1
|
Rezaie MA, Khojastehnezhad A, Shiri A. Post-synthetic modification of Zr-based metal organic framework by schiff base zinc complex for catalytic applications in a click reaction. Sci Rep 2024; 14:24644. [PMID: 39428419 PMCID: PMC11491475 DOI: 10.1038/s41598-024-76199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
A novel nanocatalyst, denoted as UiO-66/Sal-ZnCl2, has been synthesized and systematically characterized employing a range of analytical techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area analysis, and inductively coupled plasma (ICP) analysis. The comprehensive analyses collectively affirm the effective coordination of zinc chloride onto the functionalized UiO-66. Subsequently, the catalytic efficacy of UiO-66/Sal-ZnCl2 was assessed in a one-pot, three-component click reaction involving terminal alkynes, alkyl halides, and sodium azide, conducted in an aqueous medium. The catalyst demonstrated remarkable catalytic activity, showcasing the capability to facilitate the reaction with high yields and exceptional regioselectivity. Noteworthy attributes of this nanocatalyst and the method include its elevated efficiency, recyclability, convenient product workup, and, significantly, the utilization of a sustainable solvent medium. The synthesis, characterization, and catalytic performance of this catalyst collectively contribute to its potential as an innovative and reusable nanocatalyst for diverse synthetic transformations.
Collapse
Affiliation(s)
- Mohammad-Aqa Rezaie
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Moghadaskhou F, Tadjarodi A, Maleki A. Synthesis of UiO-66-Pyca-CuO by a Simple and Novel Method: MOF-based Metal Thin Film as Heterogeneous Catalysts for the Synthesis of α-Aminonitriles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051170 DOI: 10.1021/acsami.4c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal-organic frameworks (MOFs), particularly UiO-66-NH2, are employed as catalysts in many industrial catalyst applications. As converting catalysts into thin film significantly increases their catalytic properties, we report a general approach to synthesizing MOF thin films (UiO-66-Pyca-CuO). First, functionalization of UiO-66-NH2 was done with 3-pyridine carboxaldehyde by the postsynthesis method, and then, UiO-66-Pyca was entangled on the surface of copper oxide nanoparticles with a modern strategy (MOF thin film). The morphology and structure of the synthesized UiO-66-Pyca-CuO were determined by using X-ray diffraction, Fourier transform infrared, field-emission scanning electron microscopy, energy-dispersive analysis of X-ray, inductively coupled plasma-mass spectrometry, elemental analyses of CHNOS, temperature-programmed desorption of ammonia, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy. We studied the catalytic action of the UiO-66-Pyca-CuO thin film in the synthesis of α-aminonitriles via Strecker reaction. Our studies show that this catalysis can be a suitable catalyst in the synthesis of α-aminonitriles because of having advantages such as using the solvent being environmentally friendly, easy separation of the catalyst (only by picking up the MOF thin film from inside the solution), the reaction at room temperature, high yield, and reusability.
Collapse
Affiliation(s)
- Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| |
Collapse
|
3
|
Moghadaskhou F, Tadjarodi A, Mollahosseini A, Maleki A. Synthesis of UiO-66-Sal-Cu(OH) 2 by a Simple and Novel Method: MOF-Based Metal Thin Film as a Heterogeneous Catalyst for Olefin Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4021-4032. [PMID: 36633596 DOI: 10.1021/acsami.2c18907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs), particularly UiO-66-NH2, are employed as a catalyst in many industrial catalyst applications. As converting catalysts into thin film significantly increases their catalytic properties for the epoxidation of olefins, we report a general approach to synthesizing MOF thin films (UiO-66-Sal-Cu(OH)2). Using the postsynthesis method (PSM), UiO-66-NH2 was functionalized with salicylaldehyde and entrapped on copper hydroxide nanoparticle surfaces using a modern strategy (MOF thin film). We used field-emission scanning electron microscopy (FE-SEM), EDX (energy-dispersive X-ray analysis), XRD (X-ray diffraction), FT-IR (Fourier transform infrared), BET (Brunauer-Emmett-Teller), TGA (thermogravimetric analysis), XPS (X-ray photoelectron spectroscopy), and ICP-MS (inductively coupled plasma mass spectrometry) to determine the structure and morphology of the synthesized UiO-66-Sal-Cu(OH)2. The oxidation of cyclooctene by the UiO-66-Sal-Cu(OH)2 thin film was studied. Due to its advantages, such as being environmentally friendly (base metal-loaded catalyst, room temperature, solvent-free reaction), reusability, and high yield, this compound can be an appropriate catalyst for the oxidation of olefins.
Collapse
Affiliation(s)
- Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| |
Collapse
|
4
|
Munshi S, Jana RD, Paine TK. Oxidative degradation of toxic organic pollutants by water soluble nonheme iron(iv)-oxo complexes of polydentate nitrogen donor ligands. Dalton Trans 2021; 50:5590-5597. [PMID: 33908934 DOI: 10.1039/d0dt04421k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of four mononuclear nonheme iron(iv)-oxo complexes supported by polydentate nitrogen donor ligands to degrade organic pollutants has been investigated. The water soluble iron(ii) complexes upon treatment with ceric ammonium nitrate (CAN) in aqueous solution are converted into the corresponding iron(iv)-oxo complexes. The hydrogen atom transfer (HAT) ability of iron(iv)-oxo species has been exploited for the oxidation of halogenated phenols and other toxic pollutants with weak X-H (X = C, O, S, etc.) bonds. The iron-oxo oxidants can oxidize chloro- and fluorophenols with moderate to high yields under stoichiometric as well as catalytic conditions. Furthermore, these oxidants perform selective oxidative degradation of several persistent organic pollutants (POPs) such as bisphenol A, nonylphenol, 2,4-D (2,4-dichlorophenoxyacetic acid) and gammaxene. This work demonstrates the utility of water soluble iron(iv)-oxo complexes as potential catalysts for the oxidative degradation of a wide range of toxic pollutants, and these oxidants could be considered as an alternative to conventional oxidation methods.
Collapse
Affiliation(s)
- Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
5
|
Wang S, Zhang H, Ge H, Shi Y, Li Z. Photodegradation of microcystin-LR by pyridyl iron porphyrin immobilized on NaY zeolite. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:121-130. [PMID: 32293595 DOI: 10.2166/wst.2020.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel photocatalyst, FeTPyPY, was prepared by immobilizing water-soluble tetra(4-pyridyl)phenyl iron-porphyrin (FeTPyP) on NaY zeolite to degrade microcystin-LR (MC-LR), one of the most toxic microcystins (MCs). UV-Vis analysis, UV-Vis diffuse reflectance spectroscopy, infrared spectroscopy, cyclic voltammetry and transmission electron microscopy were employed to characterize immobilized FeTPyPY. Under visible light (λ ≥ 420 nm), MC-LR was degraded utilizing immobilized FeTPyPY by activating molecular oxygen. The results showed that 85% of MC-LR was efficiently degraded by FeTPyPY with loading amount 100:1 (mNaY:mFeTPyP) after 300 min of visible light illumination. Moreover, FeTPyPY was stable in the degradation system with pH 7.0. The degradation mechanism was evaluated using electron spin resonance, and the results demonstrated that highly reactive oxygen species (•OH radical) were generated in the system to degrade MC-LR. Therefore, immobilized FeTPyPY was available to break down the toxic groups within MC-LR by utilizing environmental •OH radical under circumneutral condition.
Collapse
Affiliation(s)
- Shulian Wang
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China E-mail: ; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Huiqin Zhang
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China E-mail:
| | - Hongmei Ge
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China E-mail:
| | - Yafei Shi
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China E-mail:
| | - Zhu Li
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China E-mail:
| |
Collapse
|
6
|
Co(II/III) Complexes with Benzoxazole and Benzothiazole Ligands as Efficient Heterogenous Photocatalysts for Organic Dyes Degradation. Catalysts 2019. [DOI: 10.3390/catal9110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The problem of pollution in the current world is growing, however people’s awareness of environmental protection and ecology is also increasing. The aim of the study is to present three new Schiff base compounds with Co(II/III) ions and to assess their photocatalytic activity. The study was supported by cyclic voltammetry technique. In due course the complex 2 revealed as the most effective in AR18 degradation, even more than commercially available TiO2. The search for new photocatalysts able to decompose harmful organic dyes into environmentally friendly basic substances is becoming a new trend in the area of chemistry development.
Collapse
|
7
|
Jain H, Joshi A, Ramachandran CN, Kumar R. Synthesis of a Highly Efficient Multifunctional Copper (II)‐Pyridyl Complex for Adsorption and Photocatalytic Degradation of Organic Dyes. ChemistrySelect 2019. [DOI: 10.1002/slct.201900498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Harshita Jain
- Department of ChemistryUniversity of Delhi Delhi- 110007 India
| | - Ankita Joshi
- Department of ChemistryIndian Institute of Technology Roorkee-Uttarakhand- 247667 India
| | - C. N. Ramachandran
- Department of ChemistryIndian Institute of Technology Roorkee-Uttarakhand- 247667 India
| | - Rakesh Kumar
- Department of ChemistryUniversity of Delhi Delhi- 110007 India
| |
Collapse
|
8
|
Keikha N, Rezaeifard A, Jafarpour M. Heterogeneous Fenton-like activity of novel metallosalophen magnetic nanocomposites: significant anchoring group effect. RSC Adv 2019; 9:32966-32976. [PMID: 35529144 PMCID: PMC9073167 DOI: 10.1039/c9ra05097c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
Novel magnetically recoverable Fe(iii)- and Mn(iii)salophen complexes were designed for the effective degradation of hazardous organic dyes using a heterogeneous advanced oxidation process.
Collapse
Affiliation(s)
- Narges Keikha
- Catalysis Research Laboratory
- Department of Chemistry
- Faculty of Science
- University of Birjand
- Birjand
| | - Abdolreza Rezaeifard
- Catalysis Research Laboratory
- Department of Chemistry
- Faculty of Science
- University of Birjand
- Birjand
| | - Maasoumeh Jafarpour
- Catalysis Research Laboratory
- Department of Chemistry
- Faculty of Science
- University of Birjand
- Birjand
| |
Collapse
|
9
|
M.K. R, V. G. UV/solar light induced photocatalytic degradation of phenols and dyes by Fe(PS-BBP)Cl3. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Hou J, Luan Y, Tang J, Wensley AM, Yang M, Lu Y. Synthesis of UiO-66-NH2 derived heterogeneous copper (II) catalyst and study of its application in the selective aerobic oxidation of alcohols. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.06.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Huang R, Xi Z, He N. Applications of aptamers for chemistry analysis, medicine and food security. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5344-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|