1
|
Hussain S, Kunthom R, Liu H. Hybrid Dendrimer Network based on Silsesquioxane and Glycidyl Methacrylate for Enhanced Adsorption of Iodine and Dyes in Environmental Remediation. Chem Asian J 2024; 19:e202400584. [PMID: 39031799 DOI: 10.1002/asia.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/22/2024]
Abstract
A novel hybrid network was synthesized in two steps: the first step involved the attachment of glycidyl methacrylate (GMA) to octa(aminophenyl) silsesquioxane (OAPS) through a ring-opening reaction, forming a hybrid dendrimer structure, and the second step involved the cross-linking of hybrid dendrimer using an azobisisobutyronitrile initiator to create the final hybrid network of OAPS-GMA. The synthesized hybrid material was comprehensively characterized using fourier transform infrared Spectroscopy (FTIR), nuclear magnetic resonance ((1H, 13C, and 29Si NMR) spectroscopy, thermogravimetric Analysis (TGA), and scanning electron microscopy (SEM). The BET surface area was found to be 25.44 m2/g, and significant 2.341 cm3/g of total pore volume was observed. The TGA analysis shows that the material is highly stable up to 450 °C. The synthesized network demonstrated remarkable adsorption capacities for iodine and dyes. It exhibited an iodine adsorption capacity of 3.4 g/g from vapors and 874 mg/g from solution. Additionally, it showed significant adsorption capacities for Rhodamine B and Congo red, with values of 762 mg/g and 517 mg/g, respectively. This study not only provides a novel method for preparing GMA-functionalized silsesquioxane-based porous hybrid polymers but also contributes to advancing solutions for environmental pollution issues.
Collapse
Affiliation(s)
- Saddam Hussain
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Rungthip Kunthom
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Hongzhi Liu
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Mandal W, Fajal S, Majumder D, Sengupta A, Let S, Urkude RR, Shirolkar MM, Torris A, Ghosh SK. A nanotrap infused ultrathin hybrid composite material for rapid and highly selective entrapment of 99TcO 4. Chem Sci 2024:d4sc04010d. [PMID: 39430929 PMCID: PMC11485004 DOI: 10.1039/d4sc04010d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
99Tc is one of the potentially toxic radioactive substances owing to its long half-life and a high degree of environmental mobility. Hence, the sequestration of 99Tc from radioactive waste has become enormously important and a contemporary research priority. However, selective extraction of this species in its stable oxoanionic form (99TcO4 -) is very challenging on account of bottlenecks such as low charge density, less hydrophilic nature, etc. Herein, an ultrathin hybrid composite material has been strategically designed and fabricated by covalent anchoring of a chemically stable amino functionalized nanosized cationic metal-organic polyhedron with a positively charged robust ionic covalent organic framework. The resulting thin-layer-based hybrid composite presented multiple exfoliated exposed interactive sites, including a Zr(iv)-secondary building unit, amine and triaminoguanidine functional groups, which can selectively interact with TcO4 - oxoanions through a synergistic combination of electrostatic, H-bonding and various other supramolecular interactions. Thus synthesized function-tailored composite, by virtue of its multiple unique characteristics, manifested an ultrafast and very selective, high distribution coefficient (∼106 mL g-1), as well as recyclable entrapment of TcO4 - oxoanions from the complex mixture of superfluous (∼5000-fold) other interfering anions in both high and ultra-trace concentrations along with simulated nuclear waste and from different water systems. Dynamic flow-through experiments were conducted with the membrane of the hybrid material in simulated wastewater, which reduced the concentration of ReO4 - (surrogate of radioactive TcO4 -) to below the WHO permissible level with rapid sequestration kinetics and excellent selectivity over excessive competing anions.
Collapse
Affiliation(s)
- Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Dipanjan Majumder
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Mumbai 400094 India
| | - Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Rajashri R Urkude
- Beamline Development and Application Section Bhabha Atomic Research Centre Mumbai 400085 India
| | - Mandar M Shirolkar
- Advanced Bio-Agro Tech Pvt. Ltd Baner Pune 411045 India
- Norel Nutrient Bio-Agro Tech Pvt. Ltd Baner 411045 India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune 411008 India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
- Centre for Water Research (CWR), Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhabha Road, Pashan Pune 411 008 India
| |
Collapse
|
3
|
He M, Chen Y, Chen G, Li W, Zhang M, Zhang C, Zhang H, Long X, Tang K, Duan T, Zhu L. Efficient removal of perrhenate/pertechnetate by a pyridinium-based porous polymer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124442. [PMID: 38944180 DOI: 10.1016/j.envpol.2024.124442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The extraction of 99TcO4- from radioactive effluents is extremely crucial for the purposes of nuclear disposal and environmental remediation. Herein, utilizing a facile and low-cost synthesis method, we report a pyridinium-based cationic polymer network, CPP-Cl, with impressive adsorption performance and ultrafast adsorption kinetics towards ReO4-. The structure featuring highly density of charged pyridinium units was synthesized, making it an effective adsorbent for capturing ReO4-. The material showed fast ReO4- adsorption kinetics reaching adsorption equilibrium within 30 s, an excellent capture capability of 1069.7 mg/g, and exceptional separation efficiency of 94.3% for removing 1000 ppm ReO4-. Furthermore, it possessed excellent reusability in multiple sorption/desorption trials and good uptake capacity within a widely ranging pH values. It is noteworthy that the extraction efficiency of CPP-Cl for ReO4- from simulated nuclear waste can be up to 94.2%. The favorable performance of the material in multiple tests revealed that CPP-Cl has tremendous potential as a high-efficiency sorbent for capturing 99TcO4-/ReO4- in complex nuclear associated environmental systems.
Collapse
Affiliation(s)
- Miaomiao He
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yuxuan Chen
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Guangyuan Chen
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenhao Li
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Chao Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Hao Zhang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xingyi Long
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kui Tang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
4
|
Wang Z, Cao Y, Li W, Liu R, Wu L, Zhao Q, Liu Y, Tang K, Jiang Y, Chen Z, Li X, Zhu L, Duan T. Natural Products of Licorice for Uranium Decorporation with Low Toxicity and High Efficiency. Inorg Chem 2024; 63:13653-13663. [PMID: 38967129 DOI: 10.1021/acs.inorgchem.4c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The development and exploration of uranium decorporation agents with straightforward synthesis, high removal ability, and low toxicity are crucial guarantees for the safety of workers in the nuclear industry and the public. Herein, we report the use of traditional Chinese medicine licorice for uranium decorporation. Licorice has good adsorption performance and excellent selectivity for uranium in the simulated human environment. Glycyrrhizic acid (GL) has a high affinity for uranium (p(UO2) = 13.67) and will complex with uranium at the carbonyl site. Both licorice and GL exhibit lower cytotoxicity compared to the commercial clinical decorporation agent diethylenetriamine pentaacetate sodium salts (CaNa3-DTPA). Notably, at the cellular level, the uranium removal efficiency of GL is eight times higher than that of CaNa3-DTPA. Administration of GL by prophylactic intraperitoneal injection demonstrates that its uranium removal efficiency from kidneys and bones is 55.2 and 23.9%, while CaNa3-DTPA shows an insignificant effect. The density functional theory calculation of the bonding energy between GL and uranium demonstrates that GL exhibits a higher binding affinity (-2.01 vs -1.15 eV) to uranium compared to DTPA. These findings support the potential of licorice and its active ingredient, GL, as promising candidates for uranium decorporation agents.
Collapse
Affiliation(s)
- Zeru Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Yalan Cao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Wenhao Li
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruixi Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Linzhen Wu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qian Zhao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yawen Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Kui Tang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Yao Jiang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhengguo Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| |
Collapse
|
5
|
Xiao C, Tian J, Jiang F, Yuan D, Chen Q, Hong M. Optimizing Iodine Enrichment through Induced-Fit Transformations in a Flexible Ag(I)-Organic Framework: From Accelerated Adsorption Kinetics to Record-High Storage Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311181. [PMID: 38361209 DOI: 10.1002/smll.202311181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Efficient capture and storage of radioactive I2 is a prerequisite for developing nuclear power but remains a challenge. Here, two flexible Ag-MOFs (FJI-H39 and 40) with similar active sites but different pore sizes and flexibility are prepared; both of them can capture I2 with excellent removal efficiencies and high adsorption capacities. Due to the more flexible pores, FJI-H39 not only possesses the record-high I2 storage density among all the reported MOFs but also displays a very fast adsorption kinetic (124 times faster than FJI-H40), while their desorption kinetics are comparable. Mechanistic studies show that FJI-H39 can undergo induced-fit transformations continuously (first contraction then expansion), making the adsorbed iodine species enrich near the Ag(I) nodes quickly and orderly, from discrete I- anion to the dense packing of various iodine species, achieving the very fast adsorption kinetic and the record-high storage density simultaneously. However, no significant structural transformations caused by the adsorbed iodine are observed in FJI-H40. In addition, FJI-H39 has excellent stability/recyclability/obtainability, making it a practical adsorbent for radioactive I2. This work provides a useful method for synthesizing practical radioactive I2 adsorbents.
Collapse
Affiliation(s)
- Cao Xiao
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jindou Tian
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
6
|
Meng C, Du M, Zhang Z, Liu Q, Yan C, Li Z, Dong Z, Luo J, Ma J, Liu Y, Wang X. Open-Framework Vanadate as Efficient Ion Exchanger for Uranyl Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9456-9465. [PMID: 38745405 DOI: 10.1021/acs.est.4c03703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The elimination of uranium from radioactive wastewater is crucial for the safe management and operation of environmental remediation. Here, we present a layered vanadate with high acid/base stability, [Me2NH2]V3O7, as an excellent ion exchanger capturing uranyl from highly complex aqueous solutions. The material possesses an indirect band gap, ferromagnetic characteristic and a flower-like morphology comprising parallel nanosheets. The layered structure of [Me2NH2]V3O7 is predominantly upheld by the H-bond interaction between anionic framework [V3O7]nn- and intercalated [Me2NH2]+. The [Me2NH2]+ within [Me2NH2]V3O7 can be readily exchanged with UO22+. [Me2NH2]V3O7 exhibits high exchange capacity (qm = 176.19 mg/g), fast kinetics (within 15 min), high removal efficiencies (>99%), and good selectivity against an excess of interfering ions. It also displays activity for UO22+ ion exchange over a wide pH range (2.00-7.12). More importantly, [Me2NH2]V3O7 has the capability to effectively remove low-concentration uranium, yielding a residual U concentration of 13 ppb, which falls below the EPA-defined acceptable limit of 30 ppb in typical drinking water. [Me2NH2]V3O7 can also efficiently separate UO22+ from Cs+ or Sr2+ achieving the highest separation factors (SFU/Cs of 589 and SFU/Sr of 227) to date. The BOMD and DFT calculations reveal that the driving force of ion exchange is dominated by the interaction between UO22+ and [V3O7]nn-, whereas the ion exchange rate is influenced by the mobility of UO22+ and [Me2NH2]+. Our experimental findings indicate that [Me2NH2]V3O7 can be considered as a promising uranium scavenger for environmental remediation. Additionally, the simulation results provide valuable mechanistic interpretations for ion exchange and serve as a reference for designing novel ion exchangers.
Collapse
Affiliation(s)
- Cheng Meng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Mingyang Du
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Qian Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Chunpei Yan
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Zifan Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Jianqiang Luo
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Jianguo Ma
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
7
|
Yang X, Fang D, Wang S, Tian Z, Xu L, Liu J, Zhang A, Xiao C. Epimerization effects on coordination behaviours of phenanthroline-based phosphine-oxide ligands with uranyl ions. Chem Commun (Camb) 2024; 60:5042-5045. [PMID: 38634237 DOI: 10.1039/d4cc00258j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Epimers of the (1,10-phenanthroline-2,9-diyl)bis(ethyl(phenyl)phosphine oxide) (Et-Ph-BPPhen) ligand with two chiral centers (R,R/S,S and R,S) were synthesized. The configurational effects on the coordination ability and mechanism between these epimeric ligands and uranyl ions were thoroughly investigated. This work is helpful to reveal the effects of different conformations of epimeric ligands on their coordination properties.
Collapse
Affiliation(s)
- Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Dong Fang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Zhenjiang Tian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Anyun Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
8
|
Wang Y, Zhang Q, Li K, Wang C, Fang D, Han W, Lu M, Ye X, Zhang H, Liu H, Tan X, Wu Z. Efficient Selective Adsorption of Rubidium and Cesium from Practical Brine Using a Metal-Organic Framework-Based Magnetic Adsorbent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9688-9701. [PMID: 38654502 DOI: 10.1021/acs.langmuir.4c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Rubidium (Rb) and cesium (Cs) have important applications in highly technical fields. Salt lakes contain huge reserves of Rb and Cs with industrial significance, which can be utilized after extraction. In this study, a composite magnetic adsorbent (Fe3O4@ZIF-8@AMP, AMP = ammonium phosphomolybdate) was prepared and its adsorption properties for Rb+ and Cs+ were studied in simulated and practical brine. The structure of the adsorbent was characterized by SEM, XRD, N2 adsorption-desorption, FT-IR, and vibrating sample magnetometer (VSM). The adsorbent had good adsorption affinity for Rb+ and Cs+. The Langmuir model and pseudo-second-order dynamics described the adsorbing isotherm and kinetic dates, respectively. The adsorption capacity and adsorption rate of Fe3O4@ZIF-8@AMP were increased by 1.86- and 2.5-fold compared with those of powdered crystal AMP, owing to the large specific surface area and high dispersibility of the adsorbent in the solution. The adsorbent was rapidly separated from the solution within 17 s using an applied magnetic field owing to the good magnetic properties. The composite adsorbent selectively adsorbed Rb+ and Cs+ from the practical brine even in the presence of a large number of coexisting ions. The promising adsorbent can be used to extract Rb+ and Cs+ from aqueous solutions.
Collapse
Affiliation(s)
- Yanping Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiongyuan Zhang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kexin Li
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
| | - Chunyan Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
| | - Dezhen Fang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenjie Han
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
| | - Miao Lu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiushen Ye
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
| | - Huifang Zhang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
| | - Haining Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
| | - Xiaoli Tan
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhijian Wu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, Qinghai 810008, PR China
| |
Collapse
|
9
|
Rahide F, Palanisamy K, Flowers JK, Hao J, Stein HS, Kranz C, Ehrenberg H, Dsoke S. Modification of Al Surface via Acidic Treatment and its Impact on Plating and Stripping. CHEMSUSCHEM 2024; 17:e202301142. [PMID: 37870540 DOI: 10.1002/cssc.202301142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Amorphous Al2 O3 film that naturally exists on any Al substrate is a critical bottleneck for the cyclic performance of metallic Al in rechargeable Al batteries. The so-called electron/ion insulator Al oxide slows down the anode's activation and hinders Al plating/stripping. The Al2 O3 film induces different surface properties (roughness and microstructure) on the metal. Al foils present two optically different sides (shiny and non-shiny), but their surface properties and influence on plating and stripping have not been studied so far. Compared to the shiny side, the non-shiny one has a higher (~28 %) surface roughness, and its greater concentration of active sites (for Al plating and stripping) yields higher current densities. Immersion pretreatments in Ionic-Liquid/AlCl3 -based electrolyte with various durations modify the surface properties of each side, forming an electrode-electrolyte interphase layer rich in Al, Cl, and N. The created interphase layer provides more tunneling paths for better Al diffusion upon plating and stripping. After 500 cycles, dendritic Al deposition, generated active sites, and the continuous removal of the Al metal and oxide cause accelerated local corrosion and electrode pulverization. We highlight the mechanical surface properties of cycled Al foil, considering the role of immersion pretreatment and the differences between the two sides.
Collapse
Affiliation(s)
- Fatemehsadat Rahide
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Krishnaveni Palanisamy
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jackson K Flowers
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131, Karlsruhe, Germany
- Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, 89081, Ulm, Germany
| | - Junjie Hao
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Helge S Stein
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131, Karlsruhe, Germany
- Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, 89081, Ulm, Germany
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Helmut Ehrenberg
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, 89081, Ulm, Germany
| | - Sonia Dsoke
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110, Freiburg, Germany
- Department of Sustainable Systems Engineering (INATECH), University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
10
|
Islam AS, Pramanik S, Mondal S, Ghosh R, Ghosh P. Selective recognition and extraction of iodide from pure water by a tripodal selenoimidazol(ium)-based chalcogen bonding receptor. iScience 2024; 27:108917. [PMID: 38327780 PMCID: PMC10847689 DOI: 10.1016/j.isci.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
A selenium-based tripodal chalcogen bond (ChB) donor TPI-3Se is demonstrated for the recognition and extraction of I- from 100% water medium. NMR and ITC studies with the halides reveal that the ChB donor selectively binds with the large, weakly hydrated I-. Interestingly, I- crystallizes out selectively in the presence of other halides supporting the superiority of the selective recognition of I-. The X-ray structure of the ChB-iodide complex manifests both the μ1 and μ2 coordinated interactions, which is rare in the C-Se···I chalcogen bonding. Furthermore, to validate the selective I- binding potency of TPI-3Se in pure water, comparisons are made with its hydrogen and halogen bond donor analogs. The computational analysis also provides the mode of I- recognition by TPI-3Se. Importantly, this receptor is capable of extracting I- from pure water through selenium sigma-hole and I- interaction with a high degree of efficiency (∼70%).
Collapse
Affiliation(s)
- Abu S.M. Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sourav Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Rajib Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
11
|
Zhang QY, Zhang LJ, Zhu JQ, Gong LL, Huang ZC, Gao F, Wang JQ, Xie XQ, Luo F. Ultra-selective uranium separation by in-situ formation of π-f conjugated 2D uranium-organic framework. Nat Commun 2024; 15:453. [PMID: 38212316 PMCID: PMC10784586 DOI: 10.1038/s41467-023-44663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
With the rapid development of nuclear energy, problems with uranium supply chain and nuclear waste accumulation have motivated researchers to improve uranium separation methods. Here we show a paradigm for such goal based on the in-situ formation of π-f conjugated two-dimensional uranium-organic framework. After screening five π-conjugated organic ligands, we find that 1,3,5-triformylphloroglucinol would be the best one to construct uranium-organic framework, thus resulting in 100% uranium removal from both high and low concentration with the residual concentration far below the WHO drinking water standard (15 ppb), and 97% uranium capture from natural seawater (3.3 ppb) with a record uptake efficiency of 0.64 mg·g-1·d-1. We also find that 1,3,5-triformylphloroglucinol can overcome the ion-interference issue such as the presence of massive interference ions or a 21-ions mixed solution. Our finds confirm the superiority of our separation approach over established ones, and will provide a fundamental molecule design for separation upon metal-organic framework chemistry.
Collapse
Affiliation(s)
- Qing Yun Zhang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Lin Juan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jian Qiu Zhu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Le Le Gong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| | - Zhe Cheng Huang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Feng Gao
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Jian Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xian Qing Xie
- National Engineering Research Center for Carbonhydrate Synthesis, Jiangxi Normal University, Nanchang, 330027, China
| | - Feng Luo
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
12
|
Feng L, Chen X, Cao M, Zhao S, Wang H, Chen D, Ma Y, Liu T, Wang N, Yuan Y. Decorating Channel Walls in Metal-Organic Frameworks with Crown Ethers for Efficient and Selective Separation of Radioactive Strontium(II). Angew Chem Int Ed Engl 2023; 62:e202312894. [PMID: 37743666 DOI: 10.1002/anie.202312894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Nuclear accidents and the improper disposal of nuclear wastes have led to serious environmental radioactive pollutions. The rational design of adsorbents for the highly efficient separation of strontium(II) is essential in treating nuclear waste and recovering radioactive strontium resources. Metal-organic frameworks (MOFs) are potential materials for the separation of aqueous metal ions owing to their designable structure and tunable functionality. Herein, a novel 3D MOF material MOF-18Cr6, in which 1D channels are formed using 18-crown-6-ether-containing ligands as channel walls, is fabricated for strontium(II) separation. In contrast to traditional MOFs designed by grafting functional groups in the framework pores, MOF-18Cr6 possesses regular 18-crown-6-ether cavities on the channel walls, which not only can transport and intake strontium(II) via the channels, but also prevent blockage of the channels after the binding of strontium(II). Consequently, the functional sites are fully utilized to achieve a high strontium(II) removal rate of 99.73 % in simulated nuclear wastewater. This study fabricates a highly promising adsorbent for the separation of aqueous radioactive strontium(II), and more importantly, can provide a new strategy for the rational design of high-performance MOF adsorbents for separating target substances from complex aqueous environments.
Collapse
Affiliation(s)
- Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Xuran Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Meng Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Shilei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Dan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Yue Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| |
Collapse
|
13
|
Ahmed B, Ahmad Z, Khatoon A, Khan I, Shaheen N, Malik AA, Hussain Z, Khan MA. Recent developments and challenges in uranium extraction from seawater through amidoxime-functionalized adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103496-103512. [PMID: 37704807 DOI: 10.1007/s11356-023-29589-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
As per statistical estimations, we have only around 100 years of uranium life in terrestrial ores. In contrast, seawater has viable uranium resources that can secure the future of energy. However, to achieve this, environmental challenges need to be overcome, such as low uranium concentration (3.3 ppb), fouling of adsorbents, uranium speciation, oceanic temperature, and competition between elements for the active site of adsorbent (such as vanadium which has a significant influence on uranium adsorption). Furthermore, the deployability of adsorbent under seawater conditions is a gigantic challenge; hence, leaching-resistant stable adsorbents with good reusability and high elution rates are extremely needed. Powdered (nanostructured) adsorbents available today have limitations in fulfilling these requirements. An increase in the grafting density of functional ligands keeping in view economic sustainability is also a major obstacle but a necessity for high uranium uptake. To cope with these challenges, researchers reported hundreds of adsorbents of different kinds, but amidoxime-based polymeric adsorbents have shown some remarkable advantages and are considered the benchmark in uranium extraction history; they have a high affinity for uranium because of electron donors in their structure, and their amphoteric nature is responsible for effective uranium chelation under a wide range of pH. In this review, we have mainly focused on recent developments in uranium extraction from seawater through amidoxime-based adsorbents, their comparative analysis, and problematic factors that are needed to be considered for future research.
Collapse
Affiliation(s)
- Bilal Ahmed
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Zia Ahmad
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Amina Khatoon
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Iqra Khan
- Department of Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Nusrat Shaheen
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Attiya Abdul Malik
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Ali Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Pakistan.
| |
Collapse
|
14
|
Hayat A, Sohail M, Moussa SB, Al-Muhanna MK, Iqbal W, Ajmal Z, Raza S, Al-Hadeethi Y, Orooji Y. State, synthesis, perspective applications, and challenges of Graphdiyne and its analogues: A review of recent research. Adv Colloid Interface Sci 2023; 319:102969. [PMID: 37598456 DOI: 10.1016/j.cis.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Carbon materials technology provides the possibility of synthesizing low-cost, outstanding performance replacements to noble-metal catalysts for long-term use. Graphdiyne (GDY) is a carbon allotrope with an extremely thin atomic thickness. It consists of carbon elements, that are hybridized with both sp. and sp2, resulting in a multilayered two-dimensional (2D) configuration. Several functional models suggest, that GDY contains spontaneously existing band structure with Dirac poles. This is due to the non-uniform interaction among carbon atoms, which results from various fusions and overlapping of the 2pz subshell. Unlike other carbon allotropes, GDY has Dirac cone arrangements, that in turn give it inimitable physiochemical characteristics. These properties include an adjustable intrinsic energy gap, high speeds charging transport modulation efficiency, and exceptional conductance. Many scientists are interested in such novel, linear, stacked materials, including GDY. As a result, organized synthesis of GDY has been pursued, making it one of the first synthesized GDY materials. There are several methods to manipulate the band structure of GDY, including applying stresses, introducing boron/nitrogen loading, utilizing nanowires, and hydrogenations. The flexibility of GDY can be effectively demonstrated through the formation of nano walls, nanostructures, nanotube patterns, nanorods, or structured striped clusters. GDY, being a carbon material, has a wide range of applications owing to its remarkable structural and electrical characteristics. According to subsequent research, the GDY can be utilized in numerous energy generation processes, such as electrochemical water splitting (ECWS), photoelectrochemical water splitting (PEC WS), nitrogen reduction reaction (NRR), overall water splitting (OWS), oxygen reduction reaction (ORR), energy storage materials, lithium-Ion batteries (LiBs) and solar cell applications. These studies suggested that the use of GDY holds significant potential for the development and implementation of efficient, multimodal, and intelligent catalysts with realistic applications. However, the limitation of GDY and GDY-based composites for forthcoming studies are similarly acknowledged. The objective of these studies is to deliver a comprehensive knowledge of GDY and inspire further advancement and utilization of these unique carbon materials.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Sana Ben Moussa
- Faculty of Science and Arts, Mohail Asser, King Khalid University, Saudi Arabia
| | - Muhanna K Al-Muhanna
- The Material Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Zeeshan Ajmal
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Saleem Raza
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
15
|
Ibrahim MIM, Awad EAM, Dahdouh SMM, El-Etr WMT, Marey SA, Hatamleh AA, Mahmood M, Elrys AS. Exploring the Influence of Chemical Conditions on Nanoparticle Graphene Oxide Adsorption onto Clay Minerals. Molecules 2023; 28:6162. [PMID: 37630414 PMCID: PMC10458753 DOI: 10.3390/molecules28166162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
High concentrations of graphene oxide (GO), a nanoparticle substance with rapid manufacturing development, have the ability to penetrate the soil surface down to the mineral-rich subsurface layers. The destiny and distribution of such an unusual sort of nanomaterial in the environment must therefore be fully understood. However, the way the chemistry of solutions impacts GO nanoparticle adsorption on clay minerals is still unclear. Here, the adsorption of GO on clay minerals (e.g., bentonite and kaolinite) was tested under various chemical conditions (e.g., GO concentration, soil pH, and cation valence). Non-linear Langmuir and Freundlich models have been applied to describe the adsorption isotherm by comparing the amount of adsorbed GO nanoparticle to the concentration at the equilibrium of the solution. Our results showed fondness for GO in bentonite and kaolinite under similar conditions, but the GO nanoparticle adsorption with bentonite was superior to kaolinite, mainly due to its higher surface area and surface charge. We also found that increasing the ionic strength and decreasing the pH increased the adsorption of GO nanoparticles to bentonite and kaolinite, mainly due to the interaction between these clay minerals and GO nanoparticles' surface oxygen functional groups. Experimental data fit well to the non-linear pseudo-second-order kinetic model of Freundlich. The model of the Freundlich isotherm was more fitting at a lower pH and higher ionic strength in the bentonite soil while the lowest R2 value of the Freundlich model was recorded at a higher pH and lower ionic strength in the kaolinite soil. These results improve our understanding of GO behavior in soils by revealing environmental factors influencing GO nanoparticle movement and transmission towards groundwater.
Collapse
Affiliation(s)
- Marwa I. M. Ibrahim
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Department of Soil Physics and Chemistry, Soil, Water and Environment Research Institute (SWERI), The Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Elsayed A. M. Awad
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Salah M. M. Dahdouh
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Wafaa M. T. El-Etr
- Department of Soil Physics and Chemistry, Soil, Water and Environment Research Institute (SWERI), The Agricultural Research Center (ARC), Giza 12619, Egypt
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohsin Mahmood
- Center for Eco-Environment Restoration Engineering of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, 35390 Giessen, Germany
| |
Collapse
|
16
|
Wang N, Zhang M, Dong Z, Peng L, Zhai M, Zhao L. Ultrafast removal of ReO4−/TcO4− by radiation-induced grafting of imidazole ionic liquid on alkylated nano-silica microspheres. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
17
|
Wang Y, Huang M, Yu H, Cui J, Gao J, Lou Z, Feng X, Shan W, Xiong Y. CTAB assisted evaporation-induced self-assembly to construct imidazolium-based hierarchical porous covalent organic polymers for ReO 4-/TcO 4- removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131611. [PMID: 37187123 DOI: 10.1016/j.jhazmat.2023.131611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Evaporation-induced self-assembly method (EISA) was a facile and reliable method to synthesize porous materials. Herein, we report a kind of hierarchical porous ionic liquid covalent organic polymers (HPnDNH2) under cetyltrimethylammonium bromide (CTAB) assisted by EISA for ReO4-/TcO4- removal. Unlike covalent organic frameworks (COFs), which usually needed to be prepared in a closed environment or with a long reaction time, HPnDNH2 in this study was prepared within 1 h in an open environment. It was worth noting that CTAB not only served as a soft template for forming pore, but also induced ordered structure, which was verified by SEM, TEM, and Gas sorption. Benefit from its hierarchical pore structure, HPnDNH2 exhibited higher adsorption capacity (690.0 mg g-1 for HP1DNH2 and 808.7 mg g-1 for HP1.5DNH2) and faster kinetics for ReO4-/TcO4- than 1DNH2 (without employing CTAB). Additionally, the material used to remove TcO4- from alkaline nuclear waste was seldom reported, because combining features of alkali resistance and high uptake selectivity was not easy to achieve. In this study, in the case of HP1DNH2, it displayed outstanding adsorption efficiency toward aqueous ReO4-/TcO4- in 1 mol L-1 NaOH solution (92%) and simulated Savannah River Site High-level waste (SRS HLW) melter recycle stream (98%), which could be a potentially excellent nuclear waste adsorbing material.
Collapse
Affiliation(s)
- Yuejiao Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Mengnan Huang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Haibiao Yu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Junshuo Cui
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jing Gao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhenning Lou
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaogeng Feng
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Weijun Shan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Ying Xiong
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
18
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023; 483:215097. [DOI: doi.org/10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
19
|
Xu W, Wang X, Li Y, Cui WR. Ultra-stable 3D pyridinium salt-based polymeric network nanotrap for selective 99TcO 4-/ReO 4- capture via hydrophobic and steric engineering. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131549. [PMID: 37163896 DOI: 10.1016/j.jhazmat.2023.131549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Selective capture of radioactive 99TcO4- from highly alkaline nuclear waste is highly desirable for environmental remediation and waste disposal. However, the combined features of adsorbents with excellent chemical stability and high capture selectivity for 99TcO4- have not yet been achieved. Herein, we report an ultra-stable 3D pyridinium salt-based polymeric network (TMP-TBPM) nanotrap with remarkable radiation, acid and base stability for selective capture of ReO4- via hydrophobic engineering and steric hindrance, a non-radioactive surrogate of 99TcO4-. The batch capture experiments show that TMP-TBPM has high capture capacity (918.7 mg g-1) and fast sorption kinetics (94.3 % removal in 2 min), which can be attributed to the high density of pyridinium salt-based units on the highly accessible pore channels of 3D interconnected low-density skeleton. In addition, the introduction of abundant alkyl and tetraphenylmethane units into the 3D framework not only greatly enhanced the hydrophobicity and stability of TMP-TBPM, but also significantly improved the affinity toward 99TcO4-/ReO4-, enabling reversible and selective capture of 99TcO4-/ReO4- even under highly alkaline conditions. This study exhibits the great potential of 3D pyridinium salt-based polymeric network nanotrap for 99TcO4-/ReO4- capture from highly alkaline nuclear waste, providing a new strategy to construct high-performance cationic polymeric sorbents for radioactive wastewater treatment.
Collapse
Affiliation(s)
- Wei Xu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Xiu Wang
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Wei-Rong Cui
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| |
Collapse
|
20
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
21
|
Dong S, Zhan Y, Xia Y, Zhang Q, Gong L, Zhang L, Luo F. Direct Separation of UO 2 2+ by Coordination Sieve Effect via Spherical Coordination Traps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301001. [PMID: 36949523 DOI: 10.1002/smll.202301001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Molecule sieve effect (MSE) can enable direct separation of target, thus overcoming two major scientific and industrial separation problems in traditional separation, coadsorption, and desorption. Inspired by this, herein, the concept of coordination sieve effect (CSE) for direct separation of UO2 2+ , different from the previously established two-step separation method, adsorption plus desorption is reported. The used adsorbent, polyhedron-based hydrogen-bond framework (P-HOF-1), made from a metal-organic framework (MOF) precursor through a two-step postmodification approach, afforded high uptake capacity (close to theoretical value) towards monovalent Cs+ , divalent Sr2+ , trivalent Eu3+ , and tetravalent Th4+ ions, but completely excluded UO2 2+ ion, suggesting excellent CSE. Direct separation of UO2 2+ can be achieved from a mixed solution containing Cs+ , Sr2+ , Eu3+ , Th4+ , and UO2 2+ ions, giving >99.9% removal efficiency for Cs+ , Sr2+ , Eu3+ , and Th4+ ions, but <1.2% removal efficiency for UO2 2+ , affording benchmark reverse selectivity (SM/U ) of >83 and direct generation of high purity UO2 2+ (>99.9%). The mechanism for such direct separation via CSE, as unveiled by both single crystal X-ray diffraction and density-functional theory (DFT) calculation, is due to the spherical coordination trap in P-HOF-1 that can exactly accommodate the spherical coordination ions of Cs+ , Sr2+ , Eu3+ , and Th4+ , but excludes the planar coordination UO2 2+ ion.
Collapse
Affiliation(s)
- Shuyu Dong
- School of Chemistry, Biology, and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Yaxiong Zhan
- Jiangxi Coinfa Technology Co., Ltd., Nanchang, 330013, China
| | - Yongming Xia
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyun Zhang
- School of Chemistry, Biology, and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - LeLe Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lipeng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Luo
- School of Chemistry, Biology, and Materials Science, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
22
|
Cui WR, Xu W, Chen YR, Liu K, Qiu WB, Li Y, Qiu JD. Olefin-linked cationic covalent organic frameworks for efficient extraction of ReO 4-/ 99TcO 4. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130603. [PMID: 36580784 DOI: 10.1016/j.jhazmat.2022.130603] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Efficient extraction of radioactive 99TcO4- from strong acid/base solutions by porous adsorbents is extremely desirable but remains a great challenge. To overcome the challenge, here we report the first example of an olefin-linked cationic covalent organic framework (COF) named BDBI-TMT with excellent acid, base and radiation stability is synthesized by integrating robust imidazolium salt-based linkers with triazine building blocks. BDBI-TMT shows an ultra-fast adsorption kinetics (equilibrium is reached within 1 min) and an excellent ReO4- (a non-radioactive surrogate of 99TcO4-) capture capacity of 726 mg g-1, which can be attributed to the abundance of precisely tailored imidazolium salt-based units on the highly accessible pore walls of the ordered pore channels. Furthermore, the formation of the highly conjugated bulky alkyl skeleton enhances the hydrophobicity of BDBI-TMT, which significantly improves not only the affinity toward ReO4-/99TcO4- but also the chemical stability, allowing selective and reversible extraction of ReO4-/99TcO4- even under extreme conditions. This work demonstrates the great potential of olefin-linked cationic COFs for ReO4-/99TcO4- extraction, providing a new avenue to construct high-performance porous adsorbents for radionuclide remediation.
Collapse
Affiliation(s)
- Wei-Rong Cui
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| | - Wei Xu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yi-Ru Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Kai Liu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Wei-Bin Qiu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
23
|
Heravifard Z, Akbarzadeh AR, Tayebi L, Rahimi R. Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zahra Heravifard
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Leila Tayebi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Rahmatollah Rahimi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| |
Collapse
|
24
|
Kang K, Zhang M, Li L, Lei L, Xiao C. Selective Sequestration of Perrhenate by Cationic Polymeric Networks Based on Elongated Pyridyl Ligands. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meiyu Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
25
|
Design and synthesis of a novel bifunctional polymer with malonamide and carboxyl group for highly selective separation of uranium (VI). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Lu Y, Cai Y, Zhang S, Zhuang L, Hu B, Wang S, Chen J, Wang X. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective. BIOCHAR 2022; 4:45. [DOI: doi.org/10.1007/s42773-022-00173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/17/2022] [Indexed: 06/25/2023]
Abstract
AbstractThe fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient elimination of contaminants from aqueous solutions, photocatalytic degradation of organic pollutants or the in-situ solidification/immobilization of heavy metal ions in solid phases are the most suitable strategies to decontaminate the pollution. Biochar and biochar-based composites have attracted multidisciplinary interests especially in environmental pollution management because of their porous structures, large amounts of functional groups, high adsorption capacities and photocatalysis performance. In this review, the application of biochar and biochar-based composites as adsorbents and/or catalysts for the adsorption of different contaminants, adsorption-photodegradation of organic pollutants, and adsorption-(photo)reduction of metal ions are summarized, and the mechanism was discussed from advanced spectroscopy analysis and DFT calculation in detail. The doping of metal or metal oxides is the main strategy to narrow the band gap, to increase the generation and separation of photogenerated e−-h+ pairs, to produce more superoxide radicals (·O2−) and hydroxyl radicals (·OH), to enhance the visible light absorption and to increase photocatalysis performance, which dominate the photocatalytic degradation of organic pollutants and (photo)reduction of high valent metals to low valent metals. The biochar-based composites are environmentally friendly materials, which are promising candidates in environmental pollution cleanup. The challenge and perspective for biochar-based catalysts are provided in the end.
Graphical Abstract
Collapse
|
27
|
Xiao J, Li B, Qiang R, Qiu H, Chen J. Highly selective adsorption of rare earth elements by honeycomb-shaped covalent organic frameworks synthesized in deep eutectic solvents. ENVIRONMENTAL RESEARCH 2022; 214:113977. [PMID: 36027963 DOI: 10.1016/j.envres.2022.113977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
One of the key factors to obtain a highly pure individual rare earth element (REE) is to prepare adsorbents with high selectivity and adsorption capacity. Covalent organic frameworks (COFs), which encompass a variety of properties, including regular/tunable pore size, high specific surface area and easy functionalization, could be effective as adsorbents for separating rare earth elements (REEs). In this paper, TpPa COFs were successfully synthesized using an eco-friendly deep eutectic solvent (DES) as the reaction medium instead of toxic organic solvents at room temperature. TpPa COFs have a good separation effect on the nine REEs investigated in this work. Among them, the separation factors (β) of Eu/Yb, Eu/Tm and Eu/La are 15.34, 14.70 and 10.78, respectively, indicating that the TpPa COFs have good separation performance. Further discoveries showed that the adsorption and separation mechanism of the TpPa COFs for REEs in this experiment may be due to the coordination of REE ions with O to form a stable structure. This study blazed a trial for a green and facile synthesis strategy of TpPa COFs and expanded its implementation as a solid adsorbent in the separation of REEs.
Collapse
Affiliation(s)
- Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruibin Qiang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
A ternary mechanism for the facilitated transfer of metal ions onto metal—organic frameworks: implications for the “versatility” of these materials as solid sorbents. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Liu C, Li Y, Liu S, Zhou Y, Liu D, Fu C, Ye L. Efficient extraction of UO22+ from seawater by polyethylenimine functionalized activated carbon (PEI-AC): adsorption performance and mechanism. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Efficient removal of 110mAg nanoparticles (110mAg Nps) in nuclear wastewater by Amines-containing anionic adsorbent PP-g-GMA@EDA. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Abarbanel’ NV, Smirnova NN, Sologubov SS, Markin AV, Golodkov ON, Anokhin DV, Perepelitsina EO. Thermodynamic Properties of a Copolymer of Poly(1-hydroxyimino)trimethylene and Poly(1-hydroxyimino-3-methyl)trimethylene in the Region of T → 0 to 430 K. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422090023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Luo J, Chen J, Chen J, Ma J, Liu S, Tong X, Xiong J. Aluminum vanadate microspheres is a simple but effective material for uranium extraction: Performance and mechanism. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Li Z, Chen L, Chen Z, Chen G, Zhou J, Liu X. Study of the Effects on Mn, Pb, and Zn Solidification in Soil by a Mixed Curing Agent of Modified Diatomite. ACS OMEGA 2022; 7:25229-25238. [PMID: 35910122 PMCID: PMC9330184 DOI: 10.1021/acsomega.2c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In order to improve the application scale of diatomite in the remediation of heavy metal-contaminated soil in non-ferrous metal mining areas, the preparation of the modified diatomite-combined curing agent and its stabilizing effect on manganese (Mn), lead (Pb), and zinc (Zn) were systematically studied in non-ferrous metal tailing soil in this paper. The results showed that compared with that in natural diatomite (DE), the contents of available Mn in soil treated by acid- and alkali-modified diatomite samples (C-D and Na-D) were 18.82 and 25.93% lower, respectively, and the content of available Zn in Na-D was significantly lower, 6.71%, than that in DE. Further research showed that modified diatomite combined with quicklime (CaO) and hydroxyapatite (HAP) could significantly improve the solidification effect of soil heavy metals. Compared with that in single modified diatomite, the contents of available Mn, Pb, and Zn in the mixed curing agent-treated soil decreased by 23.59-46.32, 5.88-47.93, and 5.37-10.68%, respectively. The final pot test showed that the mixed curing agent of modified diatomite had no significant effect on the growth of plants, but it could reduce the Mn, Pb, and Zn accumulation in the upper and lower parts of plants, which is because the acid-soluble and reducible heavy metals in soil transform into an oxidizable and residual state, which reduces the mobility of heavy metals.
Collapse
Affiliation(s)
- Zhixian Li
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan 411201, China
| | - Limei Chen
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan 411201, China
| | - Zhang Chen
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan 411201, China
| | - Guoliang Chen
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan 411201, China
| | - Jianlin Zhou
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan 411201, China
| | - Xiling Liu
- School
of Resources and Safety Engineering, Central
South University, Changsha 410083, China
| |
Collapse
|
34
|
Zou YM, Ma W, Sun HY, Tang JH, Lv TT, Feng ML, Huang XY. High-capacity recovery of Cs + ions by facilely synthesized layered vanadyl oxalatophosphates with the clear insight into remediation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128869. [PMID: 35427974 DOI: 10.1016/j.jhazmat.2022.128869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Radiocesium remediation is of great significance for the sustainable development of nuclear energy and ecological protection. It is very challenging for the effective recovery of 137Cs from aqueous solutions due to its strong radioactivity, solubility and mobility. Herein, the efficient recovery of Cs+ ions has been achieved by three layered vanadyl oxalatophosphates, namely (NH4)2[(VO)2(HPO4)2C2O4]·5 H2O (NVPC), Na2[(VO)2(HPO4)2C2O4]·2 H2O (SVPC), and K2.5[(VO)2(HPO4)1.5(PO4)0.5(C2O4)]·4.5 H2O (KVPC). NVPC exhibits the ultra-fast kinetics (within 5 min) and high adsorption capacity for Cs+ (qmCs = 471.58 mg/g). It also holds broad pH durability and excellent radiation stability. Impressively, the entry of Cs+ can be directly visualized by the single-crystal structural analysis, and thus the underlying mechanism of Cs+ capture by NVPC from aqueous solutions has been illuminated at the molecular level. This is a pioneering work in the removal of radioactive ions by metal oxalatophosphate materials which highlights the great potential of metal oxalatophosphates for radionuclide remediation.
Collapse
Affiliation(s)
- Yan-Min Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, PR China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Jun-Hao Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Tian-Tian Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| |
Collapse
|
35
|
Lopes JM, Lentini CAD, Mendonça LFF, Lima ATC, Vasconcelos RN, Silva AX, Porsani MJ. Absorbed dose rate for marine biota due to the oil spilled using ICRP reference animal and Monte Carlo simulation. Appl Radiat Isot 2022; 188:110354. [PMID: 35810708 DOI: 10.1016/j.apradiso.2022.110354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
The current study aimed to obtain dose conversion coefficients for marine animals due to an oil spill accident using two variables: crude oil activity concentration and organism depth. Thorium series presented a dose contribution twice that uranium series for similar conditions. Bi-214 and Tl-208 stood out for delivering a higher dose rate for uranium and thorium series, respectively. Results obtained can be used to assess the maximum exposure time for emergency oil control, removal, and mitigation in an oil spill accident.
Collapse
Affiliation(s)
- José M Lopes
- Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, 40170-110, Salvador, Brazil.
| | - Carlos A D Lentini
- Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, 40170-110, Salvador, Brazil; Centro Interdisciplinar de Energia e Ambiente (CIEnAm), Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Geofísica, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil
| | - Luís F F Mendonça
- Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, 40170-110, Salvador, Brazil; Departamento de Oceanografia, Instituto de Geociências, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil
| | - André T C Lima
- Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil; Centro Interdisciplinar de Energia e Ambiente (CIEnAm), Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil
| | - Rodrigo N Vasconcelos
- Programa de Pós-Graduação em Modelagem em Ciências da Terra e do Ambiente (PPGM), Universidade Estadual de Feira de Santana - UEFS, 44036-900, Feira de Santana, Brazil
| | - Ademir X Silva
- Programa de Engenharia Nuclear (PEN/COPPE), Universidade Federal do Rio de Janeiro - UFRJ, 21941-914, Rio de Janeiro, Brazil
| | - Milton J Porsani
- Centro Interdisciplinar de Energia e Ambiente (CIEnAm), Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Geofísica, Universidade Federal da Bahia - UFBA, 40170-115, Salvador, Brazil
| |
Collapse
|
36
|
Liu J, Wei X, Ren S, Qi J, Cao J, Wang J, Wan Y, Liu Y, Zhao M, Wang L, Xiao T. Synergetic removal of thallium and antimony from wastewater with jacobsite-biochar-persulfate system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119196. [PMID: 35341819 DOI: 10.1016/j.envpol.2022.119196] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Both of thallium (Tl) and antimony (Sb) are toxic elements in the natural environment. Emerging Tl and Sb pollution in water has gradually gained public concerns globally. However, limited technologies are available for co-removal of Tl and Sb from wastewater. Herein, an novel system was successfully fabricated to enhance the synergetic removal of both Tl and Sb in wastewater. In this study, MnFe2O4-biochar composite (MFBC) facilely synthesized by a one-pot hydrothermal method was used as adsorbent and persulfate (PS) activator for simultaneously removing Tl and Sb from wastewater. The optimal reaction conditions for best removal efficiency of Tl and Sb simultaneously were obtained by using the response surface design combined with Box-Behnken Design (BBD) model. Results unveiled that the average removal rates of Tl and Sb can achieve 98.33% and 89.14%, respectively under the optimal reaction conditions. Electron Spin Resonance (ESR), and radical quenching experiments showed that OH• and SO4•- play a critical role in the removal of Tl-Sb compound pollution. Via using different characterization, it is revealed that the mechanism of removing Tl-Sb containing wastewater by MFBC-1.4/PS system is oxidation, adsorption, complexation and ion exchange. All these results indicate that MFBC-1.4/PS technology is prospective in highly effective removal of Tl and Sb from wastewater simultaneously.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, 510006, Guangzhou, China.
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, 510006, Guangzhou, China
| | - Shixing Ren
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, 510006, Guangzhou, China
| | - Jianying Qi
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Jielong Cao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, 510006, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, 510006, Guangzhou, China
| | - Yuebing Wan
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, 510006, Guangzhou, China
| | - Yanyi Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, 510006, Guangzhou, China
| | - Min Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Liang Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, 510006, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
37
|
Gu H, Yu J, Zhang H, Sun G, Li R, Liu P, Li Y, Wang J. Theory-Guided Design of a Method to Obtain Competitive Balance between U(VI) Adsorption and Swaying Zwitterion-Induced Fouling Resistance on Natural Hemp Fibers. Int J Mol Sci 2022; 23:6517. [PMID: 35742958 PMCID: PMC9223365 DOI: 10.3390/ijms23126517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
The competitive balance between uranium (VI) (U(VI)) adsorption and fouling resistance is of great significance in guaranteeing the full potential of U(VI) adsorbents in seawater, and it is faced with insufficient research. To fill the gap in this field, a molecular dynamics (MD) simulation was employed to explore the influence and to guide the design of mass-produced natural hemp fibers (HFs). Sulfobetaine (SB)- and carboxybetaine (CB)-type zwitterions containing soft side chains were constructed beside amidoxime (AO) groups on HFs (HFAS and HFAC) to form a hydration layer based on the terminal hydrophilic groups. The soft side chains were swayed by waves to form a hydration-layer area with fouling resistance and to simultaneously expel water molecules surrounding the AO groups. HFAS exhibited greater antifouling properties than that of HFAO and HFAC. The U(VI) adsorption capacity of HFAS was almost 10 times higher than that of HFAO, and the max mass rate of U:V was 4.3 after 35 days of immersion in marine water. This paper offers a theory-guided design of a method to the competitive balance between zwitterion-induced fouling resistance and seawater U(VI) adsorption on natural materials.
Collapse
Affiliation(s)
- Huiquan Gu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Gaohui Sun
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| |
Collapse
|
38
|
Mahmoud GA, Abdel‐Geleel M, Badway NA, Farha SAA, Alshafei EA. Characterization and adsorption properties of starch‐based nanocomposite for removal of simulated low‐level radioactive waste. STARCH-STARKE 2022. [DOI: 10.1002/star.202100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ghada A. Mahmoud
- Radiation Research of Polymer Chemistry Department (NCRRT) Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | | | - Nagwa A. Badway
- Chemistry Department Faculty of Science Al‐Azhar University Cairo Egypt
| | | | - Esraa A. Alshafei
- Chemistry Nuclear Radiological Regulatory Authority (ENRRA) Cairo Egypt
| |
Collapse
|
39
|
Overcoming structural collapse in stable zirconium phosphonate materials for strontium removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Zhou M, Li Z, Munyentwali A, Li C, Shui H, Li H. Highly conjugated two-dimensional covalent organic frameworks for efficient iodine uptake. Chem Asian J 2022; 17:e202200358. [PMID: 35607250 DOI: 10.1002/asia.202200358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Indexed: 11/09/2022]
Abstract
Radioactive iodine in nuclear waste would be harmful to nature and human health. The design of adsorbents for iodine capture with high efficiency still remains a challenge. Herein, two highly conjugated two-dimensional covalent organic frameworks (TFPB-BPTA-COF and TFPB-PyTTA-COF) have been successfully constructed. Both COFs possess high porosity, stability, and high π-conjugated framework. Impressively, TFPB-PyTTA-COF exhibits an excellent iodine uptake value up to 5.6 g g -1 , which is superior to most of reported COF-based adsorbents for iodine capture.
Collapse
Affiliation(s)
- Mingan Zhou
- Anhui University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Zhongping Li
- Yonsei University, Department of Chemical and Biomolecular Engineering, Seoul, KOREA, REPUBLIC OF
| | - Alexis Munyentwali
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Chunzhi Li
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Hengfu Shui
- Anhui University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - He Li
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, Zhongshan Road 457, 116023, Dalian, CHINA
| |
Collapse
|
41
|
Jiang H, Luo J, Liu Z, Liu S, Li F, Zuo L, Ma J, Luo M. Porous nanofiber membrane from phase separation electronspun for selectively recovering uranium from seawater. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Huang YW, Feng H, Xiong XH, Luo F. Multi-step Phase Transformation from Metal-Organic Frameworks to Inorganic Compounds for High-Purity Th(IV) Generation. Inorg Chem 2022; 61:7212-7216. [PMID: 35502907 DOI: 10.1021/acs.inorgchem.2c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The generation of high-purity thorium is the precondition for next-generation nuclear energy; however, this remains a challenging task. To this end, we present herein an ultrasimple technique with the combination of crystallization plus phase transformation. Crystallization into ECUT-68 is found to show almost 100% selective uptake of Th(IV) over rare earth and UO22+ ions, while multistep phase transformation from metal-organic frameworks (MOFs) to inorganic compounds is found to directly generate inorganic Th(IV) compound and then Th(IV) solution, suggesting its superior application in the generation of high-purity thorium.
Collapse
Affiliation(s)
- Yi-Wei Huang
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Han Feng
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Xiao-Hong Xiong
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Feng Luo
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| |
Collapse
|
43
|
Zhou Y, Hao HX, Dong TH, Ni XF, Hu YC, Ma JJ, Yang JQ, Shi KL, Duan GJ, Liu TH. Efficient enrichment of U(VI) by two-dimensional layered transition metal carbide composite. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
With the rapid development of nuclear energy, how to safely and efficiently dispose of radioactive waste solution has become an urgent environmental problem of public concern. It is of great significance to construct a new type of high-efficiency adsorbent material to recover uranium from nuclear waste solution. In this work, the Ti3C2Tx material (an emerging two-dimensional inorganic layered material) with a stable layered structure was used as the matrix, and the amidoxime functionalized MXene composite material (PAO/Ti3C2Tx) was synthesized by in-situ polymerization. The amidoxime-functionalized Ti3C2Tx showed excellent capacity to capture U(VI), with a maximum adsorption capacity of 98.04 mg/g at 25 °C, which was significantly better than that of Ti3C2Tx, and the adsorption selectivity for U(VI) was greatly improved. The adsorption was conformed to Langmuir isotherm model and pseudo-second-order kinetic model. In addition, the adsorbed UO22+ could be effectively desorbed by 0.1 M HNO3, and the adsorption performance of PAO/Ti3C2Tx did not decrease significantly after 5 adsorption/desorption cycles. The results of ionic strength experiment, FT-IR, SEM, and XPS jointly indicated that adsorption mechanism of U(VI) on PAO/Ti3C2Tx was the combined effect of the amidoxime group and -O and -OH active groups on the surface of Ti3C2Tx, mainly inner complexation. These advantages make PAO/Ti3C2Tx composite a highly potential U(VI) adsorbent with great application prospects.
Collapse
Affiliation(s)
- Yun Zhou
- Frontier Science Center for Rare Isotopes, Lanzhou University , Lanzhou 730000 , P. R. China
- School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Huai-Xin Hao
- School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Tian-Hao Dong
- Frontier Science Center for Rare Isotopes, Lanzhou University , Lanzhou 730000 , P. R. China
- School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Xu-Feng Ni
- Frontier Science Center for Rare Isotopes, Lanzhou University , Lanzhou 730000 , P. R. China
- School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Yi-Chen Hu
- School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Jia-Ju Ma
- Frontier Science Center for Rare Isotopes, Lanzhou University , Lanzhou 730000 , P. R. China
- School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Jun-Qiang Yang
- Frontier Science Center for Rare Isotopes, Lanzhou University , Lanzhou 730000 , P. R. China
- School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Ke-Liang Shi
- Frontier Science Center for Rare Isotopes, Lanzhou University , Lanzhou 730000 , P. R. China
- School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Guo-Jian Duan
- Gansu University of Chinese Medicine , Lanzhou 730000 , P. R. China
| | - Tong-Huan Liu
- Frontier Science Center for Rare Isotopes, Lanzhou University , Lanzhou 730000 , P. R. China
- School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| |
Collapse
|
44
|
Chen X, Shi S, Han X, Li M, Nian Y, Sun J, Zhang W, Yue T, Wang J. Insights into high-efficient removal of tetracycline by a codoped mesoporous carbon adsorbent. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Boudias M, Gourgiotis A, Montavon G, Cazala C, Pichon V, Delaunay N. 226Ra and 137Cs determination by inductively coupled plasma mass spectrometry: state of the art and perspectives including sample pretreatment and separation steps. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 244-245:106812. [PMID: 35042022 DOI: 10.1016/j.jenvrad.2022.106812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Achieving precise and accurate quantification of radium (226Ra) and cesium (137Cs) by inductively coupled plasma mass spectrometry (ICP-MS) is of particular interest in the field of radiological monitoring and more widely in environmental and biological sciences. However, the accuracy and sensitivity of the quantification depend on the analytical strategy implemented. Eliminating interferences during the sample handling step and/or during the analysis step is critical since presence of matrix elements can lead to spectral and non-spectral interferences in ICP-MS. Consequently, before the ICP-MS analysis, multiple sample preparation approaches have been applied to purify and/or pre-concentrate environmental and biological samples containing radium and cesium through years, such as (co)-precipitation, solid phase extraction (SPE) or dispersive SPE (dSPE). Separation steps using liquid chromatography and capillary electrophoresis can also be useful in complement with the abovementioned sample preparation techniques. The most attractive sample handling technique remains SPE but efficiency of the extraction procedures is currently limited by sorbent specificity. Indeed, with the recent advances in ICP-MS instrumentation, it becomes indispensable to eliminate residual interferences and improve sensitivity. It is in this direction that it will be possible to meet analytical challenges, e.g. analyzing radium and cesium at concentrations below the pg L-1 range in complex matrices of small volumes, as they are found for instance in pore waters or in biological samples. Development of new innovative sorbents based for example on hybrid and nanostructured materials has been reported with the aim of enhancing sorbent specificity and/or capacity. In the present review, the performances of the different analytical approaches are discussed, followed by an overview of applications.
Collapse
Affiliation(s)
- Marine Boudias
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation - UMR Chimie Biologie Innovation, CNRS - ESPCI Paris PSL, 75005, Paris, France; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, Fontenay-aux-Roses, 92260, France
| | - Alkiviadis Gourgiotis
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, Fontenay-aux-Roses, 92260, France.
| | - Gilles Montavon
- Laboratoire SUBATECH, UMR 6457, IN2P3/CNRS/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307, Nantes cedex 3, France
| | - Charlotte Cazala
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, Fontenay-aux-Roses, 92260, France
| | - Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation - UMR Chimie Biologie Innovation, CNRS - ESPCI Paris PSL, 75005, Paris, France; Sorbonne Université, 75005, Paris, France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation - UMR Chimie Biologie Innovation, CNRS - ESPCI Paris PSL, 75005, Paris, France
| |
Collapse
|
46
|
Abu Elgoud E, Aly MI, Hamed MM, Nayl AA. NanoTafla Nanocomposite as a Novel Low-Cost and Eco-Friendly Sorbent for Strontium and Europium Ions. ACS OMEGA 2022; 7:10447-10457. [PMID: 35382267 PMCID: PMC8973054 DOI: 10.1021/acsomega.1c07255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Now the wide use of nanooxides is attributed to their remarkable collection of properties. Nanocomposites have an impressive variety of important applications. A thermal decomposition approach provides a more optimistic method for nanocrystal synthesis due to the low cost, high efficiency, and expectations for large-scale production. Therefore, in this study a new eco-friendly nanooxide composite with sorption characteristics for europium (Eu(III)) and strontium (Sr(II)) was synthesized by a one-step thermal treatment process using earth-abundant tafla clay as a starting material to prepare a modified tafla (M-Taf) nanocomposite. The synthesized nancomposite was characterized by different techniques before and after sorption processes. Different factors that affected the sorption behavior of Eu(III) and Sr(II) in aqueous media by the M-Taf nanocomposite were studied. The results obtained illustrated that the kinetics of sorption of Eu(III) and Sr(II) by the M-Taf nanocomposite are obeyed according to the pseudo-second order and controlled by a Langmuir isotherm model with maximum sorption capacities (Q max) of 25.5 and 23.36 mg/g for Eu(III) and Sr(II), respectively. Also, this novel low-cost and eco-friendly sorbent has promising properties and can be used to separate and retain some radionuclides in different applications.
Collapse
Affiliation(s)
- Elsayed
M. Abu Elgoud
- Hot
Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Mohamed I. Aly
- Hot
Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Mostafa M. Hamed
- Hot
Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - AbdElAziz A. Nayl
- Department
of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 42421, Aljouf, Saudi
Arabia
| |
Collapse
|
47
|
Fu J, Zhang L, Wang SL, Yuan WL, Zhang GH, Zhu QH, Chen H, He L, Tao GH. Ultralow-cost portable device for cesium detection via perovskite fluorescence. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127981. [PMID: 34883380 DOI: 10.1016/j.jhazmat.2021.127981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Public anxiety and concern from cesium pollution in oceans have been back on the agenda since tons of nuclear waste water were announced to be poured into oceans. Cesium ion can easily enter organisms and bioaccumulate in animals and plants, thus its harm is chronic to humans through food chains. Here we showed a kind of hybrid ionic liquid membrane (HILM) for detection of cesium ion in seawater through CsPbBr3 perovskite fluorescence. With sustainability in mind, HILM was built frugally. The lowest cost of HILM is below 3 cents per piece. The HILM can detect cesium ion quickly with eye-readable fluorescence signal. Ultracheap, portable, easy-to-use on-site detection device could offer benefit for personal security and applications in environment science and ecology in the future decades.
Collapse
Affiliation(s)
- Jie Fu
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lei Zhang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shuang-Long Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wen-Li Yuan
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Guo-Hao Zhang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qiu-Hong Zhu
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hao Chen
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
48
|
Liu Z, Ling Q, Cai Y, Xu L, Su J, Yu K, Wu X, Xu J, Hu B, Wang X. Synthesis of carbon-based nanomaterials and their application in pollution management. NANOSCALE ADVANCES 2022; 4:1246-1262. [PMID: 36133685 PMCID: PMC9419251 DOI: 10.1039/d1na00843a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
With the fast development of industry, large amounts of organic and inorganic pollutants are inevitably released into the natural environment, which results in the pollution of the environment and are thereby dangerous to human health. The efficient elimination of these pollutants is crucial to environment protection and human health. The high sorption capacity of carbon-based materials and high photocatalytic ability of carbon-based composites result in the application of carbon-based materials in environmental pollution cleanup. In this review article, we summarized recent studies on the synthesis of carbon-based materials, and their application in the sorption of organic and inorganic pollutants, the photocatalytic degradation of organic pollutants, and the in situ photocatalytic reduction-solidification of heavy metal ions. The sorption method is useful to remove pollutants from aqueous solutions. The sorption-photocatalytic degradation of organic pollutants is applicable, especially at low concentrations, whereas the catalytic reduction of metal ions is the best method for the in situ immobilization of high valent metal ions under complicated conditions. The interaction mechanism is discussed using advanced spectroscopy analysis and theoretical calculations, and at the end the challenges in the future are described.
Collapse
Affiliation(s)
- Zhixin Liu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Qian Ling
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Yawen Cai
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Linfeng Xu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Jiahao Su
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Kuai Yu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Xinyi Wu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Jiayi Xu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Baowei Hu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Xiangke Wang
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| |
Collapse
|
49
|
Wang Y, Yang N, Soldatov M, Liu H. A novel phosphazene-based amine-functionalized porous polymer with high adsorption ability for I2, dyes and heavy metal ions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Preparation of Halloysite/Ag2O Nanomaterials and Their Performance for Iodide Adsorption. MINERALS 2022. [DOI: 10.3390/min12030304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Halloysite/Ag2O (Hal/Ag2O) nanomaterials were prepared by growing Ag2O nanoparticles on the surface of nanotubular halloysite using silver nitrate solution under alkaline conditions. The nanomaterials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 adsorption. Good dispersion of Ag2O nanoparticles with average sizes of 6.07 ± 2.5 nm and 8.04 ± 3.8 nm was achieved in the nanomaterials when using different concentrations of alkali. The nanomaterial with 6.36% Ag2O (Hal/Ag2O-2) exhibited rapid adsorption to iodide (I−); adsorption equilibrium can be reached within 100 min. The adsorption capacity of I− on Hal/Ag2O-2 is 57.5 mg/g, which is more than 143 times higher than that of halloysite. The nanomaterial also showed a better adsorption capacity per unit mass of Ag2O due to the better dispersion and less coaggregation of Ag2O in the nanomaterial than in the pure Ag2O nanoparticles. Importantly, Hal/Ag2O-2 exhibited high selectivity for I−, and its I− removal efficiency was hardly affected by the coexistence of Cl−, Br−, or SO42−, as well as the initial pH of the solution. With an excellent adsorption performance, the prepared Hal/Ag2O nanomaterial could be a new and efficient adsorbent capable of the adsorption of radioactive I− from aqueous solution.
Collapse
|