1
|
Wu J, Sun F, Wang X, Chen Q, Franco LR, Zheng X, Araujo CM, Yang R, Yu D, Wang E. Unveiling the Influence of Linkers on Conformations of Oligomeric Acceptors for High-Performance Polymer Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406772. [PMID: 39206722 PMCID: PMC11515919 DOI: 10.1002/advs.202406772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Conformational isomerism of organic photovoltaic materials has a profound impact on their molecular packing and therefore performance of polymer solar cells (PSCs). However, the conformations of oligomeric acceptors (OAs) are mostly predicted by simulations rather than experimental determinations. Herein, the stereochemical S-shaped structure of two dimeric-type acceptor molecules, V-DYIC and V-DYIC-4F, is first confirmed with different end groups (IC for V-DYIC and IC-2F for V-DYIC-4F), incorporating vinylene linkage for connecting the distinct state-of-the-art small molecule acceptor Y-segments. Through the synthetic control of fluorination sites adjacent to the vinyl-linker, S-shaped the conformation by NMR experiments is validated. Compared to the O-shaped dimer, S-shaped conformation results in enhanced lamellar order and reduced nonradiative recombination losses. The optimal acceptor, V-DYIC-4F, achieved a champion efficiency of 18.10% with the lowest energy loss of 0.556 eV in its devices paired with PM6 due to their efficient carrier transport, and suppressed recombination compared to other devices, being attributed to the synergistic effect of conformation and end group fluorination. The insights gained in this work contribute valuable knowledge of both synthetic control and structural determination of OAs, providing strategic design guidelines for the future development of dimeric acceptors toward high-efficiency PSCs.
Collapse
Affiliation(s)
- Jingnan Wu
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSE‐412 96Sweden
- Department of Chemistry and BioscienceAalborg UniversityAalborgDK‐9220Denmark
| | - Fengbo Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Qiaonan Chen
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSE‐412 96Sweden
| | - Leandro R. Franco
- Department of Engineering and PhysicsKarlstad UniversityKarlstad65188Sweden
| | - Xufan Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - C. Moyses Araujo
- Department of Engineering and PhysicsKarlstad UniversityKarlstad65188Sweden
- Materials Theory DivisionDepartment of Physics and AstronomyUppsala UniversityUppsala75120Sweden
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Donghong Yu
- Department of Chemistry and BioscienceAalborg UniversityAalborgDK‐9220Denmark
- Sino‐Danish Center for Education and ResearchAarhusDK‐8000Denmark
| | - Ergang Wang
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSE‐412 96Sweden
| |
Collapse
|
2
|
Wang C, Ma X, Deng D, Zhang H, Sun R, Zhang J, Zhang L, Wu M, Min J, Zhang ZG, Wei Z. Giant dimeric donors for all-giant-oligomer organic solar cells with efficiency over 16% and superior photostability. Nat Commun 2024; 15:8494. [PMID: 39353930 PMCID: PMC11445269 DOI: 10.1038/s41467-024-52821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Increasing the molecular weight while maintaining mono-dispersity has been proved crucial in innovating high-performance photovoltaic materials in giant oligomeric acceptors. However, developing efficient giant oligomeric donors to replace the batch-varied polymers remains challenging due to a lack of design principles. Here, by designing two unique isomeric rhodanine-based linkers, we successfully regulate the assembly behaviors of giant dimeric donors (G-Dimer-Ds) and fabricate the first all-giant-oligomer OSCs pairing with giant dimeric acceptor DY. Multiple characterizations demonstrate the small homo-molecular interaction with strong thermal-driven assembly capability in G-Dimer-D2 simultaneously facilitates reducing energetic disorder, improving charge transport and obtaining stable morphology, resulting in a satisfactory efficiency of 15.70% and long-term photostability with an extrapolated T80 of ca.10,000 hours, and further enhancing thermal-driven assembly promotes efficiency of 16.05%. Our results provide construction approaches on efficient giant donors, and propose a promising type of OSC with completely definite structures, high efficiency and superior stability.
Collapse
Affiliation(s)
- Caixuan Wang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Ma
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Science, Minzu University of China, Beijing, 100081, Beijing, China
| | - Dan Deng
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Hao Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lili Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengying Wu
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Shen X, He F. Oligomerized Acceptors with High Efficiency and Superior Stability in Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50061-50070. [PMID: 39265178 DOI: 10.1021/acsami.4c12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Oligomerized small molecular acceptors (OSMAs) have rapidly become a research hotspot in the field of organic solar cells due to their advantages of effective combination with definite structure of small molecules and high viscosity and glass transition temperature of polymers. From this perspective, we classify and summarize the representative OSMAs from the three binding sites of end, core, and wing, and we summarize the exploration of new synthesis methods to improve the plights, such as low synthesis yield and difficult purification. Finally, the existing challenges and future research directions are concluded and prospected.
Collapse
Affiliation(s)
- Xiangyu Shen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Zhu Y, Ma Y, Liu L, Cai D, Wang JY, Shi H, Zheng Q. Dimerized M-Series Acceptors with Low Diffusion Coefficients for Efficient and Stable Polymer Solar Cells. Angew Chem Int Ed Engl 2024:e202411155. [PMID: 39160143 DOI: 10.1002/anie.202411155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
As the simplest oligomeric acceptors, dimerized acceptors (DAs) are easier to synthesize, and more importantly, they can retain good intermolecular interaction and photovoltaic properties of their parent small-molecule acceptors (SMAs). Nevertheless, currently most efficient DAs are derived from banana-shaped acceptors and they might suffer from inferior device stability with high diffusion coefficients. Herein, we design and synthesize two planar DAs (DMT-FH and DMT-HF) by bridging two linear-shaped M-series SMAs with a thiophene unit. The effects of fluorination position on the diffusion coefficients, power conversion efficiencies (PCEs) and stability of the DAs are systematically studied. Our results suggest that DMT-HF with fluorination on the ending indanone groups shows enhanced intermolecular interactions, improved PCE and stability compared with the counterpart (DMT-FH) with fluorination on the central indanone groups. Further optimization on the DMT-HF-based devices yields an outstanding PCE of 17.17 %, which is the highest among all linear-shaped SMA-based DAs. Notably, with the low diffusion coefficient (3.36×10-24 cm2 s-1) of DMT-HF, the resulting device retains over 93 % of the initial PCE after 5000 h of continuous heating at 85 °C, suggesting its excellent thermal stability. The results highlight the importance of intermolecular interaction and fluorination for achieving efficient and stable polymer solar cells.
Collapse
Affiliation(s)
- Yuhang Zhu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yunlong Ma
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Li Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Dongdong Cai
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jin-Yun Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Haiting Shi
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Qingdong Zheng
- State Key Laboratory of Coordination Chemistry, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Yin H, Xie G, Wu T, Liu S, Chen D, Chen Y. The Conjugated/Non-Conjugated Linked Dimer Acceptors Enable Efficient and Stable Flexible Organic Solar Cells. Macromol Rapid Commun 2024:e2400433. [PMID: 39023423 DOI: 10.1002/marc.202400433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/25/2024] [Indexed: 07/20/2024]
Abstract
The fabrication of the flexible devices with excellent photovoltaic performance and stability is critical for the commercialization of organic solar cells (OSCs). Herein, the conjugated dimer acceptor DY-TVCl and the non-conjugated dimer acceptor DY-3T based on the monomer MY-BO are synthesized to regulate the molecular glass transition temperatures (Tg) for improving the morphology stability of active layer films. And the crack onset strain values for the blend films based on dimer acceptors are superior than that of small molecule, which are beneficial for the preparation of flexible devices. Accordingly, the binary device based on PM6:DY-TVCl achieves a maximum power conversion efficiency (PCE) of 18.01%. Meanwhile, the extrapolated T80 (time to reach 80% of initial PCE) lifetimes of the PM6:DY-TVCl-based device and PM6:DY-3T-based device are 3091 and 2227 h under 1-sun illumination, respectively, which are better than that of the PM6:MY-BO-based device (809 h). Furthermore, the flexible devices based on DY-TVCl and DY-3T exhibit the efficiencies of 15.23% and 14.34%, respectively. This work affords a valid approach to improve the stability and mechanical robustness of OSCs, as well as ensuring the reproducibility of organic semiconductors during mass production.
Collapse
Affiliation(s)
- Haoran Yin
- College of Chemistry and Chemical Engineering/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Gang Xie
- College of Chemistry and Chemical Engineering/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Tuhong Wu
- College of Chemistry and Chemical Engineering/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Siqi Liu
- College of Chemistry and Chemical Engineering/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Dong Chen
- College of Chemistry and Chemical Engineering/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
6
|
Qi F, Li Y, Lin FR, Jen AKY. Recent Progress of Oligomeric Non-Fullerene Acceptors for Efficient and Stable Organic Solar Cells. CHEMSUSCHEM 2024; 17:e202301559. [PMID: 38372481 DOI: 10.1002/cssc.202301559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Organic solar cells (OSCs) have achieved remarkable power conversion efficiencies (PCEs) of over 19 % in the past few years due to the rapid development of non-fullerene acceptors (NFAs). However, the operational stability remains a great challenge that inhibits their commercialization. Recently, oligomeric NFAs (ONFAs) have attracted great attention, which not only can deliver excellent device performance, but also improve the thermal-/photo- stability of OSCs. This is attributed to the suppressed molecular diffusion of ONFAs associated with their high glass-transition temperature (Tg) and improved thermodynamic properties of ONFAs. Herein, we focus on investigating the correction between the ONFA chemical structure, material properties, device performance, and stability. In addition, we also try to point out the challenges in synthesizing ONFAs and provide potential directions for future ONFA designs.
Collapse
Affiliation(s)
- Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yanxun Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Fan K, Zhang L, Zhong Q, Xiang Y, Xu B, Wang Y. Acceptor-donor-acceptor-type molecules with large electrostatic potential difference for effective NIR photothermal therapy. J Mater Chem B 2024; 12:5140-5149. [PMID: 38712564 DOI: 10.1039/d4tb00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although acceptor-donor-acceptor (A-D-A)-type molecules offer advantages in constructing NIR absorbing photothermal agents (PTAs) due to their strong intramolecular charge transfer and molecular planarity, their applications in photothermal therapy (PTT) of tumors remain insufficiently explored. In particular, the influence of ESP distribution on the optical properties of A-D-A photosensitizers has not been investigated. Herein, we analyze and compare the difference in ESP distribution between A-D-A-type small molecules and polymers to construct NIR absorbing PTAs with a high extinction coefficient (ε) and high photothermal conversion efficiency (PCE). The calculation results of density functional theory (DFT) indicate that the large ESP difference makes A-D-A-type small molecules superior to their polymer counterparts in realizing tight molecular packing and strong NIR absorbance. Among the as-prepared nanoparticles (NPs), Y6 NPs exhibited an obvious bathochromic shift of absorption peak from 711 nm to 822 nm, with the NIR-II emission extended to 1400 nm. Moreover, a high ε value of 5.69 L g-1 cm-1 and a PCE of 66.3% were attained, making Y6 NPs suitable for PTT. With a concentration of 100 μg mL-1, Y6 NPs in aqueous dispersion yielded a death rate of 93.4% for 4T1 cells upon 808 nm laser irradiation (1 W cm-2) for 10 min, which is comparable with the best results of recently reported PTT agents.
Collapse
Affiliation(s)
- Kexin Fan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ludan Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Qinqiu Zhong
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yanhe Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
8
|
Ding Y, Memon WA, Zhang D, Zhu Y, Xiong S, Wang Z, Liu J, Li H, Lai H, Shao M, He F. Dimerized Acceptors with Conjugate-Break Linker Enable Highly Efficient and Mechanically Robust Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202403139. [PMID: 38530206 DOI: 10.1002/anie.202403139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Designing new acceptors is critical for intrinsically stretchable organic solar cells (IS-OSCs) with high efficiency and mechanical robustness. However, nearly all stretchable polymer acceptors exhibit limited efficiency and high-performance small molecular acceptors are very brittle. In this regard, we select thienylene-alkane-thienylene (TAT) as the conjugate-break linker and synthesize four dimerized acceptors by the regulation of connecting sites and halogen substitutions. It is found that the connecting sites and halogen substitutions considerably impact the overall electronic structures, aggregation behaviors, and charge transport properties. Benefiting from the optimization of the molecular structure, the dimerized acceptor exhibits rational phase separation within the blend films, which significantly facilitates exciton dissociation while effectively suppressing charge recombination processes. Consequently, FDY-m-TAT-based rigid OSCs render the highest power conversion efficiency (PCE) of 18.07 % among reported acceptors containing conjugate-break linker. Most importantly, FDY-m-TAT-based IS-OSCs achieve high PCE (14.29 %) and remarkable stretchability (crack-onset strain [COS]=18.23 %), significantly surpassing Y6-based counterpart (PCE=12.80 % and COS=8.50 %). To sum up, these findings demonstrate that dimerized acceptors containing conjugate-break linkers have immense potential in developing highly efficient and mechanically robust OSCs.
Collapse
Affiliation(s)
- Yafei Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Di Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwu Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shilong Xiong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhi Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junfeng Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming Shao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Fu H, Wang Q, Chen Q, Zhang Y, Meng S, Xue L, Zhang C, Yi Y, Zhang ZG. Dimeric Giant Molecule Acceptors Featuring N-type Linker: Enhancing Intramolecular Coupling for High-Performance Polymer Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202403005. [PMID: 38382043 DOI: 10.1002/anie.202403005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Giant molecular acceptors (GMAs) are typically designed through the conjugated linking of individual small molecule acceptors (SMAs). This design imparts an extended molecular size, elevating the glass transition temperature (Tg) relative to their SMA counterparts. Consequently, it effectively suppresses the thermodynamic relaxation of the acceptor component when blended with polymer donors to construct stable polymer solar cells (PSCs). Despite their merits, the optimization of their chemical structure for further enhancing of device performance remains challenge. Different from previous reports utilizing p-type linkers, here, we explore an n-type linker, specifically the benzothiadiazole unit, to dimerize the SMA units via a click-like Knoevenagel condensation, affording BT-DL. In comparison with B-DL with a benzene linkage, BT-DL exhibits significantly stronger intramolecular super-exchange coupling, a desirable property for the acceptor component. Furthermore, BT-DL demonstrates a higher film absorption coefficient, redshifted absorption, larger crystalline coherence, and higher electron mobility. These inherent advantages of BT-DL translate into a higher power conversion efficiency of 18.49 % in PSCs, a substantial improvement over the 9.17 % efficiency observed in corresponding devices with B-DL as the acceptor. Notably, the BT-DL based device exhibits exceptional stability, retaining over 90 % of its initial efficiency even after enduring 1000 hours of thermal stress at 90 °C. This work provides a cost-effective approach to the synthesis of n-type linker-dimerized GMAs, and highlight their potential advantage in enhancing intramolecular coupling for more efficient and durable photovoltaic technologies.
Collapse
Affiliation(s)
- Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shixin Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingwei Xue
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan, 467000, P. R. China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Zhang L, Deng D, Lu K, Wei Z. Optimization of Charge Management and Energy Loss in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302915. [PMID: 37399575 DOI: 10.1002/adma.202302915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
All-small-molecule organic solar cells (ASM-OSCs) have received tremendous attention in recent decades because of their advantages over their polymer counterparts. These advantages include well-defined chemical structures, easy purification, and negligible batch-to-batch variation. Remarkable progress with a power conversion efficiency (PCE) of over 17% has recently been achieved with improved charge management (FF × JSC) and reduced energy loss (Eloss). Morphology control is the key factor in the progress of ASM-OSCs, which remains a significant challenge because of the similarities in the molecular structures of the donors and acceptors. In this review, the effective strategies for charge management and/or Eloss reduction from the perspective of effective morphology control are summarized. The aim is to provide practical insights and guidance for material design and device optimization to promote further development of ASM-OSCs to a level where they can compete with or even surpass the efficiency of polymer solar cells.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
11
|
Chang B, Zhang Y, Zhang C, Zhang M, Wang Q, Xu Z, Chen Q, Bai Y, Fu H, Meng S, Xue L, Kim S, Yang C, Yi Y, Zhang ZG. Tethered Trimeric Small-molecular Acceptors through Aromatic-core Engineering for Highly Efficient and Thermally Stable Polymer Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202400590. [PMID: 38318728 DOI: 10.1002/anie.202400590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Polymer solar cells (PSCs) rely on a blend of small molecular acceptors (SMAs) with polymer donors, where thermodynamic relaxation of SMAs poses critical concerns on operational stability. To tackle this issue, tethered SMAs, wherein multiple SMA-subunits are connected to the aromatic-core via flexible chains, are proposed. This design aims to an elevated glass transition temperature (Tg) for a dynamical control. However, attaining an elevated Tg value with additional SMA subunits introduces complexity to the molecular packing, posing a significant challenge in realizing both high stability and power conversion efficiency (PCE). In this study, we initiate isomer engineering on the benzene-carboxylate core and find that meta-positioned dimeric BDY-β exhibits more favorable molecular packing compared to its para-positioned counterpart, BDY-α. With this encouraging result, we expand our approach by introducing an additional SMA unit onto the aromatic core of BDY-β, maintaining a meta-position relative to each SMA unit location in the tethered acceptor. This systematic aromatic-core engineering results in a star-shaped C3h-positioned molecular geometry. The supramolecular interactions of SMA units in the trimer contribute to enhancements in Tg value, crystallinity, and a red-shifted absorption compared to dimers. These characteristics result in a noteworthy increase in PCE to 18.24 %, coupled with a remarkable short-circuit current density of 27.06 mA cm-2. More significantly, the trimer-based devices delivered an excellent thermal stability with over 95 % of their initial efficiency after 1200 h thermal degradation. Our findings underscore the promise and feasibility of tethered trimeric structures in achieving highly ordered aggregation behavior and increased Tg value in PSCs, simultaneously improving in device efficiency and thermal stability.
Collapse
Affiliation(s)
- Bowen Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Cen Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zheng'ao Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shixin Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingwei Xue
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan, 467000, P. R. China
| | - Seoyoung Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Yi F, Xiao M, Meng Y, Bai H, Su W, Gao W, Yao ZF, Qi G, Liang Z, Jin C, Tang L, Zhang R, Yan L, Liu Y, Zhu W, Ma W, Fan Q. Non-Fully Conjugated Dimerized Giant Acceptors with Different Alkyl-Linked Sites for Stable and 19.13 % Efficiency Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202319295. [PMID: 38335036 DOI: 10.1002/anie.202319295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Achieving both high power conversion efficiency (PCE) and device stability is a major challenge for the practical development of organic solar cells (OSCs). Herein, three non-fully conjugated dimerized giant acceptors (named 2Y-sites, including wing-site-linked 2Y-wing, core-site-linked 2Y-core, and end-site-linked 2Y-end) are developed. They share the similar monomer precursors but have different alkyl-linked sites, offering the fine-tuned molecular absorption, packing, glass transition temperature, and carrier mobility. Among their binary active layers, D18/2Y-wing has better miscibility, leading to optimized morphology and more efficient charge transfer compared to D18/2Y-core and D18/2Y-end. Therefore, the D18/2Y-wing-based OSCs achieve a superior PCE of 17.73 %, attributed to enhanced photocurrent and fill factor. Furthermore, the D18/2Y-wing-based OSCs exhibit a balance of high PCE and improved stability, distinguishing them within the 2Y-sites. Building on the success of 2Y-wing in binary systems, we extend its application to ternary OSCs by pairing it with the near-infrared absorbing D18/BS3TSe-4F host. Thanks to the complementary absorption within 300-970 nm and further optimized morphology, ternary OSCs obtain a higher PCE of 19.13 %, setting a new efficiency benchmark for the dimer-derived OSCs. This approach of alkyl-linked site engineering for constructing dimerized giant acceptors presents a promising pathway to improve both PCE and stability of OSCs.
Collapse
Affiliation(s)
- Fan Yi
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Manjun Xiao
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
| | - Yongdie Meng
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
| | - Hairui Bai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenyan Su
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Wei Gao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ze-Fan Yao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi, Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Conggui Jin
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
| | - Lingxiao Tang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi, Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weiguo Zhu
- Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Ding P, Yang D, Yang S, Ge Z. Stability of organic solar cells: toward commercial applications. Chem Soc Rev 2024; 53:2350-2387. [PMID: 38268469 DOI: 10.1039/d3cs00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Organic solar cells (OSCs) have attracted a great deal of attention in the field of clean solar energy due to their advantages of transparency, flexibility, low cost and light weight. Introducing them to the market enables seamless integration into buildings and windows, while also supporting wearable, portable electronics and internet-of-things (IoT) devices. With the development of photovoltaic materials and the optimization of fabrication technology, the power conversion efficiencies (PCEs) of OSCs have rapidly improved and now exceed 20%. However, there is a significant lack of focus on material stability and device lifetime, causing a severe hindrance to commercial applications. In this review, we carefully review important strategies employed to improve the stability of OSCs over the past three years from the perspectives of material design and device engineering. Furthermore, we analyze and discuss the current important progress in terms of air, light, thermal and mechanical stability. Finally, we propose the future research directions to overcome the challenges in achieving highly stable OSCs. We expect that this review will contribute to solving the stability problem of OSCs, eventually paving the way for commercial applications in the near future.
Collapse
Affiliation(s)
- Pengfei Ding
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuncheng Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Peng J, Meng F, Cheng J, Lai X, Du M, Huang M, Zhang J, He F, Zhou E, Zhao D, Zhao B. Noncovalent Interaction Boosts Performance and Stability of Organic Solar Cells Based on Giant-Molecule Acceptors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7317-7326. [PMID: 38305907 DOI: 10.1021/acsami.3c18325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Designing giant-molecule acceptors is deemed as an up-and-coming strategy to construct stable organic solar cells (OSCs) with high performance. Herein, two giant dimeric acceptors, namely, DYV and DYFV, have been designed and synthesized by linking two Y-series derivatives with a vinyl unit. DYFV exhibits more red-shifted absorption, down-shifted energy levels, and enhanced intermolecular packing than DYV because the intramolecular noncovalent interaction (H···F) of DYFV leads to better coplanarity of the backbone. The D18:DYFV film owns a distinct nanofibrous nanophase separation structure, a more dominant face-on orientation, and more balanced carrier mobilities. Therefore, the D18:DYFV OSC achieves a higher photoelectron conversion efficiency of 17.88% and a longer-term stability with a t80 over 45,000 h compared with the D18:DYV device. The study demonstrates that the intramolecular noncovalent interaction is a superior strategy to design giant-molecule acceptors and boost the photovoltaic performance and stability of the OSCs.
Collapse
Affiliation(s)
- Jiaxun Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fei Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jing Cheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xue Lai
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengzhen Du
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Meihua Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology, Beijing 100190, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Erjun Zhou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Bin Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
15
|
Zhang M, Chang B, Zhang R, Li S, Liu X, Zeng L, Chen Q, Wang L, Yang L, Wang H, Liu J, Gao F, Zhang ZG. Tethered Small-Molecule Acceptor Refines Hierarchical Morphology in Ternary Polymer Solar Cells: Enhanced Stability and 19% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308606. [PMID: 37816121 DOI: 10.1002/adma.202308606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Polymer solar cells (PSCs) are promising for efficient solar energy conversion, but achieving high efficiency and device longevity within a bulk-heterojunction (BHJ) structure remains a challenge. Traditional small-molecule acceptors (SMAs) in the BHJ blend show thermodynamic instability affecting the morphology. In contrast, tethered SMAs exhibit higher glass transition temperatures, mitigating these concerns. Yet, they might not integrate well with polymer donors, causing pronounced phase separation and overpurification of mixed domains. Herein, a novel ternary device is introduced that uses DY-P2EH, a tethered dimeric SMA with conjugated side-chains as host acceptor, and BTP-ec9, a monomeric SMA as secondary acceptor, which respectively possess hypomiscibility and hypermiscibility with the polymer donor PM6. This unique combination affords a parallel-connected ternary BHJ blend, leading to a hierarchical and stable morphology. The ternary device achieves a remarkable fill factor of 80.61% and an impressive power conversion efficiency of 19.09%. Furthermore, the ternary device exhibits exceptional stability, retaining over 85% of its initial efficiency even after enduring 1100 h of thermal stress at 85 °C. These findings highlight the potential advantage of tethered SMAs in the design of ternary devices with a refined hierarchical structure for more efficient and durable solar energy conversion technologies.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bowen Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Zhang
- Department of Physics, Biomolecular and organic electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Shangyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinpeng Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Liang Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Wang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of, Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liangrong Yang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Haiqiao Wang
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiangang Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Feng Gao
- Department of Physics, Biomolecular and organic electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
16
|
Wang H, Liu S, Yang Y, Li H, Wei Z, Cheng Y, Hou J, Xu B. Reducing the Depletion Region Width at the Anode Interface via a Highly Doped Conjugated Polyelectrolyte Composite for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3744-3754. [PMID: 38224058 DOI: 10.1021/acsami.3c15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
In the realm of organic solar cells (OSCs), the width of the depletion region at the anode interface is a critical factor that adversely impacts the open-circuit voltage (Voc) and the power conversion efficiency (PCE). To address this challenge, a novel approach involving a conjugated polyelectrolyte (CPE)-based composite, PCP-2F-Li:POM, has been developed. This composite serves as a solution-processed hole transport layer (HTL), effectively minimizing the depletion region width in high-performance OSCs. The innovative aspect of PCP-2F-Li:POM lies in its "mutual doping" mechanism. Polyoxometalate (POM) is utilized as a dopant, facilitating the formation of p-doped CPE and n-doped POM within the composite. This results in a substantial increase in doping density, nearly 2 orders of magnitude higher than that observed in unmodified CPE. Consequently, the width of depletion region is markedly reduced, shrinking from 76.4 to 6.0 nm. This reduction plays a pivotal role in enhancing hole transport via the tunneling effect. The practical impact of this development is notable. It leads to an increase in Voc from 0.84 to 0.86 V, thereby contributing significantly to an impressive PCE of 18.04% in OSCs. Moreover, the compatibility of PCP-2F-Li:POM with large-area processing techniques underscores its potential as a viable HTL material for future practical applications. Additionally, its contribution to the enhanced long-term stability of OSCs further bolsters its suitability for practical applications.
Collapse
Affiliation(s)
- He Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyan Liu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhengrong Wei
- School of Physics, Hubei University, Wuhan 430072, P. R. China
| | - Yuan Cheng
- School of Physics, Hubei University, Wuhan 430072, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Zhang C, Song J, Ye L, Li X, Jee MH, Woo HY, Sun Y. Simple and Efficient Synthesis of Novel Tetramers with Enhanced Glass Transition Temperature for High-Performance and Stable Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202316295. [PMID: 38057496 DOI: 10.1002/anie.202316295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Oligomer acceptors in organic solar cells (OSCs) have garnered substantial attention owing to their impressive power conversion efficiency (PCE) and long-term stability. However, the simple and efficient synthesis of oligomer acceptors with higher glass transition temperatures (Tg ) remains a formidable challenge. In this study, we propose an innovative strategy for the synthesis of tetramers, denoted as Tet-n, with elevated Tg s, achieved through only two consecutive Stille coupling reactions. Importantly, our strategy significantly reduces the redundancy in reaction steps compared to conventional methods for linear tetramer synthesis, thereby improving both reaction efficiency and yield. Furthermore, the OSC based on PM6:Tet-1 attains a high PCE of 17.32 %, and the PM6:L8-BO:Tet-1 ternary device achieves an even more higher PCE of 19.31 %. Remarkably, the binary device based on the Tet-1 tetramer demonstrates outstanding operational stability, retaining 80 % of the initial efficiency (T80 ) even after 1706 h of continuous illumination, which is primarily attributed to the enhanced Tg (247 °C) and lower diffusion coefficient (1.56×10-27 cm2 s-1 ). This work demonstrates the effectiveness of our proposed approach in the straightforward and efficient synthesis of tetramers materials with higher Tg s, thus offering a viable pathway for developing high-efficiency and stable OSCs.
Collapse
Affiliation(s)
- Chen Zhang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jiali Song
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Linglong Ye
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiaoming Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Min Hun Jee
- Department of Chemistry, College of Science, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-713, Republic of Korea
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
18
|
Lv M, Wang Q, Zhang J, Wang Y, Zhang ZG, Wang T, Zhang H, Lu K, Wei Z, Deng D. Strengthening the Hetero-Molecular Interactions in Giant Dimeric Acceptors Enables Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310046. [PMID: 37994223 DOI: 10.1002/adma.202310046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Giant dimeric acceptor (G-Dimer) is becoming one of the most promising organic solar cell (OSC) materials because of its definite structure, long-term stability, and high efficiency. Strengthening the hetero-molecular interactions by monomer modification greatly influences the morphology and thus the device performance, but lacks investigation. Herein, two novel quinoxaline core-based G-Dimers, Dimer-QX and Dimer-2CF, are synthesized. By comparing trifluoromethyl-substituted Dimer-2CF and non-substituted Dimer-QX, the trifluoromethylation effect on the G-Dimer is investigated and revealed. The trifluoromethyl with strong electronegativity increases electrostatic potential and reduces surface energy of the G-Dimer, weakening the homo-molecular ordered packing but reinforcing the hetero-molecular interaction with the donor. The strong hetero-molecular interaction suppresses the fast assembly during the film formation, facilitating small domains with ordered molecular packing in the blend, which is a trade-off in conventional morphology control. Together with favorable vertical phase separation, efficient charge generation, and reduced bimolecular recombination are concurrently obtained. Hence, the Dimer-2CF-based OSCs obtain a cutting-edge efficiency of 19.02% with fill factor surpassing 80%, and an averaged extrapolated T80 of ≈12 000 h under continuous 80 °C heating. This study emphasizes the importance of hetero-molecular interaction and trifluoromethylation strategy, providing a facile strategy for designing highly efficient and stable OSC materials.
Collapse
Affiliation(s)
- Min Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuheng Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of, Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of, Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Zhuo H, Li X, Zhang J, Zhu C, He H, Ding K, Li J, Meng L, Ade H, Li Y. Precise synthesis and photovoltaic properties of giant molecule acceptors. Nat Commun 2023; 14:7996. [PMID: 38042895 PMCID: PMC10693637 DOI: 10.1038/s41467-023-43846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Series of giant molecule acceptors DY, TY and QY with two, three and four small molecule acceptor subunits are synthesized by a stepwise synthetic method and used for systematically investigating the influence of subunit numbers on the structure-property relationship from small molecule acceptor YDT to giant molecule acceptors and to polymerized small molecule acceptor PY-IT. Among these acceptors-based devices, the TY-based film shows proper donor/acceptor phase separation, higher charge transfer state yield and longer charge transfer state lifetime. Combining with the highest electron mobility, more efficient exciton dissociation and lower charge carrier recombination properties, the TY-based device exhibits the highest power conversion efficiency of 16.32%. These results indicate that the subunit number in these acceptors has significant influence on their photovoltaic properties. This stepwise synthetic method of giant molecule acceptors will be beneficial to diversify their structures and promote their applications in high-efficiency and stable organic solar cells.
Collapse
Affiliation(s)
- Hongmei Zhuo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinyuan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Can Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haozhe He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kan Ding
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA.
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
20
|
Xiang Y, Xu B, Li Y. Solution-Processed Semiconductor Materials as Cathode Interlayers for Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304673. [PMID: 37882326 DOI: 10.1002/advs.202304673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Indexed: 10/27/2023]
Abstract
Cathode interlayers (CILs) play a crucial role in improving the photovoltaic efficiency and stability of OSCs. CILs generally consists of two kinds of materials, interfacial dipole-based CILs and SPS-based CILs. With good charge transporting ability, excellent compatibility with large-area processing methods, and highly tunable optoelectronic properties, the SPS-based CILs exhibit remarkable superiorities to their interfacial dipole-based counterparts in practical use, making them promising candidate in developing efficient CILs for OSCs. This mini-review highlights the great potential of SPS-based CILs in OSC applications and elucidates the working mechanism and material design strategy of SPS materials. Afterward, the SPS-based CIL materials are summarized and discussed in four sections, including organic small molecules, conjugated polymers, nonconjugated polymers, and TMOs. The structure-property-performance relationship of SPS-based CIL materials is revealed, which may provide readers new insight into the molecular design of SPS-based CILs. The mechanisms to endow SPS-based CILs with thickness insensitivity, resistance to environmental erosion, and photo-electric conversion ability are also elucidated. Finally, after a brief summary, the remaining issues and the prospects of SPS-based CILs are suggested.
Collapse
Affiliation(s)
- Yanhe Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ying Li
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| |
Collapse
|
21
|
Gu X, Zhang X, Huang H. Oligomerized Fused-Ring Electron Acceptors for Efficient and Stable Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202308496. [PMID: 37436426 DOI: 10.1002/anie.202308496] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
Organic solar cells (OSCs) have attracted wide research attention in the past decades. Very recently, oligomerized fused-ring electron acceptors (OFREAs) have emerged as a promising alternative to small-molecular/polymeric acceptor-based OSCs due to their unique advantages such as well-defined structures, batch reproducibility, good film formation, low diffusion coefficient, and excellent stability. So far, rapid advances have been made in the development of OFREAs consisting of directly/rigidly/flexibly linked oligomers and fused ones. In this Minireview, we systematically summarized the recent research progress of OFREAs, including structural diversity, synthesis approach, molecular conformation and packing, and long-term stability. Finally, we conclude with future perspectives on the challenges to be addressed and potential research directions. We believe that this Minireview will encourage the development of novel OFREAs for OSC applications.
Collapse
Affiliation(s)
- Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
22
|
Wu J, Ling Z, Franco LR, Jeong SY, Genene Z, Mena J, Chen S, Chen C, Araujo CM, Marchiori CFN, Kimpel J, Chang X, Isikgor FH, Chen Q, Faber H, Han Y, Laquai F, Zhang M, Woo HY, Yu D, Anthopoulos TD, Wang E. On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18 . Angew Chem Int Ed Engl 2023; 62:e202302888. [PMID: 37380618 DOI: 10.1002/anie.202302888] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular π-π interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.
Collapse
Affiliation(s)
- Jingnan Wu
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Zhaoheng Ling
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Leandro R Franco
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841 (Republic of, Korea
| | - Zewdneh Genene
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Josué Mena
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Si Chen
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - C Moyses Araujo
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
- Materials Theory Division, Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden
| | - Cleber F N Marchiori
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
| | - Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Xiaoming Chang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Furkan H Isikgor
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Qiaonan Chen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Hendrik Faber
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Maojie Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841 (Republic of, Korea
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| |
Collapse
|
23
|
Zhang C, Song J, Xue J, Wang S, Ge Z, Man Y, Ma W, Sun Y. Facile, Versatile and Stepwise Synthesis of High-Performance Oligomer Acceptors for Stable Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202308595. [PMID: 37551967 DOI: 10.1002/anie.202308595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri-Y6-OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80 ) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.
Collapse
Affiliation(s)
- Chen Zhang
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| | - Jiali Song
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Zhongwei Ge
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| | - Yuheng Man
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, 100191, Beijing, P. R. China
| |
Collapse
|
24
|
Fu H, Zhang M, Zhang Y, Wang Q, Xu Z, Zhou Q, Li Z, Bai Y, Li Y, Zhang ZG. Modular-Approach Synthesis of Giant Molecule Acceptors via Lewis-Acid-Catalyzed Knoevenagel Condensation for Stable Polymer Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202306303. [PMID: 37322862 DOI: 10.1002/anie.202306303] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
The operational stability of polymer solar cells is a critical concern with respect to the thermodynamic relaxation of acceptor-donor-acceptor (A-D-A) or A-DA'D-A structured small-molecule acceptors (SMAs) within their blends with polymer donors. Giant molecule acceptors (GMAs) bearing SMAs as subunits offer a solution to this issue, while their classical synthesis via the Stille coupling suffers from low reaction efficiency and difficulty in obtaining mono-brominated SMA, rendering the approach impractical for their large-scale and low-cost preparation. In this study, we present a simple and cost-effective solution to this challenge through Lewis acid-catalyzed Knoevenagel condensation with boron trifluoride etherate (BF3 ⋅ OEt2 ) as catalyst. We demonstrated that the coupling of the monoaldehyde-terminated A-D-CHO unit and the methylene-based A-link-A (or its silyl enol ether counterpart) substrates can be quantitatively achieved within 30 minutes in the presence of acetic anhydride, affording a variety of GMAs connected via the flexible and conjugated linkers. The photophysical properties was fully studied, yielding a high device efficiency of over 18 %. Our findings offer a promising alternative for the modular synthesis of GMAs with high yields, easier work up, and the widespread application of such methodology will undoubtedly accelerate the progress of stable polymer solar cells.
Collapse
Affiliation(s)
- Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Youdi Zhang
- College of Chemistry, Key Laboratory of Advanced Green Functional Materials, Changchun Normal University, 130032, Changchun, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zheng'ao Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Qiuju Zhou
- Analysis & Testing Center, Xinyang Normal University, 464000, Xinyang, Henan, China
| | - Zhengkai Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
25
|
Bai Y, Zhang Z, Zhou Q, Geng H, Chen Q, Kim S, Zhang R, Zhang C, Chang B, Li S, Fu H, Xue L, Wang H, Li W, Chen W, Gao M, Ye L, Zhou Y, Ouyang Y, Zhang C, Gao F, Yang C, Li Y, Zhang ZG. Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells. Nat Commun 2023; 14:2926. [PMID: 37217503 DOI: 10.1038/s41467-023-38673-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-α with a 2, 5-substitution and TDY-β with 3, 4-substitution on the core. It shows that TDY-α processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-β, and a more stable morphology with the polymer donor. As a result, the TDY-α based device delivers a higher device efficiency of 18.1%, and most important, achieves an extrapolated lifetime of about 35000 hours that retaining 80% of their initial efficiency. Our result suggests that with proper geometry design, the tethered small-molecule acceptors can achieve both high device efficiency and operating stability.
Collapse
Affiliation(s)
- Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ze Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qiuju Zhou
- Analysis & Testing Center, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Hua Geng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Seoyoung Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Rui Zhang
- Department of Physics, Biomolecular and Organic Electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Cen Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bowen Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shangyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingwei Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haiqiao Wang
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenbin Li
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Weihua Chen
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yuanyuan Zhou
- Department of Physics, Hong Kong Baptist University, Hong Kong, China, Smart Society Lab, Hong Kong Baptist University, Hong Kong, China
| | - Yanni Ouyang
- Department of Physics, Hong Kong Baptist University, Hong Kong, China, Smart Society Lab, Hong Kong Baptist University, Hong Kong, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Feng Gao
- Department of Physics, Biomolecular and Organic Electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
26
|
Li XJ, Sun GP, Gong YF, Li YF. Recent Research Progress of n-Type Conjugated Polymer Acceptors and All-Polymer Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
27
|
Li S, Zhang R, Zhang M, Yao J, Peng Z, Chen Q, Zhang C, Chang B, Bai Y, Fu H, Ouyang Y, Zhang C, Steele JA, Alshahrani T, Roeffaers MBJ, Solano E, Meng L, Gao F, Li Y, Zhang ZG. Tethered Small-Molecule Acceptors Simultaneously Enhance the Efficiency and Stability of Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206563. [PMID: 36394108 DOI: 10.1002/adma.202206563] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
For polymer solar cells (PSCs), the mixture of polymer donors and small-molecule acceptors (SMAs) is fine-tuned to realize a favorable kinetically trapped morphology and thus a commercially viable device efficiency. However, the thermodynamic relaxation of the mixed domains within the blend raises concerns related to the long-term operational stability of the devices, especially in the record-holding Y-series SMAs. Here, a new class of dimeric Y6-based SMAs tethered with differential flexible spacers is reported to regulate their aggregation and relaxation behavior. In their polymer blends with PM6, it is found that they favor an improved structural order relative to that of Y6 counterpart. Most importantly, the tethered SMAs show large glass transition temperatures to suppress the thermodynamic relaxation in mixed domains. For the high-performing dimeric blend, an unprecedented open circuit voltage of 0.87 V is realized with a conversion efficiency of 17.85%, while those of regular Y6-base devices only reach 0.84 V and 16.93%, respectively. Most importantly, the dimer-based device possesses substantially reduced burn-in efficiency loss, retaining more than 80% of the initial efficiency after operating at the maximum power point under continuous illumination for 700 h. The tethering approach provides a new direction to develop PSCs with high efficiency and excellent operating stability.
Collapse
Affiliation(s)
- Shangyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Zhang
- Department of Physics, Biomolecular and Organic Electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jia Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhengxing Peng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Cen Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bowen Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanni Ouyang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Julian A Steele
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thamraa Alshahrani
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Eduardo Solano
- NCD-SWEET beamline, ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290, Spain
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Feng Gao
- Department of Physics, Biomolecular and Organic Electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
28
|
Liu J, Xiong Y, Gao Y, Xu X, Chen K, Shen Q, Huang W, Fan Q, Wang Q. Molecular Oligomerization and Donor Engineering Strategies for Achieving Superior NIR-II Fluorescence Imaging and Thermotherapy under 1064 nm Laser Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205640. [PMID: 36366913 DOI: 10.1002/smll.202205640] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
An enormous challenge still exists for designing molecules with the second near-infrared (NIR-II, 1000-1700 nm) window absorption, NIR-II fluorescence emission, and batch-to-batch reproducibility, which is the premise for high-performance NIR-II phototheranostics. Although organic small molecules and polymers have been largely explored for phototheranostics, it is difficult to satisfy the above three elements simultaneously. In this work, molecular oligomerization (the general structure is S-D-A-D'-A-D-S) and donor engineering (changing the donor linker D') strategies are applied to design phototheranostic agents. Such strategies are proved to be efficient in adjusting molecular configuration and energy level, affecting the optical and thermal properties. Three oligomers (O-T, O-DT, and O-Q) are further prepared into water-soluble nanoparticles (NPs). Particularly, the O-T NPs exhibit a higher molar extinction coefficient at 1064 nm (≈4.3-fold of O-DT NPs and ≈4.8-fold of O-Q NPs). Furthermore, the O-T NPs show the highest NIR-II fluorescence brightness and heating capacity (PCE = 73%) among the three NPs under 1064 nm laser irradiation and served as agents for NIR-II imaging guided in vivo photothermal therapy. Overall, by using molecular oligomerization and donor engineering strategies, a powerful example of constructing high-performance NIR-II phototheranostics for clinical translation is given.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yanwei Xiong
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yicong Gao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xingpeng Xu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Kai Chen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qingming Shen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|