1
|
Kumar S, Singh I, Hsan N, Swain BS, Koh J. Synthesis of chitosan-based perylene dye material for photovoltaic solar-cell application. Int J Biol Macromol 2023; 253:126964. [PMID: 37722641 DOI: 10.1016/j.ijbiomac.2023.126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Renewable energy, such as solar energy, is infinite, readily available, and has extensive applications. Dye-sensitized solar cells (DSSCs) have been well developed; thus, they can be developed with low production costs, high efficiency, and facile manufacturing techniques. This study proposes a novel chitosan biopolymer-based perylene dye; the dye is modified by chitosan with perylene-3,4,9,10-tetracarboxylic anhydride using a one-pot acylation of nitrogen nucleophiles for DSSCs. The chitosan biopolymer-based perylene dyes were characterized using attenuated total reflection infrared spectroscopy, solid-state 13C CP-TOSS nuclear magnetic resonance spectroscopy, X-ray powder diffraction analysis, thermogravimetric analysis, X-ray photoelectron spectrometry, and high-resolution field-emission scanning electron microscopy. The ultraviolet-visible and fluorescence spectroscopy of chitosan biopolymer-based perylene dye exhibited a red-shift compared with perylene-3,4,9,10-tetracarboxylic anhydride and chitosan. The DSSC properties of chitosan biopolymer-based perylene dye were investigated, and it exhibited a 2.022 % power-conversion efficiency. Thus, this promising chitosan biopolymer-based perylene dye may have potential applications in solar-cell technology.
Collapse
Affiliation(s)
- Santosh Kumar
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea; Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, UP, India
| | - Ira Singh
- Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, UP, India
| | - Nazrul Hsan
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Bhabani Sankar Swain
- School of Materials Science and Engineering, Kookmin University, Jeongneung-dong, Sungbuk-gu, Seoul 136-702, Republic of Korea
| | - Joonseok Koh
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Liu B, Liang S, Karuthedath S, He Y, Wang J, Tan WL, Li H, Xu Y, Laquai F, Brabec CJ, McNeill CR, Xiao C, Tang Z, Hou J, Yang F, Li W. Double-Cable Conjugated Polymers Based on Simple Non-Fused Electron Acceptors for Single-Component Organic Solar Cells. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Baiqiao Liu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing100044, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Safakath Karuthedath
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Yakun He
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058Erlangen, Germany
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria3800, Australia
| | - Hao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yunhua Xu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing100044, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Christoph J. Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058Erlangen, Germany
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria3800, Australia
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Fan Yang
- College of Chemistry, Chemical
Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan250014, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
3
|
Wang R, Xia D, Jiang X, Zhao C, Zhou S, Fang H, Wang J, Tang Z, Xiao C, Li W. N-Annulated Perylene Bisimide-Based Double-Cable Polymers with Open-Circuit Voltage Approaching 1.20 V in Single-Component Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47952-47960. [PMID: 36222398 DOI: 10.1021/acsami.2c10466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, we have introduced single/double-sided N-annulated perylene bisimide (PBI) with deep energy levels into double-cable polymers with poly[1-(5-(4,8-bis(4-chloro-5-(2-ethylhexyl)thiophen-2-yl)-6-methylbenzo[1,2-b:4,5-b']dithiophen-2-yl)thiophen-2-yl)-5,7-bis(2-ethylhexyl)-3-(5-methylthiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c']dithiophene-4,8-dione] (PBDB-T-Cl) as a donor backbone, marking as s-PPNR and as-PPNR, according to the molecular symmetry. Both double-cable polymers displayed a high open-circuit voltage approaching 1.20 V in light of high energy level discrepancy between electron-donating and electron-withdrawing parts, which is the highest open-circuit voltage among double-cable-based single-component organic solar cell (SCOSC) devices. Additionally, the asymmetric polymer displayed improved absorption spectra, thereby promoting crystallization and phase separation. Consequently, the as-PPNR-based SCOSCs achieved a power conversion efficiency of 5.05% along with a higher short-circuit current density and fill factor than their s-PPNR-based counterparts. In this work, we have successfully incorporated N-annulated PBI into double-cable polymers and revealed the important effects on structural symmetry and phase separation of double-cable polymers for higher SCOSC performance.
Collapse
Affiliation(s)
- Ruoyao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dongdong Xia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Xudong Jiang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Shengxi Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haisheng Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Bao HY, Yang ZF, Zhao YJ, Gao X, Tong XZ, Wang YN, Sun FB, Gao JH, Li WW, Liu ZT. Chlorinated Effects of Double-Cable Conjugated Polymers on the Photovoltaic Performance in Single-Component Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Liang S, Liu B, Karuthedath S, Wang J, He Y, Tan WL, Li H, Xu Y, Li N, Hou J, Tang Z, Laquai F, McNeill CR, Brabec CJ, Li W. Double-Cable Conjugated Polymers with Pendent Near-Infrared Electron Acceptors for Single-Component Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202209316. [PMID: 35785422 DOI: 10.1002/anie.202209316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 11/06/2022]
Abstract
Double-cable conjugated polymers with near-infrared (NIR) electron acceptors are synthesized for use in single-component organic solar cells (SCOSCs). Through the development of a judicious synthetic pathway, the highly sensitive nature of the 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC)-based electron acceptors in basic and protonic solvents is overcome. In addition, an asymmetric design motif is adopted to optimize the packing of donor and acceptor segments, enhancing charge separation efficiency. As such, the new double-cable polymers are successfully applied in SCOSCs, providing an efficiency of over 10 % with a broad photo response from 300 to 850 nm and exhibiting excellent thermal/light stability. These results demonstrate the powerful design of NIR-acceptor-based double-cable polymers and will enable SCOSCs to enter a new stage.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Safakath Karuthedath
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yakun He
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Hao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunhua Xu
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany.,Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany.,State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany.,Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Liang S, Liu B, Karuthedath S, Wang J, He Y, Tan WL, Li H, Xu Y, Li N, Hou J, Tang Z, Laquai F, McNeill CR, Brabec CJ, Li W. Double‐Cable Conjugated Polymers with Pendent Near‐Infrared Electron Acceptors for Single‐Component Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shijie Liang
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites CHINA
| | - Baiqiao Liu
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites CHINA
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology KAUST solar center SAUDI ARABIA
| | - Jing Wang
- Donghua University College of Materials Science and Engineering CHINA
| | - Yakun He
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Wen Liang Tan
- Monash University Department of Materials Science and Engineering AUSTRALIA
| | - Hao Li
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Yunhua Xu
- Beijing Jiaotong University College of Materials Science and Engineering CHINA
| | - Ning Li
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Jianhui Hou
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Zheng Tang
- Donghua University College of Materials Science and Engineering CHINA
| | - Frédéric Laquai
- King Abdullah University of Science and Technology KAUST solar center SAUDI ARABIA
| | | | - Christoph J. Brabec
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Weiwei Li
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology, Beijing 100029 100190 Beijing CHINA
| |
Collapse
|
7
|
Impact of pendent naphthalenedimide content in random double-cable conjugated polymers on their microstructures and photovoltaic performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Liu BQ, Xu YH, Liu F, Xie CC, Liang SJ, Chen QM, Li WW. Double-Cable Conjugated Polymers with Fullerene Pendant for Single-Component Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2732-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Liang S, Wang J, Ouyang Y, Tan WL, McNeill CR, Chen Q, Tang Z, Li W. Double-Cable Conjugated Polymers with Rigid Phenyl Linkers for Single-Component Organic Solar Cells. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yanni Ouyang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Feng G, Tan W, Karuthedath S, Li C, Jiao X, Liu ACY, Venugopal H, Tang Z, Ye L, Laquai F, McNeill CR, Li W. Revealing the Side‐Chain‐Dependent Ordering Transition of Highly Crystalline Double‐Cable Conjugated Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guitao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenliang Tan
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xuechen Jiao
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Amelia C. Y. Liu
- School of Physics and Astronomy Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy Monash University Clayton Victoria 3800 Australia
| | - Zheng Tang
- Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Long Ye
- School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300350 P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Christopher R. McNeill
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
11
|
Feng G, Tan W, Karuthedath S, Li C, Jiao X, Liu ACY, Venugopal H, Tang Z, Ye L, Laquai F, McNeill CR, Li W. Revealing the Side-Chain-Dependent Ordering Transition of Highly Crystalline Double-Cable Conjugated Polymers. Angew Chem Int Ed Engl 2021; 60:25499-25507. [PMID: 34546627 DOI: 10.1002/anie.202111192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/06/2022]
Abstract
We developed a series of highly crystalline double-cable conjugated polymers for application in single-component organic solar cells (SCOSCs). These polymers contain conjugated backbones as electron donor and pendant perylene bisimide units (PBIs) as electron acceptor. PBIs are connected to the backbone via alkyl units varying from hexyl (C6 H12 ) to eicosyl (C20 H40 ) as flexible linkers. For double-cable polymers with short linkers, the PBIs tend to stack in a head-to-head fashion, resulting in large d-spacings (e.g. 64 Å for the polymer P12 with C12 H24 linker) along the lamellar stacking direction. When the length of the linker groups is longer than a certain length, the PBIs instead adopt a more ordered packing likely via H-aggregation, resulting in short d-spacings (e.g. 50 Å for the polymer P16 with C16 H32 linker). This work highlights the importance of linker length on the molecular packing of the acceptor units and the influences on the photovoltaic performance of SCOSCs.
Collapse
Affiliation(s)
- Guitao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenliang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuechen Jiao
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Amelia C Y Liu
- School of Physics and Astronomy, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, 3800, Australia
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300350, P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Orthogonal carbazole-perylene bisimide pentad: a photoconversion-tunable photosensitizer with diversified excitation and excited-state relaxation pathways. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1154-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Liang S, Jiang X, Xiao C, Li C, Chen Q, Li W. Double-Cable Conjugated Polymers with Pendant Rylene Diimides for Single-Component Organic Solar Cells. Acc Chem Res 2021; 54:2227-2237. [PMID: 33852280 DOI: 10.1021/acs.accounts.1c00070] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ConspectusConjugated polymers for application in organic solar cells (OSCs) have been developed from poly(phenylenevinylene) to poly(3-hexylthiophene) and then to "donor-acceptor" structures, providing power conversion efficiencies (PCEs) over 18% when blending with the electron acceptor as a two-component photoactive layer. Besides, graft-structural double-cable conjugated polymers that use an electron donor as conjugated backbones and an electron acceptor as pendant side units are one kind of conjugated polymer, in which charge carriers are generated in a single polymer. Therefore, double-cable conjugated polymers can be used as a single photoactive layer in single-component OSCs (SCOSCs). The covalently linked electron donor and acceptor enable double-cable polymers to maintain stable microstructures during long-term operation compared to two-component systems, which is very important for OSCs toward large-area applications. However, SCOSCs based on double-cable conjugated polymers provided PCEs below 3% in a long period, which is lagging far behind PCEs of two-component OSCs. The key reason for this is the limited number of chemical structures and the difficulty to tune the morphology in these polymers.In this Account, we provide an overview about our efforts on developing new double-cable conjugated polymers with rylene diimides as side units, and how to realize high PCEs in SCOSC devices. The studies start from developing a "functionalization-polymerization" method to synthesize the polymers containing rylene diimide acceptors, so that large amounts of double-cable conjugated polymers with distinct physical and electrochemical properties were obtained. Then, we will discuss how to control the nanophase separation in the crystalline region and optimize the miscibility in the amorphous region of double-cable polymers, simultaneously facilitating exciton dissociation and charge transport. With these efforts, a high PCE of 8.4% has been obtained, representing the record PCE in SCOSCs. In addition, the physical process and the stability of SCOSCs will be discussed. We hope that this account will inspire many innovative studies in this field and push the PCEs of SCOSCs to a new stage.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xudong Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|
14
|
Jiang X, Yang J, Karuthedath S, Li J, Lai W, Li C, Xiao C, Ye L, Ma Z, Tang Z, Laquai F, Li W. Miscibility‐Controlled Phase Separation in Double‐Cable Conjugated Polymers for Single‐Component Organic Solar Cells with Efficiencies over 8 %. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xudong Jiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jinjin Yang
- Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Junyu Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenbin Lai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Long Ye
- School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300350 P. R. China
| | - Zaifei Ma
- Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Institute of Applied Chemistry Jiangxi Academy of Sciences Nanchang 330096 P. R. China
| |
Collapse
|
15
|
Jiang X, Yang J, Karuthedath S, Li J, Lai W, Li C, Xiao C, Ye L, Ma Z, Tang Z, Laquai F, Li W. Miscibility-Controlled Phase Separation in Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiencies over 8 . Angew Chem Int Ed Engl 2020; 59:21683-21692. [PMID: 32815586 DOI: 10.1002/anie.202009272] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Indexed: 02/03/2023]
Abstract
A record power conversion efficiency of 8.40 % was obtained in single-component organic solar cells (SCOSCs) based on double-cable conjugated polymers. This is realized based on exciton separation playing the same role as charge transport in SCOSCs. Two double-cable conjugated polymers were designed with almost identical conjugated backbones and electron-withdrawing side units, but extra Cl atoms had different positions on the conjugated backbones. When Cl atoms were positioned at the main chains, the polymer formed the twist backbones, enabling better miscibility with the naphthalene diimide side units. This improves the interface contact between conjugated backbones and side units, resulting in efficient conversion of excitons into free charges. These findings reveal the importance of charge generation process in SCOSCs and suggest a strategy to improve this process: controlling miscibility between conjugated backbones and aromatic side units in double-cable conjugated polymers.
Collapse
Affiliation(s)
- Xudong Jiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jinjin Yang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Junyu Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenbin Lai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300350, P. R. China
| | - Zaifei Ma
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| |
Collapse
|
16
|
Liu F, Xiao C, Feng G, Li C, Wu Y, Zhou E, Li W. End Group Engineering on the Side Chains of Conjugated Polymers toward Efficient Non-Fullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6151-6158. [PMID: 31918543 DOI: 10.1021/acsami.9b22275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Side chains properties of conjugated polymers, such as the length, branching point, and heteroatom, have been widely studied for application in organic solar cells (OSCs), but the end groups of side chains have been rarely reported. In this work, we systematically explored a series of new conjugated polymers with distinct side-chain end groups for high performance non-fullerene OSCs. The key components for the polymers contained functionalized units as the end groups of side chains, such as Br, alkyloxy (OMe), and alkylthienyl (T) groups. We found that the new conjugated polymers have similar absorption spectra and crystallinity with the polymer without substitution, but they showed distinct photovoltaic performance in solar cells. When the polymer without functionalized units had a power conversion efficiency (PCE) of 9.94%, the modified conjugated polymers provided high PCEs of over 13% with significantly enhanced photocurrent and fill factors. In addition, they also show additive-free and highly stable characteristics. These results demonstrate that end group engineering on side chains is a promising strategy to design new conjugated polymers toward efficient OSCs.
Collapse
Affiliation(s)
- Feng Liu
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Guitao Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Erjun Zhou
- Henan Institutes of Advanced Technology , Zhengzhou University , Zhengzhou 450003 , P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
17
|
Zhao C, Yang F, Xia D, Zhang Z, Zhang Y, Yan N, You S, Li W. Thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chem Commun (Camb) 2020; 56:10394-10408. [DOI: 10.1039/d0cc04150e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thieno[3,4-c]pyrrole-4,6-dione (TPD) based conjugated polymers as an electron donor, acceptor and single-component for application in organic solar cells in the past ten years have been intensively reviewed in this Feature Article.
Collapse
Affiliation(s)
- Chaowei Zhao
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Fan Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dongdong Xia
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids, Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Zhou Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- College of Chemistry and Environmental Science
| | - Yuefeng Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Nanfu Yan
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Shengyong You
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Weiwei Li
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic–Inorganic Composites
| |
Collapse
|
18
|
Li C, Wu X, Sui X, Wu H, Wang C, Feng G, Wu Y, Liu F, Liu X, Tang Z, Li W. Crystalline Cooperativity of Donor and Acceptor Segments in Double‐Cable Conjugated Polymers toward Efficient Single‐Component Organic Solar Cells. Angew Chem Int Ed Engl 2019; 58:15532-15540. [DOI: 10.1002/anie.201910489] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Cheng Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Xianxin Wu
- Division of NanophotonicsCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xinyu Sui
- Division of NanophotonicsCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Hongbo Wu
- Center for Advanced Low-dimension MaterialsState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 P. R. China
| | - Chao Wang
- College of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
| | - Guitao Feng
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
| | - Feng Liu
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA)Shanghai Jiao Tong University Shanghai P. R. China
| | - Xinfeng Liu
- Division of NanophotonicsCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension MaterialsState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
19
|
Tian Z, Guo Y, Li J, Li C, Li W. Benzodithiophene-Fused Perylene Bisimides as Electron Acceptors for Non-Fullerene Organic Solar Cells with High Open-Circuit Voltage. Chemphyschem 2019; 20:2696-2701. [PMID: 31012986 DOI: 10.1002/cphc.201900309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/23/2019] [Indexed: 11/05/2022]
Abstract
Tandem-junction organic solar cells require solar cells with visible light photo-response as front cells, in which an open-circuit voltage (Voc ) above 1.0 V is highly demanded. In this work, we are able to develop electron acceptors to fabricate non-fullerene organic solar cells (NFOSCs) with a very high Voc of 1.14 V. This was realized by designing perylene bisimide (PBI)-based conjugated materials fused with benzodithiophene, in which Cl and S atom were introduced into the molecules in order to lower the frontier energy levels. The fused structures can reduce the aggregation of PBI unit and meanwhile maintain a good charge transport property. The new electron acceptors were applied into NFOSCs by using Cl and S substituted conjugated polymers as electron donor, in which an initial power conversion efficiency of 6.63 % and a high Voc of 1.14 V could be obtained. The results demonstrate that the molecular design by incorporating Cl and S atom into electron acceptors has great potential to realize high performance NFOSCs.
Collapse
Affiliation(s)
- Zhongrong Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiting Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junyu Li
- DSM DMSC R&D Solutions, P.O. Box 18, 6160 MD, Geleen, The Netherlands
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weiwei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
20
|
Li C, Wu X, Sui X, Wu H, Wang C, Feng G, Wu Y, Liu F, Liu X, Tang Z, Li W. Crystalline Cooperativity of Donor and Acceptor Segments in Double‐Cable Conjugated Polymers toward Efficient Single‐Component Organic Solar Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xianxin Wu
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xinyu Sui
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Hongbo Wu
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chao Wang
- College of Chemistry and Environmental Science Hebei University Baoding 071002 P. R. China
| | - Guitao Feng
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental Science Hebei University Baoding 071002 P. R. China
| | - Feng Liu
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA) Shanghai Jiao Tong University Shanghai P. R. China
| | - Xinfeng Liu
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
21
|
Yang F, Li J, Li C, Li W. Improving Electron Transport in a Double-Cable Conjugated Polymer via Parallel Perylenetriimide Design. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00495] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fan Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Junyu Li
- DSM DMSC R&D Solutions, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weiwei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|
22
|
Yang F, Zhao W, Zhu Q, Li C, Ma W, Hou J, Li W. Boosting the Performance of Non-Fullerene Organic Solar Cells via Cross-Linked Donor Polymers Design. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02526] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Fan Yang
- State Key Laboratory of Organic−Inorganic Composites, University of Chemical Technology, Beijing 100029, P. R. China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenchao Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qinglian Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Cheng Li
- State Key Laboratory of Organic−Inorganic Composites, University of Chemical Technology, Beijing 100029, P. R. China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weiwei Li
- State Key Laboratory of Organic−Inorganic Composites, University of Chemical Technology, Beijing 100029, P. R. China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
23
|
Liang S, Xu Y, Li C, Li J, Wang D, Li W. Realizing lamellar nanophase separation in a double-cable conjugated polymer via a solvent annealing process. Polym Chem 2019. [DOI: 10.1039/c9py00765b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A double-cable conjugated polymer based on crystalline polythiophene backbone and perylene bisimide side units was developed to realize ordered lamellar structures via solvent annealing process.
Collapse
Affiliation(s)
- Shijie Liang
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing 100044
- P. R. China
| | - Yunhua Xu
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing 100044
- P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Junyu Li
- DSM DMSC R&D Solutions
- 6160 MD Geleen
- The Netherlands
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Weiwei Li
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
- Beijing National Laboratory for Molecular Sciences
| |
Collapse
|
24
|
Xia D, Li C, Li W. Crystalline Conjugated Polymers for Organic Solar Cells: From Donor, Acceptor to Single‐Component. CHEM REC 2018; 19:962-972. [DOI: 10.1002/tcr.201800131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/02/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Dongdong Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Weiwei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
25
|
Guo Y, Liu Y, Zhu Q, Li C, Jin Y, Puttisong Y, Chen W, Liu F, Zhang F, Ma W, Li W. Effect of Side Groups on the Photovoltaic Performance Based on Porphyrin-Perylene Bisimide Electron Acceptors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32454-32461. [PMID: 30168315 DOI: 10.1021/acsami.8b10955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we developed four porphyrin-based small molecular electron acceptors for non-fullerene organic solar cells, in which different side groups attached to the porphyrin core were selected in order to achieve optimized performance. The molecules contain porphyrin as the core, perylene bisimides as end groups, and the ethynyl unit as the linker. Four side groups, from 2,6-di(dodecyloxy)phenyl to (2-ethylhexyl)thiophen-2-yl, pentadecan-7-yl, and 3,5-di(dodecyloxy)phenyl unit, were applied into the electron acceptors. The new molecules exhibit broad absorption spectra from 300 to 900 nm and high molar extinction coefficients. The molecules as electron acceptors were applied into organic solar cells, showing increased power conversion efficiencies from 1.84 to 5.34%. We employed several techniques, including photoluminescence spectra, electroluminescence spectra, atomic force microscopy, and grazing-incidence wide-angle X-ray to probe the blends to find the effects of the side groups on the photovoltaic properties. We found that the electron acceptors with 2,6-di(dodecyloxy)phenyl units show high-lying frontier energy levels, good crystalline properties, and low nonradiative recombination loss, resulting in possible large phase separation and low energy loss, which is responsible for the low performance. Our results provide a detailed study about the side groups of non-fullerene materials, demonstrating that porphyrin can be used to design electron acceptors toward near-infrared absorption.
Collapse
Affiliation(s)
- Yiting Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 10090 , China
- University of Chinese Academy of Sciences , Beijing 10049 , People's Republic of China
| | - Yanfeng Liu
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Qinglian Zhu
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 10090 , China
| | - Yingzhi Jin
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Yuttapoom Puttisong
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Weimin Chen
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Feng Liu
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , People's Republic of China
| | - Fengling Zhang
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Weiwei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 10090 , China
| |
Collapse
|
26
|
Li W, Yan D, Liu F, Russell T, Zhan C, Yao J. High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9320-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Meena S, Mohammad T, Dutta V, Jacob J. Design and synthesis of N-substituted perylene diimide based low band gap polymers for organic solar cell applications. RSC Adv 2018; 8:30468-30480. [PMID: 35546835 PMCID: PMC9085418 DOI: 10.1039/c8ra05232h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, we report on the synthesis and device studies of a series of new copolymers containing N-substituted perylene dimide and dioctylfluorene units as part of the main backbone. A facile synthetic approach avoiding non-selective bromination was used to synthesize the monomer M1 by the reaction of perylene-3,4,9,10-tetracarboxylic dianhydride with 2-amino-7-bromo-9,9-dioctylfluorene. The copolymers P1 and P2 were synthesized by Suzuki polycondensation of M1 with 2,2′-(9,9-dioctyl-9H-fluoren-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) M2 and 9-(heptadecan-9-yl)-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole M3, respectively. The copolymer P3 was synthesized by direct arylation polymerization of M1 with 4,7-bis(4-octylthiophen-2-yl)benzo[c]-1,2,5-thiadiazole M4. All the copolymers showed thermal stability greater than 380 °C as evidenced from thermogravimetric analysis. The copolymers exhibited a narrow optical band gap (1.80–2.08 eV) with their UV-visible absorption spectra extending up to the NIR region and they are found to be suitable for use in OSC applications. The molecular weights of the polymers P1–P3 were found to be in the range of 10.68 to 16.02 kg mol−1 as measured from GPC analysis. The surface morphology of the active layers based on P1/P2/P3:P3HT blend films was investigated by AFM and the rms values from height images range from 0.65 to 2.90 nm. The polymers were blended with P3HT to fabricate BHJ solar cells in three different weight ratios i.e. 1 : 1, 1.5 : 1 and 2 : 1 and the best power conversion efficiency was observed for the binary film of P3:P3HT blend device in a 1 : 1 weight ratio which reached up to 1.96% with a Voc of 0.55 V, Jsc of 10.12 mA cm−2 and FF of 34.63% which is among the highest reported for BHJ solar cells with N-substituted PDI based acceptors. Newly designed N-substituted perylene diimide based acceptor copolymers have been characterized and tested for organic solar cells with P3HT in different weight ratios.![]()
Collapse
Affiliation(s)
- Savita Meena
- Department of Materials Science and Engineering
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| | - Tauheed Mohammad
- Photovoltaic Laboratory
- Centre for Energy Studies
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| | - Viresh Dutta
- Photovoltaic Laboratory
- Centre for Energy Studies
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| | - Josemon Jacob
- Department of Materials Science and Engineering
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| |
Collapse
|