1
|
Deng S, Zheng J, Ma Y, Wang S, Yang X, Ma P. Supramolecular Self‐Assembly Modes of Cyclopentanocucurbit[6]uril and Aromatic Amines. ChemistrySelect 2022. [DOI: 10.1002/slct.202202520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shaojie Deng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Jun Zheng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Yue Ma
- Guiyang College of Humanities and Science Guiyang 550025 China
| | - Shanfei Wang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Xinan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Peihua Ma
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| |
Collapse
|
2
|
Jose J, Thomas AM, Mendonsa D, Al-Sanea MM, Uddin MS, Parambi DGT, Charyulu RN, Mathew B. Aptamers in Drug Design: An Emerging Weapon to Fight a Losing Battle. Curr Drug Targets 2020; 20:1624-1635. [PMID: 31362673 DOI: 10.2174/1389450120666190729121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
Implementation of novel and biocompatible polymers in drug design is an emerging and rapidly growing area of research. Even though we have a large number of polymer materials for various applications, the biocompatibility of these materials remains as a herculean task for researchers. Aptamers provide a vital and efficient solution to this problem. They are usually small (ranging from 20 to 60 nucleotides, single-stranded DNA or RNA oligonucleotides which are capable of binding to molecules possessing high affinity and other properties like specificity. This review focuses on different aspects of Aptamers in drug discovery, starting from its preparation methods and covering the recent scenario reported in the literature regarding their use in drug discovery. We address the limitations of Aptamers and provide valuable insights into their future potential in the areas regarding drug discovery research. Finally, we explained the major role of Aptamers like medical imaging techniques, application as synthetic antibodies, and the most recent application, which is in combination with nanomedicines.
Collapse
Affiliation(s)
- Jobin Jose
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Aaron Mathew Thomas
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Darewin Mendonsa
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Mohammad M Al-Sanea
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - R Narayana Charyulu
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India
| |
Collapse
|
3
|
Wang D, Peng Y, Deng Z, Tan Y, Su Y, Kuai H, Ai L, Huang Z, Wang X, Zhang X, Tan W. Modularly Engineered Solid‐Phase Synthesis of Aptamer‐Functionalized Small Molecule Drugs for Targeted Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Yongbo Peng
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Zhengyu Deng
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Yan Tan
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Yuanye Su
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Zhiyong Huang
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Xue‐Qiang Wang
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| |
Collapse
|
4
|
Rabiee N, Ahmadi S, Arab Z, Bagherzadeh M, Safarkhani M, Nasseri B, Rabiee M, Tahriri M, Webster TJ, Tayebi L. Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review. Int J Nanomedicine 2020; 15:4237-4256. [PMID: 32606675 PMCID: PMC7314593 DOI: 10.2147/ijn.s248736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting approach for cancer treatment in the decades ahead to meet our growing societal needs.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Arab
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department and Bioengineering Division, Hacettepe University, Beytepe, Ankara06800, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
5
|
Li J, Wang L, Tian J, Zhou Z, Li J, Yang H. Nongenetic engineering strategies for regulating receptor oligomerization in living cells. Chem Soc Rev 2020; 49:1545-1568. [DOI: 10.1039/c9cs00473d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nongenetic strategies for regulating receptor oligomerization in living cells based on DNA, protein, small molecules and physical stimuli.
Collapse
Affiliation(s)
- Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Jinmiao Tian
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Zhilan Zhou
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| |
Collapse
|
6
|
|
7
|
Li Y, Chen H, Dai Y, Chen T, Cao Y, Zhang J. Cellular interface supported toehold strand displacement cascade for amplified dual-electrochemical signal and its application for tumor cell analysis. Anal Chim Acta 2019; 1064:25-32. [PMID: 30982514 DOI: 10.1016/j.aca.2019.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/17/2023]
Abstract
In this work, toehold strand displacement cascade (TSDC) has been delicately designed and carried out on the cellular interface for the amplification and output of dual-electrochemical signal. Specifically, antibody cross-linked T strand can recognize cell which is linked with immune-magnetic bead. Subsequently, T strand on the cellular interface can mediate the occurrence of TSDC, resulting the change of SN3/S1-MB to SN3/S2-Fc ratio in the supernatant after magnetic separation. The resultant SN3/S1-MB and SN3/S2-Fc can be immobilized on the electrode interface through click chemistry and give the amplified double electrochemical signal. So the tumor cell amount can closely correlate with the change of the double signal. Except for output of the double signal for improvement of analytical accuracy, the double magnetic separation not only eliminate the interference of the complicated substances in serum, but also remove the influence of cell on click reaction on the electrode interface. So based on cellular interface supported TSDC for amplified dual-electrochemical signal, the established method has been successfully applied to analyze the tumor cells in serum accurately and sensitively.
Collapse
Affiliation(s)
- Yifei Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, PR China
| | - Hong Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Yuhao Dai
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Tingjun Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China.
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China.
| |
Collapse
|
8
|
Li S, Liu R, Jiang X, Qiu Y, Song X, Huang G, Fu N, Lin L, Song J, Chen X, Yang H. Near-Infrared Light-Triggered Sulfur Dioxide Gas Therapy of Cancer. ACS NANO 2019; 13:2103-2113. [PMID: 30642157 DOI: 10.1021/acsnano.8b08700] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The exploitation of gas therapy platforms holds great promise as a "green" approach for selective cancer therapy, however, it is often associated with some challenges, such as uncontrolled or insufficient gas generation and unclear therapeutic mechanisms. In this work, a gas therapy approach based on near-infrared (NIR) light-triggered sulfur dioxide (SO2) generation was developed, and the therapeutic mechanism as well as in vivo antitumor therapeutic efficacy was demonstrated. A SO2 prodrug-loaded rattle-structured upconversion@silica nanoparticles (RUCSNs) was constructed to enable high loading capacity without obvious leakage and to convert NIR light into ultraviolet light so as to activate the prodrug for SO2 generation. In addition, SO2 prodrug-loaded RUCSNs showed high cell uptake, good biocompatibility, intracellular tracking ability, and high NIR light-triggered cytotoxicity. Furthermore, the cytotoxic SO2 was found to induce cell apoptosis accompanied by the increase of intracellular reactive oxygen species levels and the damage of nuclear DNA. Moreover, efficient inhibition of tumor growth was achieved, associated with significantly prolonged survival of mice. Such NIR light-triggered SO2 therapy may provide an effective strategy to stimulate further development of synergistic cancer therapy platforms.
Collapse
Affiliation(s)
- Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Rui Liu
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Xiaoxue Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Yuan Qiu
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Guoming Huang
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Nanyan Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Lisen Lin
- National Institute of Neurological Disorders and Stroke (NINDS) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Xiaoyuan Chen
- National Institute of Neurological Disorders and Stroke (NINDS) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| |
Collapse
|
9
|
Zhang KL, Wang YJ, Sun J, Zhou J, Xing C, Huang G, Li J, Yang H. Artificial chimeric exosomes for anti-phagocytosis and targeted cancer therapy. Chem Sci 2019; 10:1555-1561. [PMID: 30809374 PMCID: PMC6357862 DOI: 10.1039/c8sc03224f] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/23/2018] [Indexed: 12/28/2022] Open
Abstract
Development of exosome-based delivery systems is still facing some formidable challenges, including the lack of standardized isolation and purification methods, non-large-scale production and low drug-loading efficiency. Inspired by biomimetic technologies, we turned to the design of artificial chimeric exosomes (ACEs) constructed by integrating cell membrane proteins from multiple cell types into synthetic phospholipid bilayers. For benchmarking, hybrid membrane proteins derived from red blood cells (RBCs) and MCF-7 cancer cells were selected as models. The resulting ACEs were engineered much like "Emperor Qin's Terra-Cotta Warriors", simultaneously equipped with armor (anti-phagocytosis capability from RBCs) and dagger-axes (homologous targeting ability from cancer cells). ACEs demonstrated higher tumor accumulation, lower interception and better antitumor therapeutic effect than plain liposomes in vivo, alongside large-scale standardized preparation, stable structure, high drug-loading capacity and custom-tailored functionality, highlighting the suitability of ACEs as promising alternatives of exosomes in clinical applications.
Collapse
Affiliation(s)
- Kai-Long Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
| | - Ying-Jie Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
| | - Jin Sun
- Institute of Molecular Medicine , Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai Jiao Tong University , Shanghai , 200240 , P. R. China
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Jie Zhou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
| | - Chao Xing
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
| | - Guoming Huang
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
- Institute of Molecular Medicine , Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai Jiao Tong University , Shanghai , 200240 , P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
| |
Collapse
|
10
|
Yan M, Liu XB, Gao ZZ, Wu YP, Hou JL, Wang H, Zhang DW, Liu Y, Li ZT. A pore-expanded supramolecular organic framework and its enrichment of photosensitizers and catalysts for visible-light-induced hydrogen production. Org Chem Front 2019. [DOI: 10.1039/c9qo00382g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A 3.6 nm-pore SOF is constructed, which adsorbs both photosensitizers and polyoxometallates for visible light-induced proton reduction to produce H2.
Collapse
Affiliation(s)
- Meng Yan
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Xu-Bo Liu
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Zhong-Zheng Gao
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Yi-Peng Wu
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Jun-Li Hou
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Hui Wang
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Dan-Wei Zhang
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| | - Yi Liu
- The Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Zhan-Ting Li
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
| |
Collapse
|
11
|
Li J, Liu S, Sun L, Li W, Zhang SY, Yang S, Li J, Yang HH. Amplified Visualization of Protein-Specific Glycosylation in Zebrafish via Proximity-Induced Hybridization Chain Reaction. J Am Chem Soc 2018; 140:16589-16595. [DOI: 10.1021/jacs.8b08442] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuya Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Liqin Sun
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Wei Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Su-Yun Zhang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Sheng Yang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huang-Hao Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
12
|
Supramolecular gelator based on a [c2]daisy chain rotaxane: efficient gel-solution transition by ring-sliding motion. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9351-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Chen S, Li J, Liang H, Lin XH, Li J, Yang HH. Light-Induced Activation of c-Met Signalling by Photocontrolled DNA Assembly. Chemistry 2018; 24:15988-15992. [PMID: 30155946 DOI: 10.1002/chem.201803868] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Indexed: 12/19/2022]
Abstract
Optical manipulation appears to be a powerful tool for spatiotemporally controlling a variety of cellular functions. Herein, a photocontrolled DNA assembly approach is described which enables light-induced activation of cellular signal transduction by triggering protein dimerization (c-Met signalling in this case). Three kinds of DNA probes are designed, including a pair of receptor recognition probes with adaptors and a blocker probe with a photocleavable linker (PC-linker). By implementing PC-linkers in blocker probes, the designed DNA probes response to light irradiation, which then induces the assembly of receptor recognition probes through adaptor complementing. Consequently, light-mediated DNA assembly promotes the dimerization of c-Met receptors, resulting in activation of c-Met signalling. It is demonstrated that the proposed photocontrolled DNA assembly approach is effective for regulating c-Met signalling and modulating cellular behaviours, such as cell proliferation and migration. Therefore, this simple approach may offer a promising strategy to manipulate cell signalling pathways precisely in living cells.
Collapse
Affiliation(s)
- Shan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hong Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xia-Hui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
14
|
|
15
|
Recent advances on stimuli-responsive macromolecular magnetic resonance imaging (MRI) contrast agents. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9291-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Zhang X, Wu M, Li J, Lan S, Zeng Y, Liu X, Liu J. Light-Enhanced Hypoxia-Response of Conjugated Polymer Nanocarrier for Successive Synergistic Photodynamic and Chemo-Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21909-21919. [PMID: 29882654 DOI: 10.1021/acsami.8b06491] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The tumor hypoxic environment as well as photodynamic therapy (PDT)-induced hypoxia could severely limit the therapeutic efficacy of traditional PDT. Fortunately, the smart integration of hypoxia-responsive drug delivery system with PDT might be a promising strategy to enhance the PDT efficiency that is hindered by the hypoxic environment. Herein, a novel azobenzene (AZO) containing conjugated polymers (CPs)-based nanocarriers (CPs-CPT-Ce6 NPs) was constructed for the combination of PDT with chemotherapy, as well as to enhance the hypoxia-responsive drug release by light. The conjugated polymer chains, used as a matrix to prepare the CPs-CPT-Ce6 NPs, were beneficial for loading hydrophobic photosensitizers and chemotherapy drugs, to improve their cellular uptake. Moreover, the AZO group (-N═N-) in CPs, which can be reduced and cleaved by azoreductase (a typical biomarker of hypoxia) under the hypoxic environment of tumor cells, acts as the hypoxia-responsive linker component. Upon laser irradiation, the CPs-CPT-Ce6 NPs could produce ROS for PDT and then facilitate the enhancement of tumor hypoxic condition, which could further promote the dissociation of CPs via reductive cleavage of AZO bridges to subsequently release cargos (chemotherapeutic drug, CPT) and then significantly enhance the killing effects to tumor cells that were resistant to PDT. Both in vitro and in vivo studies confirmed the improvement of synergistic therapeutic effects of our CPs-CPT-Ce6 NPs. This cascade responsive approach provides an excellent complementary mode for PDT and could open new insights for constructing programmable and controllable responsive systems in biomedical applications.
Collapse
Affiliation(s)
- Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Jiong Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou 350002 , P.R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Shanyou Lan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- Liver Disease Center , The First Affiliated Hospital of Fujian Medical University , Fuzhou 350005 , P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- Liver Disease Center , The First Affiliated Hospital of Fujian Medical University , Fuzhou 350005 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- Liver Disease Center , The First Affiliated Hospital of Fujian Medical University , Fuzhou 350005 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| |
Collapse
|
17
|
Wang L, Li P, Xiao X, Li J, Li J, Yang HH, Tan W. Generating lung-metastatic osteosarcoma targeting aptamers for in vivo and clinical tissue imaging. Talanta 2018; 188:66-73. [PMID: 30029428 DOI: 10.1016/j.talanta.2018.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Osteosarcoma (OS) is one of most malignant bone tumors in early adolescence, which is a highly metastatic cancer and pulmonary metastasis is the most common cause of death. Thus, the development of efficient approaches to discover potential compounds that target metastasis of OS remains a topic of considerable interest. In this study, subtractive Cell-SELEX was performed to screen OS metastasis specific DNA aptamers by using cell lines with similar tumorigenic potentials but opposite metastatic aggressiveness (highly metastatic 143B cells and non-metastatic U-2 OS cells as the target and negative cells, respectively). This in vitro selection generated an ssDNA aptamer LP-16 that exhibited high binding affinity to 143B cells with an equilibrium dissociation constant (Kd) of 56.73 ± 7.750 nM. However, the aptamer LP-16 did not bind to the non-metastatic U-2 OS and normal hFOB 1.19 cells. We further preliminarily presumed the target molecules of aptamer LP-16 was a membrane protein on the cell surface by proteinase treatment. Furthermore, both in vivo fluorescence imaging and clinical tissue imaging also clearly demonstrated that LP-16 could achieve prominently targeting efficiency. Therefore, the ssDNA aptamer LP-16 generated here could be a promising molecular probe for OS metastasis diagnosis. We have developed subtractive Cell-SELEX to screen osteosarcoma metastasis specific DNA aptamers by using cell lines with similar tumorigenic potentials but opposite metastatic aggressiveness (highly metastatic 143B cells and non-metastatic U-2 OS cells as the target and negative cells, respectively).
Collapse
Affiliation(s)
- Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Peipei Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Xue Xiao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
18
|
Duan S, Li J, Zhao N, Xu FJ. Multifunctional hybrids with versatile types of nanoparticles via self-assembly for complementary tumor therapy. NANOSCALE 2018; 10:7649-7657. [PMID: 29648560 DOI: 10.1039/c8nr00767e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-assembly is a promising method for the construction of multifunctional nanohybrids for biomedical application. In this work, self-assembled multifunctional nanohybrids with a controllable disassembly property have been successfully fabricated. By modification with cyclodextrin (CD)-decorated ethylenediamine-functionalized poly(glycidyl methacrylate) (PGED), CD groups and polycations were conjugated onto Au nanorods (Au NRs) or Fe3O4 nanoparticles (denoted as Au-PGED-CD or Fe3O4-PGED-CD), and different SiO2@Fe3O4-PGED (SFP) or SiO2@Au-PGED (SAP) nanohybrids were readily fabricated by the host-guest interaction between Au-PGED-CD or Fe3O4-PGED-CD and adamantyl (Ad)-functionalized chiral silica NRs under mild conditions. The DNA condensation ability of the polycation, the photothermal effects of Au NRs or Fe3O4 nanoparticles, as well as the unique structure of chiral silica NRs were integrated into one nanohybrid. Such nanohybrids have high gene transfection efficiency and low cytotoxicity. The photothermal effects of the nanohybrids could be utilized for photothermal therapy, and also could induce the disassembly of the nanohybrids, which is beneficial for DNA release. The nanohybrids with good transfection performance and excellent photothermal effects were further applied for multimodal therapy. This work presents a flexible strategy for the fabrication of multifunctional nanoplatforms with integration of the advantages of various types of nanoparticles.
Collapse
Affiliation(s)
- Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | |
Collapse
|
19
|
Chang D, Han D, Yan W, Yuan Z, Wang Q, Zou L. Multi-mode supermolecular polymerization driven by host-guest interactions. RSC Adv 2018; 8:13722-13727. [PMID: 35539298 PMCID: PMC9079814 DOI: 10.1039/c8ra01892h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/27/2018] [Indexed: 11/21/2022] Open
Abstract
A novel supermolecular self-assembly based on ternary host-guest interaction between cucurbit[8]uril (CB[8]), 1,1'-dimethyl-4,4'-bipyridinium dication (MV) and coumarin derivative was applied for the construction of linear supramolecular polymer with high degree of polymerization in aqueous solution. Accompanied by the introduction of azobenzene on linear ABBA type monomer the supermolecular polymerization is different and the morphology changes from linear to dendritic polymer. The successful supramolecular polymerization of linear and dendritic supramolecular polymers by non-covalent host-guest molecular recognition was confirmed by various characterization methods, such as 1H NMR spectroscopy, ROESY, transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. Meanwhile, the supramolecular polymerization could promote the conversion of the azobenzene from cis to trans, which ultimately results in no isomerism upon UV irradiation.
Collapse
Affiliation(s)
- Dongdong Chang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| | - Dan Han
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| | - Wenhao Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| | - Zhiyi Yuan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| | - Qiaochun Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| | - Lei Zou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| |
Collapse
|
20
|
High pressure, a protocol to identify the weak dihydrogen bonds: experimental evidence of C–H···H–B interaction. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9152-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Zhang X, Wang K, Lin S, Dai Y, Xia F. Supramolecular Vesicles Prepared by Photodimerization of Coumarins in the Cavity of γ-Cyclodextrin. ChemistrySelect 2017. [DOI: 10.1002/slct.201701739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaojin Zhang
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Kang Wang
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Shijun Lin
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Yu Dai
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Fan Xia
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| |
Collapse
|