1
|
Feng J, Sun C, Li S, Ye L. Advancing the dynamic mechanical analysis of organic semiconductor materials. Chem Commun (Camb) 2024; 60:10795-10804. [PMID: 39248000 DOI: 10.1039/d4cc03254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Dynamic mechanical analysis (DMA) is a powerful technique for characterizing the mechanical properties of a wide range of materials. However, the importance of DMA in studying organic/polymer semiconductors has not been fully appreciated. In this Highlight, we explore recent advancements in the use of DMA in understanding the viscoelastic and mechanical properties and thermal transitions of organic semiconductor materials. In particular, the insights gained from DMA can serve as new guides for the device optimisation of organic solar cells towards stable operation. Furthermore, we present key findings, challenges, and future directions to advance the application of DMA in organic electronics.
Collapse
Affiliation(s)
- Jintao Feng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China.
| | - Chunlong Sun
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China.
| | - Saimeng Li
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China.
| | - Long Ye
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Pyo WJ, Kim G, Kim S, Oh H, Keum D, Kim B, Kim D, So C, Lee S, Jee DW, Jung IH, Chung DS. Advancing Fab-Compatible Color-Selective Organic Photodiodes: Tailored Molecular Design and Nanointerlayers. ACS NANO 2024; 18:17075-17085. [PMID: 38912604 DOI: 10.1021/acsnano.4c03659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
High-performance organic photodiodes (OPDs) and OPD-based image sensors are primarily realized using solution processes based on various additives and coating methods. However, vacuum-processed OPDs, which are more compatible with large-scale production, have received little attention, thereby hindering their integration into advanced systems. This study introduces innovations in the material and device structures to prepare superior vacuum-processed OPDs for commercial applications. A series of vacuum-processable, low-cost p-type semiconductors is developed by introducing an electron-rich cyclopentadithiophene core containing various electron-accepting moieties to fine-tune the energy levels without any significant structural or molecular weight changes. An additional nanointerlayer strategy is used to control the crystalline orientation of the upper-deposited photoactive layer, compensating for device performance reduction in inverted, top-illuminated OPDs. These approaches yielded an external quantum efficiency of 70% and a specific detectivity of 2.0 × 1012 Jones in the inverted structures, which are vital for commercial applications. These OPDs enabled visible-light communications with extremely low bit error rates and successful X-ray image capture.
Collapse
Affiliation(s)
- Won Jun Pyo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyuri Kim
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Sinwon Kim
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Haechan Oh
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Dongki Keum
- DONGWOO FINE-CHEM Co., Pyeongtaek 17956, Republic of Korea
| | - Byoungin Kim
- DONGWOO FINE-CHEM Co., Pyeongtaek 17956, Republic of Korea
| | - Dowan Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chan So
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sangjun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong-Woo Jee
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Riera-Galindo S, Sanz-Lleó M, Gutiérrez-Fernández E, Ramos N, Mas-Torrent M, Martín J, López-Mir L, Campoy-Quiles M. High Polymer Molecular Weight Yields Solar Cells with Simultaneously Improved Performance and Thermal Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311735. [PMID: 38279561 DOI: 10.1002/smll.202311735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non-fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability.
Collapse
Affiliation(s)
- Sergi Riera-Galindo
- Institute of Materials Science of Barcelona ICMAB-CSIC, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Marta Sanz-Lleó
- Institute of Materials Science of Barcelona ICMAB-CSIC, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- Eurecat Centre Tecnològic de Catalunya, Unit of Printed Electronics & Embedded Devices, Av. d'Ernest Lluch 36, Mataró, 08302, Spain
| | - Edgar Gutiérrez-Fernández
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Nicolás Ramos
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Marta Mas-Torrent
- Institute of Materials Science of Barcelona ICMAB-CSIC, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Jaime Martín
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol, 15403, Spain
| | - Laura López-Mir
- Eurecat Centre Tecnològic de Catalunya, Unit of Printed Electronics & Embedded Devices, Av. d'Ernest Lluch 36, Mataró, 08302, Spain
| | - Mariano Campoy-Quiles
- Institute of Materials Science of Barcelona ICMAB-CSIC, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
4
|
Qi Q, Wang J, Gao M, Ke H, Zhao W, Zhang K, Li S, He C, Kuvondikov V, Ye L. A Dual-Polythiophene Blending Strategy to Reduce the Efficiency-Stability-Cost Gap of Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307993. [PMID: 37946405 DOI: 10.1002/smll.202307993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Indexed: 11/12/2023]
Abstract
Benefiting from the photovoltaic material innovation and delicate device optimization, high-efficiency solar cells employing polymeric materials are thriving. Reducing the gap of cost, efficiency, and stability is the critical challenge faced by the emerging solar cells such as organics, quantum dots and perovskites. Poly(3-alkylthiophene) demonstrates great potential in organic solar cells and quantum dot solar cells as the active layer or the hole transport layer due to its large scalability, excellent photoelectric performance, and favorable hydrophobicity. The present low efficiency and insufficient stability, restrict its commercial application. In this work, a facile strategy of blending two simple polythiophenes is put forward to manipulate the film microstructure and enhance the device efficiency and thermal stability of solar cells. The introduction of P3PT can improve the power conversion efficiency (PCE) of a benchmark cost-effective blend P3HT:O-IDTBR to 7.41%, and the developed ternary solar cells also exhibit increased thermal stability. More strikingly, the quantum dot solar cells with the dual-polythiophene hole transport layer achieve the highest PCE of 10.51%, which is among the topmost efficiencies for quantum dots/polythiophene solar cells. Together, this work provides an effective route to simultaneously optimize the device efficiency and thermal stability of solar cells.
Collapse
Affiliation(s)
- Qingchun Qi
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, 350108, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Jingjing Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, 350108, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Sunsun Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chunyong He
- Spallation Neutron Source Science Center, Dongguan, 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Vakhobjon Kuvondikov
- Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, 33, Durmon yuli, Tashkent, 100125, Uzbekistan
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Hubei Longzhong Laboratory, Xiangyang, 441000, China
| |
Collapse
|
5
|
Peng Z, Xian K, Liu J, Zhang Y, Sun X, Zhao W, Deng Y, Li X, Yang C, Bian F, Geng Y, Ye L. Unraveling the Stretch-Induced Microstructural Evolution and Morphology-Stretchability Relationships of High-Performance Ternary Organic Photovoltaic Blends. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207884. [PMID: 36333886 DOI: 10.1002/adma.202207884] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The stretchability and stretch-induced structural evolution of organic solar cells (OSCs) are pivotal for their collapsible, portable, and wearable applications, and they are mainly affected by the complex morphology of active layers. Herein, a highly ductile conjugated polymer P(NDI2OD-T2) is incorporated into the active layers of high-efficiency OSCs based on nonfullerene small molecule acceptors to simultaneously investigate the morphological, mechanical, and photovoltaic properties and structural evolution under stretching of ternary blend films with various acceptor contents. The structural robustness of the blend films is indicated by their stretch-induced structural evolution, which is monitored in real-time by a combination of in situ wide/small angle X-ray scattering. It is found that adding the soft P(NDI2OD-T2) can enhance the stretchability and structural robustness of ternary blend films by more entangled chains and tie chains to dissipate strain. Furthermore, the stretchability of the ternary blends can be superbly predicted by a 3D equivalent box model. This work provides instructive insight and guidance for designing stretchable electronics and predicting the stretchability of multicomponent blends.
Collapse
Affiliation(s)
- Zhongxiang Peng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Kaihu Xian
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Junwei Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Yaowen Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiaokang Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunfeng Deng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yanhou Geng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Long Ye
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
6
|
Zha H, Fang J, Yan L, Yang Y, Ma C. Research Progress of Thermal Failure Mechanism and Ternary Blending to Improve Thermal Stability of Organic Solar Cells. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Refining acceptor aggregation in nonfullerene organic solar cells to achieve high efficiency and superior thermal stability. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
The principles of selecting green solvent additives for optimizing the phase separation structure of polymer solar cells based on PTB7:PC71BM. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Crystallization of D-A Conjugated Polymers: A Review of Recent Research. Polymers (Basel) 2022; 14:polym14214612. [DOI: 10.3390/polym14214612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
D-A conjugated polymers are key materials for organic solar cells and organic thin-film transistors, and their film structure is one of the most important factors in determining device performance. The formation of film structure largely depends on the crystallization process, but the crystallization of D-A conjugated polymers is not well understood. In this review, we attempted to achieve a clearer understanding of the crystallization of D-A conjugated polymers. We first summarized the features of D-A conjugated polymers, which can affect their crystallization process. Then, the crystallization process of D-A conjugated polymers was discussed, including the possible chain conformations in the solution as well as the nucleation and growth processes. After that, the crystal structure of D-A conjugated polymers, including the molecular orientation and polymorphism, was reviewed. We proposed that the nucleation process and the orientation of the nuclei on the substrate are critical for the crystal structure. Finally, we summarized the possible crystal morphologies of D-A conjugated polymers and explained their formation process in terms of nucleation and growth processes. This review provides fundamental knowledge on how to manipulate the crystallization process of D-A conjugated polymers to regulate their film structure.
Collapse
|
10
|
Kim H, Kang J, Park J, Ahn H, Kang IN, Jung IH. All-Polymer Photodetectors with n-Type Polymers Having Nonconjugated Spacers for Dark Current Density Reduction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyeokjun Kim
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jinhyeon Kang
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jaehee Park
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Pohang37673, Republic of Korea
| | - In-Nam Kang
- Department of Chemistry, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si14662, Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| |
Collapse
|
11
|
Zhao M, Zhou X, Tan P, He F, Ma Y. Stability of the Charged Nonfullerene Acceptors. J Phys Chem Lett 2022; 13:8553-8557. [PMID: 36067392 DOI: 10.1021/acs.jpclett.2c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As an electric current passes through an organic semiconductor, a small number of organic molecules will inevitably act as a polaron state that is similar to an ionic charged state. The continuous device operation of organic semiconducting molecules is directly associated with the stability of the charged state. Herein, we choose the high-performance Y-series of nonfullerene acceptors to investigate the stability by a spectro-electrochemical technique. The results reveal the discoloration of molecules in the charged state and can be partially recovered after neutralization with about 10% irreversible part. It is found that the degree of the irreversible process is associated with halogen substituents at the end groups, and the irreversible reactions are also discussed. Our results reveal that the stability of a charged state can be improved by the fine-tuning of the molecular structures, and the local charge density can also be rapidly reduced by the high carrier mobility, the key factor to improving the stability of nonfullerene acceptors for better practical applications.
Collapse
Affiliation(s)
- Manlin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe Distinct, Guangzhou 510640, P. R. China
| | - Xuehong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe Distinct, Guangzhou 510640, P. R. China
| | - Pu Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Feng He
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yuguang Ma
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe Distinct, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, No. 381 Wushan Road, Tianhe Distinct, Guangzhou 510640, P. R. China
| |
Collapse
|
12
|
Yuan D, Zhang L, Chen J. Fine-Tuning of Siloxane Pendant Distance for Achieving Highly Efficient Eco-Friendly Nonfullerene Solar Cells. CHEMSUSCHEM 2022; 15:e202200789. [PMID: 35606681 DOI: 10.1002/cssc.202200789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Side-chain engineering has been proved to show profound impact on polymer properties and blend morphology. Herein, the critical role of siloxane-terminated alkoxy side chains was revealed by a tiny decorating method through which the molar content of siloxane-terminated alkoxy side chain was fixed to 5 %, and its alkyl linker was the only tuning factor. The pentylene, heptylene, and nonylene linkers were designed and used to synthesize wide-bandgap polymers PQSi505, PQSi705, and PQSi905, respectively. Interestingly, the siloxane pendant of combinatory side chain exhibited a distinct impact on molecular packing when its branching position shifted slightly. Among the three polymers, PQSi705 had the strongest aggregation and the highest packing order. Finally, toluene-processed organic solar cells (OSCs) based on PQSi705 and Y6-BO achieved the best power conversion efficiency of 15.77 %. This work suggests that siloxane pendant can serve as a powerful modulator to enhance the photovoltaic performance of OSCs.
Collapse
Affiliation(s)
- Dong Yuan
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Lianjie Zhang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
13
|
When Electronically Inert Polymers Meet Conjugated Polymers: Emerging Opportunities in Organic Photovoltaics. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2762-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Yang X, Gao M, Bi Z, Liu Y, Xian K, Peng Z, Qi Q, Li S, Song J, Ma W, Ye L. Unraveling the Photovoltaic, Mechanical, and Microstructural Properties and Their Correlations in Simple Poly(3-pentylthiophene) Solar Cells. Macromol Rapid Commun 2022; 43:e2200229. [PMID: 35591795 DOI: 10.1002/marc.202200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022]
Abstract
The power conversion efficiency of polythiophene organic solar cells is constantly refreshed. Despite the renewed device efficiency, very few efforts have been devoted to understanding how the type of electron acceptor alters the photovoltaic and mechanical properties of these low-cost solar cells. Herein, we conduct a thorough investigation of photovoltaic and mechanical characteristics of a simple yet less explored polythiophene, namely poly(3-pentylthiophene) (P3PT), in three different types of organic solar cells, where ZY-4Cl, PC71 BM, and N2200 are employed as three representative acceptors, respectively. Compared with the reference P3HT-based solar cells, P3PT-based devices all perform more efficiently. Particularly, the P3PT:ZY-4Cl blend exhibits the highest efficiency (nearly 10%) among the six combinations and outperforms the prior top-performance system P3HT:ZY-4Cl. Furthermore, the blend films based on N2200 exhibit a high crack-onset strain of ∼38% on average, which is approximately 15 and 17 times higher than those of ZY-4Cl and PC71 BM, respectively. The microstructural origins for the above difference are well elucidated by detailed grazing incidence X-ray scattering and microscopy analysis. This work not only underlines the potential of P3PT in prolific solar cell research but also demonstrates the superior tensile properties of polythiophene-based all-polymer blends for the preparation of stretchable solar cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuantong Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Kaihu Xian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Zhongxiang Peng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Qingchun Qi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Saimeng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
15
|
Ding K, Li Y, Forrest SR. Characterizing and Improving the Thermal Stability of Organic Photovoltaics Based on Halogen-Rich Non-Fullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5692-5698. [PMID: 35061350 DOI: 10.1021/acsami.1c17943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The thermal stability of inverted, halogen-rich non-fullerene acceptor (NFA)-based organic photovoltaics with MoOx as the hole transporting layer is studied at temperatures up to 80 °C. Over time, the power conversion efficiency shows a "check-mark" shaped thermal aging pattern, featuring an early decrease, followed by a long-term recovery. A high Cl concentration at the bulk heterojunction (BHJ)/MoOx interface in the thermally aged device is found using energy dispersive X-ray spectroscopy. X-ray photoelectron spectroscopy shows that the MoOx is chlorinated after thermal aging. With bulk quantum efficiency analysis, we propose an explanation to the check-mark shaped pattern. Inserting a thin C70 layer between the BHJ and MoOx suppresses the thermal degradation mechanisms, resulting in three orders of magnitude increase in device lifetime at 80 °C.
Collapse
Affiliation(s)
- Kan Ding
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yongxi Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen R Forrest
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Departments of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Mehdizadeh-Rad H, Sreedhar Ram K, Mehdizadeh-Rad F, Ompong D, Setsoafia DDY, Elumalai NK, Zhu F, Singh J. Sources of Thermal Power Generation and Their Influence on the Operating Temperature of Organic Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:420. [PMID: 35159768 PMCID: PMC8838742 DOI: 10.3390/nano12030420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/25/2023]
Abstract
Thermal stability, closely associated with the operating temperature, is one of the desired properties for practical applications of organic solar cells (OSCs). In this paper, an OSC of the structure of ITO/PEDOT:PSS/P3HT:PCBM/ZnO/Ag was fabricated, and its current-voltage (J-V) characteristics and operating temperature were measured. The operating temperature of the same OSC was simulated using an analytical model, taking into consideration the heat transfer, charge carrier drift-diffusion and different thermal generation processes. The simulated results agreed well with the experimental ones. It was found that the thermalization of charge carriers above the band gap had the highest influence on the operating temperature of the OSCs. The energy off-set at the donor/acceptor interface in the bulk heterojunction (BHJ) was shown to have a negligible impact on the thermal stability of the OSCs. However, the energy off-sets at the electrode/charge-transporting layer and BHJ/charge-transporting layer interfaces had greater impacts on the operating temperature of OSCs at the short circuit current and maximum power point conditions. Our results revealed that a variation over the energy off-set range from 0.1 to 0.9 eV would induce an almost 10-time increase in the corresponding thermal power generation, e.g., from 0.001 to 0.01 W, in the cells operated at the short circuit current condition, contributing to about 16.7% of the total solar power absorbed in the OSC.
Collapse
Affiliation(s)
- Hooman Mehdizadeh-Rad
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| | - Kiran Sreedhar Ram
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| | - Farhad Mehdizadeh-Rad
- Department of Electrical and Computer Engineering, University of Texas at Dallas, Dallas, TX 75080, USA;
| | - David Ompong
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| | - Daniel Dodzi Yao Setsoafia
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| | - Naveen Kumar Elumalai
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| | - Furong Zhu
- Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong;
| | - Jai Singh
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| |
Collapse
|
17
|
|