plant hormones, and proposed biosynthetic pathways for sesquiterpenoid, triterpenoid, monoterpenoid, flavonoid, and plant hormones. Furthermore, 82 DEGs were assigned to cell cycles and 2616 were predicted as plant resistance genes (PRGs). CONCLUSIONS This study provides a comprehensive characterization of the expression profiles of flower development during the seven developmental stages of L. japonica, thereby offering valuable insights into the molecular networks that underly flower development in L. japonica.
Collapse
Affiliation(s)
- Jianjun Li
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Science, Henan Normal University, Xinxiang, China.
| | - Chenglin Ye
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Science, Henan Normal University, Xinxiang, China
| | - Cuifang Chang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
17
|
Li A, Li A, Deng Z, Guo J, Wu H. Cross-Species Annotation of Expressed Genes and Detection of Different Functional Gene Modules Between 10 Cold- and 10 Hot-Propertied Chinese Herbal Medicines. Front Genet 2020; 11:532. [PMID: 32625232 PMCID: PMC7314971 DOI: 10.3389/fgene.2020.00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
According to the traditional Chinese medicine (TCM) system, Chinese herbal medicines (HMs) can be divided into four categories: hot, warm, cold, and cool. A cool nature usually is categorized as a cold nature, and a warm nature is classified as a hot nature. However, the detectable characteristics of the gene expression profile associated with the cold and hot properties have not been studied. To address this question, a strategy for the cross-species annotation of conserved genes was established in the present study by using transcriptome data of 20 HMs with cold and hot properties. Functional enrichment analysis was performed on group-specific expressed genes inferred from the functional genome of the reference species (i.e., Arabidopsis). Results showed that metabolic pathways relevant to chrysoeriol, luteolin, paniculatin, and wogonin were enriched for cold-specific genes, and pathways of inositol, heptadecane, lauric acid, octanoic acid, hexadecanoic acid, and pentadecanoic acid were enriched for hot-specific genes. Six functional modules were identified in the HMs with the cold property: nucleotide biosynthetic process, peptidy-L-cysteine S-palmitoylation, lipid modification, base-excision repair, dipeptide transport, and response to endoplasmic reticulum stress. For the hot HMs, another six functional modules were identified: embryonic meristem development, embryonic pattern specification, axis specification, regulation of RNA polymerase II transcriptional preinitiation complex assembly, mitochondrial RNA modification, and cell redox homeostasis. The research provided a new insight into HMs’ cold and hot properties from the perspective of the gene expression profile of plants.
Collapse
Affiliation(s)
- Arong Li
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Aqian Li
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Zhijun Deng
- Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jiewen Guo
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Wang H, Li Y, Wang S, Kong D, Sahu SK, Bai M, Li H, Li L, Xu Y, Liang H, Liu H, Wu H. Comparative transcriptomic analyses of chlorogenic acid and luteolosides biosynthesis pathways at different flowering stages of diploid and tetraploid Lonicera japonica. PeerJ 2020; 8:e8690. [PMID: 32185107 PMCID: PMC7061910 DOI: 10.7717/peerj.8690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/05/2020] [Indexed: 01/20/2023] Open
Abstract
The Flos Lonicerae Japonicae (FLJ), Lonicera japonica Thunb, belonging to the Caprifoliaceae family, is an economically important plant that is highly utilized in traditional Chinese medicine as well as in Japanese medicine. The flowers of these plants are rich in chlorogenic acid (CGA) and luteoloside. Our previous study revealed that tetraploid L. japonica has higher fresh/dry weight, phenolic acids and flavonoids contents than those of diploid plants. However, why tetraploid L. japonica can yield higher CGA and luteolosides than that in diploid and what is the difference in the molecular regulatory mechanism of these pathways between diploid and tetraploids remained unclear. Therefore, in the present study, we performed comprehensive transcriptome analyses of different flowering stages of diploid and tetraploid L. japonica. The CGA content of tetraploid was found higher than that of diploid at all the growth stages. While the luteoloside content of diploid was higher than that of tetraploid at S4 and S6 growth stages. We obtained a high-quality transcriptome assembly (N50 = 2,055 bp; Average length = 1,331 bp) compared to earlier studies. Differential expression analysis revealed that several important genes involving in plant hormone signal transduction, carbon metabolism, starch/sucrose metabolism and plant-pathogen interaction were upregulated in tetraploid compared with the diploid L. japonica, reflecting the higher adaptability and resistance of tetraploid species. Furthermore, by associating the phenotypic data and gene expression profiles, we were able to characterize the potential molecular regulatory mechanism of important biosynthetic pathways at different flowering stages. Overall, our work provides a foundation for further research on these important secondary metabolite pathways and their implications in traditional Chinese/Japanese medicine.
Collapse
Affiliation(s)
- Hongli Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Yanqun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sibo Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haoyuan Li
- BGI-Shenzhen, Shenzhen, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Linzhou Li
- BGI-Shenzhen, Shenzhen, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yan Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Liang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Fang H, Qi X, Li Y, Yu X, Xu D, Liang C, Li W, Liu X. De novo transcriptomic analysis of light-induced flavonoid pathway, transcription factors in the flower buds of Lonicera japonica. TREES (BERLIN, GERMANY : WEST) 2019; 34:267-283. [PMID: 32435087 PMCID: PMC7223627 DOI: 10.1007/s00468-019-01916-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 09/26/2019] [Accepted: 10/05/2019] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Transcriptomic analysis of the relationship between gene expression patterns and flavonoid contents in the flower buds of Lonicera japonica under light-induced conditions, especially the flavonoid pathway genes and transcription factors. ABSTRACT Flos Lonicerae Japonicae (FLJ), the flower buds of Lonicera japonica Thunb., has been used to treat some human diseases including severe respiratory syndromes and hand-foot-and-mouth diseases owing to its putative antibacterial, and antiviral effects. Luteoloside is a flavonoid that is used by the Chinese Pharmacopoeia to evaluate the quality of FLJ. Light is an important environmental factor that affects flavonoid biosynthesis in the flower buds of L. japonica. However, how light triggers increases in flavonoid production remains unclear. To enhance our understanding of the mechanism involved in light-regulated flavonoid biosynthesis, we sequenced the transcriptomes of L. japonica exposed to three different light conditions: 100% light intensity (CK), 50% light intensity (LI50), and 25% light intensity (LI25) using an Illumina HiSeq 4000 System. A total of 77,297 unigenes with an average length of 809 bp were obtained. Among them, 43,334 unigenes (56.06%) could be matched to at least one biomolecular database. Additionally, 4188, 1545 and 1023 differentially expressed genes (DEGs) were identified by comparative transcriptomics LI25-vs-CK, LI50-vs-CK, and LI25-vs-LI50, respectively. Of note, genes known to be involved in flavonoid biosynthesis, such as 4-coumarate coenzyme A ligase (4CL), and chalcone synthase (CHS) were up-regulated. In addition, a total of 1649 transcription factors (TFs) were identified and divided into 58 TF families; 98 TFs exhibited highly dynamic changes in response to light intensity. Quantitative real-time PCR (qRT-PCR) was used to test the expression profiles of the RNA sequencing (RNA-Seq) data. This study offers insight into how transcriptional expression pattern is influenced by light in the flower buds of L. japonica, and will enhance the understanding of molecular mechanisms of flavonoid biosynthesis in response to light in L. japonica.
Collapse
Affiliation(s)
- Hailing Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014 People’s Republic of China
| | - Xiwu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014 People’s Republic of China
| | - Yiming Li
- Nanjing Forestry University, Nanjing, 210037 China
| | - Xu Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014 People’s Republic of China
- Missouri State University, Springfield, MO 65897 USA
| | - Dongbei Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014 People’s Republic of China
| | - Chengyuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014 People’s Republic of China
| | - Weilin Li
- Nanjing Forestry University, Nanjing, 210037 China
| | - Xin Liu
- Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
20
|
Huang L, Li Z, Pan S, Liu Q, Pu G, Zhang Y, Li J. Ameliorating effects of exogenous calcium on the photosynthetic physiology of honeysuckle (Lonicera japonica) under salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:1103-1113. [PMID: 31581977 DOI: 10.1071/fp19116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Calcium (Ca2+) plays pivotal roles in modulating plant growth, development and stress responses. This work was conducted to study the effects of 20 mM calcium on the biomass, malondialdehyde content, chlorophyll content, ion ratio, chlorophyll a fluorescence and gas-exchange parameters, gene expression of annual honeysuckle under 50, 100 and 200 mM NaCl. At the end of treatment, Na+ concentration was increased with the mounting salinity, but a higher ratio of K+/Na2+, Ca2+/Na+, Mg2+/Na+ were obtained after calcium addition. Salinity exerted an adverse effect on the dry weights and chlorophyll content, whereas CaCl2 played a positive role. Consistent with biomass reduction, the photosynthetic rate and stomatal conductance declined in leaves of honeysuckle exposed to elevated salinity. However, the extent of reduction was much less under CaCl2 combination treatments than one caused by NaCl treatments. Exogenous calcium also protects the photochemical activity of PSII by protecting reaction centre from inactivation and maintaining electron transport from QA- to QB-. Further, exogenous calcium promoted the overexpression of LHCB coding gene Cab and Rubisco large subunit coding gene rbcL under short-term stress. In conclusion, exogenous calcium was effective in improving the salt tolerance of honeysuckle in the photosynthetic base, thereby improving the growth of plants.
Collapse
Affiliation(s)
- Luyao Huang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhuangzhuang Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shaobin Pan
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Gaobin Pu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jia Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; and Corresponding author.
| |
Collapse
|
21
|
Wang T, Yang B, Guan Q, Chen X, Zhong Z, Huang W, Zhu W, Tian J. Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC PLANT BIOLOGY 2019; 19:198. [PMID: 31088368 PMCID: PMC6518806 DOI: 10.1186/s12870-019-1803-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/26/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lonicera japonica Thunb. flower has been used for the treatment of various diseases for a long time and attracted many studies on its potential effects. Transcription factors (TFs) regulate extensive biological processes during plant development. As the restricted reports of L. japonica on TFs, our work was carried out to better understand the TFs' regulatory roles under different developmental stages in L. japonica. RESULTS In this study, 1316 TFs belonging to 52 families were identified from the transcriptomic data, and corresponding expression profiles during the L. japonica flower development were comprehensively analyzed. 917 (69.68%) TFs were differentially expressed. TFs in bHLH, ERF, MYB, bZIP, and NAC families exhibited obviously altered expression during flower growth. Based on the analysis of differentially expressed TFs (DETFs), TFs in MYB, WRKY, NAC and LSD families that involved in phenylpropanoids biosynthesis, senescence processes and antioxidant activity were detected. The expression of MYB114 exhibited a positive correlation with the contents of luteoloside; Positive correlation was observed among the expression of MYC12, chalcone synthase (CHS) and flavonol synthase (FLS), while negative correlation was observed between the expression of MYB44 and the synthases; The expression of LSD1 was highly correlated with the expression of SOD and the total antioxidant capacity, while the expression of LOL1 and LOL2 exhibited a negative correlation with them; Many TFs in NAC and WRKY families may be potentially involved in the senescence process regulated by hormones and reactive oxygen species (ROS). The expression of NAC19, NAC29, and NAC53 exhibited a positive correlation with the contents of ABA and H2O2, while the expression of WRKY53, WRKY54, and WRKY70 exhibited a negative correlation with the contents of JA, SA and ABA. CONCLUSIONS Our study provided a comprehensive characterization of the expression profiles of TFs during the developmental stages of L. japonica. In addition, we detected the key TFs that may play significant roles in controlling active components biosynthesis, antioxidant activity and flower senescence in L. japonica, thereby providing valuable insights into the molecular networks underlying L. japonica flower development.
Collapse
Affiliation(s)
- Tantan Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Bingxian Yang
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Qijie Guan
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Xi Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Zhuoheng Zhong
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Wei Huang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Wei Zhu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Jingkui Tian
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
- Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| |
Collapse
|
22
|
Babarinde IA, Li Y, Hutchins AP. Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts. Comput Struct Biotechnol J 2019; 17:628-637. [PMID: 31193391 PMCID: PMC6526290 DOI: 10.1016/j.csbj.2019.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The measurement of gene expression has long provided significant insight into biological functions. The development of high-throughput short-read sequencing technology has revealed transcriptional complexity at an unprecedented scale, and informed almost all areas of biology. However, as researchers have sought to gather more insights from the data, these new technologies have also increased the computational analysis burden. In this review, we describe typical computational pipelines for RNA-Seq analysis and discuss their strengths and weaknesses for the assembly, quantification and analysis of coding and non-coding RNAs. We also discuss the assembly of transposable elements into transcripts, and the difficulty these repetitive elements pose. In summary, RNA-Seq is a powerful technology that is likely to remain a key asset in the biologist's toolkit.
Collapse
Affiliation(s)
| | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Lu, Shenzhen, China
| |
Collapse
|
23
|
Liu ML, Fan WB, Wang N, Dong PB, Zhang TT, Yue M, Li ZH. Evolutionary Analysis of Plastid Genomes of Seven Lonicera L. Species: Implications for Sequence Divergence and Phylogenetic Relationships. Int J Mol Sci 2018; 19:E4039. [PMID: 30558106 PMCID: PMC6321470 DOI: 10.3390/ijms19124039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Plant plastomes play crucial roles in species evolution and phylogenetic reconstruction studies due to being maternally inherited and due to the moderate evolutionary rate of genomes. However, patterns of sequence divergence and molecular evolution of the plastid genomes in the horticulturally- and economically-important Lonicera L. species are poorly understood. In this study, we collected the complete plastomes of seven Lonicera species and determined the various repeat sequence variations and protein sequence evolution by comparative genomic analysis. A total of 498 repeats were identified in plastid genomes, which included tandem (130), dispersed (277), and palindromic (91) types of repeat variations. Simple sequence repeat (SSR) elements analysis indicated the enriched SSRs in seven genomes to be mononucleotides, followed by tetra-nucleotides, dinucleotides, tri-nucleotides, hex-nucleotides, and penta-nucleotides. We identified 18 divergence hotspot regions (rps15, rps16, rps18, rpl23, psaJ, infA, ycf1, trnN-GUU-ndhF, rpoC2-rpoC1, rbcL-psaI, trnI-CAU-ycf2, psbZ-trnG-UCC, trnK-UUU-rps16, infA-rps8, rpl14-rpl16, trnV-GAC-rrn16, trnL-UAA intron, and rps12-clpP) that could be used as the potential molecular genetic markers for the further study of population genetics and phylogenetic evolution of Lonicera species. We found that a large number of repeat sequences were distributed in the divergence hotspots of plastid genomes. Interestingly, 16 genes were determined under positive selection, which included four genes for the subunits of ribosome proteins (rps7, rpl2, rpl16, and rpl22), three genes for the subunits of photosystem proteins (psaJ, psbC, and ycf4), three NADH oxidoreductase genes (ndhB, ndhH, and ndhK), two subunits of ATP genes (atpA and atpB), and four other genes (infA, rbcL, ycf1, and ycf2). Phylogenetic analysis based on the whole plastome demonstrated that the seven Lonicera species form a highly-supported monophyletic clade. The availability of these plastid genomes provides important genetic information for further species identification and biological research on Lonicera.
Collapse
Affiliation(s)
- Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Wei-Bing Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ning Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Peng-Bin Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
24
|
Molecular Regulation of Catalpol and Acteoside Accumulation in Radial Striation and non-Radial Striation of Rehmannia glutinosa Tuberous Root. Int J Mol Sci 2018; 19:ijms19123751. [PMID: 30486279 PMCID: PMC6321003 DOI: 10.3390/ijms19123751] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/08/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rehmannia glutinosa L., a perennial plant of Scrophulariaceae, is one of the most commonly used herbs in traditional Chinese medicine (TCM) that have been widely cultivated in China. However, to date, the biosynthetic pathway of its two quality-control components, catalpol and acteoside, are only partially elucidated and the mechanism for their tissue-specific accumulation remains unknown. To facilitate the basic understanding of the key genes and transcriptional regulators involved in the biosynthesis of catalpol and acteoside, transcriptome sequencing of radial striation (RS) and non-radial striation (nRS) from four R. glutinosa cultivars was performed. A total of 715,158,202 (~107.27 Gb) high quality reads obtained using paired-end Illumina sequencing were de novo assembled into 150,405 transcripts. Functional annotation with multiple public databases identified 155 and 223 unigenes involved in catalpol and acteoside biosynthesis, together with 325 UGTs, and important transcription factor (TF) families. Comparative analysis of the transcriptomes identified 362 unigenes, found to be differentially expressed in all RS vs. nRS comparisons, with 143 upregulated unigenes, including those encoding enzymes of the catalpol and acteoside biosynthetic pathway, such as geranyl diphosphate synthase (RgGPPS), geraniol 8-hydroxylase (RgG10H), and phenylalanine ammonia-lyase (RgPAL). Other differentially expressed unigenes predicted to be related to catalpol and acteoside biosynthesis fall into UDP-dependent glycosyltransferases (UGTs), as well as transcription factors. In addition, 16 differentially expressed genes were selectively confirmed by real-time PCR. In conclusion, a large unigene dataset of R. glutinosa generated in the current study will serve as a resource for the identification of potential candidate genes for investigation of the tuberous root development and biosynthesis of active components.
Collapse
|
25
|
Yan R, Cui Y, Deng B, Bi J, Zhang G. Flavonoid glucosides from the flowers of Trollius chinensis Bunge. J Nat Med 2018; 73:297-302. [DOI: 10.1007/s11418-018-1263-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
|
26
|
Kang KB, Kang SJ, Kim MS, Lee DY, Han SI, Kim TB, Park JY, Kim J, Yang TJ, Sung SH. Chemical and genomic diversity of six Lonicera species occurring in Korea. PHYTOCHEMISTRY 2018; 155:126-135. [PMID: 30121427 DOI: 10.1016/j.phytochem.2018.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/15/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Lonicera spp. (Caprifoliaceae) are important not only as a common medicinal herb in East Asia but also as one of the most problematic invasive species in North America. In the present study, we performed a systemic analysis of genomic and chemical diversity among six Lonicera species occurring in Korea, L. japonica, L. maackii, L. insularis, L. sachalinensis, L. praeflorens, and L. vesicaria, using chloroplast DNA whole genome shotgun (WGS) sequencing and LC-MS analyses. The phylogenetic and phylochemical relationships did not coincide with each other, but partial consistency could be found among them. InDel-based cDNA marker for authentication was developed based on the genome sequences. Flavonoids, iridoids, and organic acids were identified in the LC-MS analyses, and their inter-species distribution and localization were also revealed.
Collapse
Affiliation(s)
- Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Shin-Jae Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mi Song Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Il Han
- Medicinal Plant Garden, College of Pharmacy, Seoul National University, Koyang, 12045, Republic of Korea
| | - Tae Bum Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Medicinal Plant Garden, College of Pharmacy, Seoul National University, Koyang, 12045, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
27
|
Trends in herbgenomics. SCIENCE CHINA-LIFE SCIENCES 2018; 62:288-308. [PMID: 30128965 DOI: 10.1007/s11427-018-9352-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
From Shen Nong's Herbal Classic (Shennong Bencao Jing) to the Compendium of Materia Medica (Bencao Gangmu) and the first scientific Nobel Prize for the mainland of China, each milestone in the historical process of the development of traditional Chinese medicine (TCM) involves screening, testing and integrating. After thousands of years of inheritance and development, herbgenomics (bencaogenomics) has bridged the gap between TCM and international advanced omics studies, promoting the application of frontier technologies in TCM. It is a discipline that uncovers the genetic information and regulatory networks of herbs to clarify their molecular mechanism in the prevention and treatment of human diseases. The main theoretical system includes genomics, functional genomics, proteomics, transcriptomics, metabolomics, epigenomics, metagenomics, synthetic biology, pharmacogenomics of TCM, and bioinformatics, among other fields. Herbgenomics is mainly applicable to the study of medicinal model plants, genomic-assisted breeding, herbal synthetic biology, protection and utilization of gene resources, TCM quality evaluation and control, and TCM drug development. Such studies will accelerate the application of cutting-edge technologies, revitalize herbal research, and strongly promote the development and modernization of TCM.
Collapse
|
28
|
Lin W, Huang W, Ning S, Wang X, Ye Q, Wei D. De novo characterization of the Baphicacanthus cusia(Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism. PLoS One 2018; 13:e0199788. [PMID: 29975733 PMCID: PMC6033399 DOI: 10.1371/journal.pone.0199788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Baphicacanthus cusia (Nees) Bremek is an herb widely used for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine. The roots, stems and leaves can be used as natural medicine, in which indigo and indirubin are two main active ingredients. In this study, quantification of indigo, indirubin, indican and adenosine among various tissues of B. cusia was conducted using HPLC-DAD. Leaves have significantly higher contents than stems and roots (380.66, 315.15, 20,978.26, 4323.15 μg/g in leaves, 306.36, 71.71, 3,056.78, 139.45 μg/g in stems, and 9.31, 7.82, 170.45, 197.48 μg/g in roots, respectively). De novo transcriptome sequencing of B. cusia was performed for the first time. The sequencing yielded 137,216,248, 122,837,394 and 140,240,688 clean reads from leaves, stems and roots respectively, which were assembled into 51,381 unique sequences. A total of 33,317 unigenes could be annotated using the databases of Nr, Swiss-Prot, KEGG and KOG. These analyses provided a detailed view of the enzymes involved in indican backbone biosynthesis, such as cytochrome P450, UDP-glycosyltransferase, glucosidase and tryptophan synthase. Analysis results showed that tryptophan synthase was the candidate gene involved in the tissue-specific biosynthesis of indican. We also detected sixteen types of simple sequence repeats in RNA-Seq data for use in future molecular mark assisted breeding studies. The results will be helpful in further analysis of B. cusia functional genomics, especially in increasing biosynthesis of indican through biotechnological approaches and metabolic regulation.
Collapse
Affiliation(s)
- Wenjin Lin
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wei Huang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuju Ning
- School of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Wang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Ye
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daozhi Wei
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|
29
|
Chen Z, Liu G, Tang N, Li Z. Transcriptome Analysis Reveals Molecular Signatures of Luteoloside Accumulation in Senescing Leaves of Lonicera macranthoides. Int J Mol Sci 2018; 19:E1012. [PMID: 29597293 PMCID: PMC5979331 DOI: 10.3390/ijms19041012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022] Open
Abstract
Lonicera macranthoides is an important medicinal plant widely used in traditional Chinese medicine. Luteoloside is a critical bioactive compound in L. macranthoides. To date, the molecular mechanisms underlying luteoloside biosynthesis are still largely unknown. In this work, high performance liquid chromatography (HPLC) was employed to determine the luteoloside contents in leaves, stems, and flowers at different developmental stages. Results showed that senescing leaves can accumulate large amounts of luteoloside, extremely higher than that in young and semi-lignified leaves and other tissues. RNA-Seq analysis identified that twenty-four differentially expressed unigenes (DEGs) associated with luteoloside biosynthesis were significantly up-regulated in senescing leaves, which are positively correlated with luteoloside accumulation. These DEGs include phenylalanine ammonia lyase 2, cinnamate 4-hydroxylase 2, thirteen 4-coumarate-CoA ligases, chalcone synthase 2, six flavonoid 3'-monooxygenase (F3'H) and two flavone 7-O-β-glucosyltransferase (UFGT) genes. Further analysis demonstrated that two F3'Hs (CL11828.Contig1 and CL11828.Contig2) and two UFGTs (Unigene2918 and Unigene97915) might play vital roles in luteoloside generation. Furthermore, several transcription factors (TFs) related to flavonoid biosynthesis including MYB, bHLH and WD40, were differentially expressed during leaf senescence. Among these TFs, MYB12, MYB75, bHLH113 and TTG1 were considered to be key factors involved in the regulation of luteoloside biosynthesis. These findings provide insights for elucidating the molecular signatures of luteoloside accumulation in L. macranthoides.
Collapse
Affiliation(s)
- Zexiong Chen
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
- Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing 400000, China.
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China.
| | - Guohua Liu
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Ning Tang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
- Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing 400000, China.
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China.
| | - Zhengguo Li
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
- Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing 400000, China.
- School of Life Sciences, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
30
|
Abstract
A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.
Collapse
Affiliation(s)
- Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University.,RIKEN Center for Sustainable Resource Science
| |
Collapse
|
31
|
Hashiguchi A, Tian J, Komatsu S. Proteomic Contributions to Medicinal Plant Research: From Plant Metabolism to Pharmacological Action. Proteomes 2017; 5:proteomes5040035. [PMID: 29215602 PMCID: PMC5748570 DOI: 10.3390/proteomes5040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Herbal medicine is a clinical practice of utilizing medicinal plant derivatives for therapeutic purposes. It has an enduring history worldwide and plays a significant role in the fight against various diseases. Herbal drug combinations often exhibit synergistic therapeutic action compared with single-constituent dosage, and can also enhance the cytotoxicity induced by chemotherapeutic drugs. To explore the mechanism underlying the pharmacological action of herbs, proteomic approaches have been applied to the physiology of medicinal plants and its effects on animals. This review article focuses on the existing proteomics-based medicinal plant research and discusses the following topics: (i) plant metabolic pathways that synthesize an array of bioactive compounds; (ii) pharmacological action of plants tested using in vivo and in vitro studies; and (iii) the application of proteomic approaches to indigenous plants with scarce sequence information. The accumulation of proteomic information in a biological or medicinal context may help in formulating the effective use of medicinal plants.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| | - Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
32
|
Chen C, Xu M, Wang C, Qiao G, Wang W, Tan Z, Wu T, Zhang Z. Characterization of the Lycium barbarum fruit transcriptome and development of EST-SSR markers. PLoS One 2017; 12:e0187738. [PMID: 29125846 PMCID: PMC5695279 DOI: 10.1371/journal.pone.0187738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Lycium barbarum, commonly known as goji, is important in Chinese herbal medicine and its fruit is a very important agricultural and biological product. However, the molecular mechanism of formation of its fruit and associated medicinal and nutritional components is unexplored. Moreover, this species lacks SSR markers due to lack of genomic and transcriptomic information. In this study, a total of 139,333 unigenes with average length of 1049 bp and N50 of 1579 bp are obtained by trinity assembly from Illumina sequencing reads. A total of 92,498 (66.38%) unigenes showed similarities in at least one database including Nr (46.15%), Nt (56.56%), KO (15.56%), Swiss-prot (33.34%), Pfam (33.43%), GO (33.62%) and KOG/COG (17.55%). Genes in flavonoid and taurine biosynthesis pathways were found and validated by RT-qPCR. A total of 50,093 EST-SSRs were identified from 38,922 unigenes, and 22,537 EST-SSR primer pairs were designed. Four hundred pairs of SSR markers were randomly selected to validate assembly quality, of which 352 (88%) were successful in PCR amplification of genomic DNA from 11 Lycium accessions and 210 produced polymorphisms. The polymorphic loci showed that the genetic similarity of the 11 Lycium accessions ranged from 0.50 to 0.99 and the accessions could be divided into 4 groups. These results will facilitate investigations of the molecular mechanism of formation of L. barbarum fruit and associated medicinal and nutritional components, and will be of value to novel gene discovery and functional genomic studies. The EST-SSR markers will be useful for genetic diversity evaluation, genetic mapping and marker-assisted breeding.
Collapse
Affiliation(s)
- Chunling Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China.,State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, China
| | - Meilong Xu
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, China
| | - Cuiping Wang
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, China
| | - Gaixia Qiao
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, China
| | - Wenwen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Zhaoyun Tan
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Tiantian Wu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Berger BA, Han J, Sessa EB, Gardner AG, Shepherd KA, Ricigliano VA, Jabaily RS, Howarth DG. The unexpected depths of genome-skimming data: A case study examining Goodeniaceae floral symmetry genes. APPLICATIONS IN PLANT SCIENCES 2017; 5:apps.1700042. [PMID: 29109919 PMCID: PMC5664964 DOI: 10.3732/apps.1700042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/07/2017] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY The use of genome skimming allows systematists to quickly generate large data sets, particularly of sequences in high abundance (e.g., plastomes); however, researchers may be overlooking data in low abundance that could be used for phylogenetic or evo-devo studies. Here, we present a bioinformatics approach that explores the low-abundance portion of genome-skimming next-generation sequencing libraries in the fan-flowered Goodeniaceae. METHODS Twenty-four previously constructed Goodeniaceae genome-skimming Illumina libraries were examined for their utility in mining low-copy nuclear genes involved in floral symmetry, specifically the CYCLOIDEA (CYC)-like genes. De novo assemblies were generated using multiple assemblers, and BLAST searches were performed for CYC1, CYC2, and CYC3 genes. RESULTS Overall Trinity, SOAPdenovo-Trans, and SOAPdenovo implementing lower k-mer values uncovered the most data, although no assembler consistently outperformed the others. Using SOAPdenovo-Trans across all 24 data sets, we recovered four CYC-like gene groups (CYC1, CYC2, CYC3A, and CYC3B) from a majority of the species. Alignments of the fragments included the entire coding sequence as well as upstream and downstream regions. DISCUSSION Genome-skimming data sets can provide a significant source of low-copy nuclear gene sequence data that may be used for multiple downstream applications.
Collapse
Affiliation(s)
- Brent A. Berger
- Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York 11439 USA
| | - Jiahong Han
- Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York 11439 USA
| | - Emily B. Sessa
- Department of Biology, University of Florida, Box 118525, Gainesville, Florida 32611 USA
| | - Andrew G. Gardner
- Department of Biological Sciences, California State University, Stanislaus, One University Circle, Turlock, California 95382 USA
| | - Kelly A. Shepherd
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Avenue, Kensington 6151, Western Australia, Australia
| | - Vincent A. Ricigliano
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Road, Tucson, Arizona 85719 USA
| | - Rachel S. Jabaily
- Department of Biology, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112 USA
| | - Dianella G. Howarth
- Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York 11439 USA
| |
Collapse
|
34
|
Berger BA, Han J, Sessa EB, Gardner AG, Shepherd KA, Ricigliano VA, Jabaily RS, Howarth DG. The unexpected depths of genome-skimming data: A case study examining Goodeniaceae floral symmetry genes. APPLICATIONS IN PLANT SCIENCES 2017. [PMID: 29109919 DOI: 10.5061/dryad.0500c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY The use of genome skimming allows systematists to quickly generate large data sets, particularly of sequences in high abundance (e.g., plastomes); however, researchers may be overlooking data in low abundance that could be used for phylogenetic or evo-devo studies. Here, we present a bioinformatics approach that explores the low-abundance portion of genome-skimming next-generation sequencing libraries in the fan-flowered Goodeniaceae. METHODS Twenty-four previously constructed Goodeniaceae genome-skimming Illumina libraries were examined for their utility in mining low-copy nuclear genes involved in floral symmetry, specifically the CYCLOIDEA (CYC)-like genes. De novo assemblies were generated using multiple assemblers, and BLAST searches were performed for CYC1, CYC2, and CYC3 genes. RESULTS Overall Trinity, SOAPdenovo-Trans, and SOAPdenovo implementing lower k-mer values uncovered the most data, although no assembler consistently outperformed the others. Using SOAPdenovo-Trans across all 24 data sets, we recovered four CYC-like gene groups (CYC1, CYC2, CYC3A, and CYC3B) from a majority of the species. Alignments of the fragments included the entire coding sequence as well as upstream and downstream regions. DISCUSSION Genome-skimming data sets can provide a significant source of low-copy nuclear gene sequence data that may be used for multiple downstream applications.
Collapse
Affiliation(s)
- Brent A Berger
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439 USA
| | - Jiahong Han
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439 USA
| | - Emily B Sessa
- Department of Biology, University of Florida, Box 118525, Gainesville, Florida 32611 USA
| | - Andrew G Gardner
- Department of Biological Sciences, California State University, Stanislaus, One University Circle, Turlock, California 95382 USA
| | - Kelly A Shepherd
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Avenue, Kensington 6151, Western Australia, Australia
| | - Vincent A Ricigliano
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Road, Tucson, Arizona 85719 USA
| | - Rachel S Jabaily
- Department of Biology, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112 USA
| | - Dianella G Howarth
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439 USA
| |
Collapse
|
35
|
Xin J, Zhang RC, Wang L, Zhang YQ. Researches on Transcriptome Sequencing in the Study of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:7521363. [PMID: 28900463 PMCID: PMC5576426 DOI: 10.1155/2017/7521363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Due to its incomparable advantages, the application of transcriptome sequencing in the study of traditional Chinese medicine attracts more and more attention of researchers, which greatly promote the development of traditional Chinese medicine. In this paper, the applications of transcriptome sequencing in traditional Chinese medicine were summarized by reviewing recent related papers.
Collapse
Affiliation(s)
- Jie Xin
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Rong-chao Zhang
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Wang
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yong-qing Zhang
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
36
|
Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:764-787. [PMID: 28109168 DOI: 10.1111/tpj.13485] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|