1
|
Kumar N, Singh H, Giri K, Kumar A, Joshi A, Yadav S, Singh R, Bisht S, Kumari R, Jeena N, Khairakpam R, Mishra G. Physiological and molecular insights into the allelopathic effects on agroecosystems under changing environmental conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:417-433. [PMID: 38633277 PMCID: PMC11018569 DOI: 10.1007/s12298-024-01440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Allelopathy is a natural phenomenon of competing and interfering with other plants or microbial growth by synthesizing and releasing the bioactive compounds of plant or microbial origin known as allelochemicals. This is a sub-discipline of chemical ecology concerned with the effects of bioactive compounds produced by plants or microorganisms on the growth, development and distribution of other plants and microorganisms in natural communities or agricultural systems. Allelochemicals have a direct or indirect harmful effect on one plant by others, especially on the development, survivability, growth, and reproduction of species through the production of chemical inhibitors released into the environment. Cultivation systems that take advantage of allelopathic plants' stimulatory/inhibitory effects on plant growth and development while avoiding allelopathic autotoxicity is critical for long-term agricultural development. Allelopathy is one element that defines plant relationships and is involved in weed management, crop protection, and microbial contact. Besides, the allelopathic phenomenon has also been reported in the forest ecosystem; however, its presence depends on the forest type and the surrounding environment. In the present article, major aspects addressed are (1) literature review on the impacts of allelopathy in agroecosystems and underpinning the research gaps, (2) chemical, physiological, and ecological mechanisms of allelopathy, (3) genetic manipulations, plant defense, economic benefits, fate, prospects and challenges of allelopathy. The literature search and consolidation efforts in this article shall pave the way for future research on the potential application of allelopathic interactions across various ecosystems.
Collapse
Affiliation(s)
- Narendra Kumar
- Forest Research Institute, Dehradun, 248006 India
- Present Address: College of Agriculture, Central Agriculture University (I), Kyrdemkulai, Meghalaya, India
| | - Hukum Singh
- Forest Research Institute, Dehradun, 248006 India
| | - Krishna Giri
- Indian Council of Forestry Research and Education, Dehradun, 248006 India
| | - Amit Kumar
- Department of Forestry, North Eastern Hill University, Tura Campus, Tura, 794002 India
| | - Amit Joshi
- Department of Biochemistry, Kalinga University, Naya-Raipur, Chhattisgarh 492101 India
| | | | - Ranjeet Singh
- G.B. Pant National Institute of Himalayan Environment, Itanagar, Arunchal Pradesh, India
| | - Sarita Bisht
- Forest Research Institute, Dehradun, 248006 India
| | - Rama Kumari
- Forest Research Institute, Dehradun, 248006 India
| | - Neha Jeena
- Department of Microbiology, Central University, Rajasthan, 305817 India
| | - Rowndel Khairakpam
- School of Agriculture, Graphic Era Hill University, Dehradun, 248001 India
| | - Gaurav Mishra
- Indian Council of Forestry Research and Education, Dehradun, 248006 India
| |
Collapse
|
2
|
Lu L, Sun Z, Wang R, Du Y, Zhang Z, Lan T, Song Y, Zeng R. Integration of transcriptome and metabolome analyses reveals the role of OsSPL10 in rice defense against brown planthopper. PLANT CELL REPORTS 2023; 42:2023-2038. [PMID: 37819387 DOI: 10.1007/s00299-023-03080-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
KEY MESSAGE OsSPL10 is a negative regulator of rice defense against BPH, knockout of OsSPL10 enhances BPH resistance through upregulation of defense-related genes and accumulation of secondary metabolites. Rice (Oryza sativa L.), one of the most important staple foods worldwide, is frequently attacked by various herbivores, including brown planthopper (BPH, Nilaparvata lugens). BPH is a typical monophagous, phloem-sucking herbivore that has been a substantial threat to rice production and global food security. Understanding the regulatory mechanism of defense responses to BPH is essential for improving BPH resistance in rice. In this study, a SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 10 (OsSPL10) transcription factor was found to play a negative role in the defenses of rice against BPH. To gain insights into the molecular and biochemical mechanisms of OsSPL10, we performed combined analyses of transcriptome and metabolome, and revealed that knockout of OsSPL10 gene improved rice resistance against BPH by enhancing the direct and indirect defenses. Genes involved in plant hormone signal transduction, MAPK signaling pathway, phenylpropanoid biosynthesis, and plant-pathogen interaction pathway were significantly upregulated in spl10 mutant. Moreover, spl10 mutant exhibited increased accumulation of defense-related secondary metabolites in the phenylpropanoid and terpenoid pathways. Our findings reveal a novel role for OsSPL10 gene in regulating the rice defense responses, which can be used as a potential target for genetic improvement of BPH resistance in rice.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Rumeng Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yifei Du
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Tao Lan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
3
|
Li C, Zhang L, Wang X, Yu C, Zhao T, Liu B, Li H, Liu J, Zhang C. The transcription factor HBF1 directly activates expression of multiple flowering time repressors to delay rice flowering. ABIOTECH 2023; 4:213-223. [PMID: 37970466 PMCID: PMC10638126 DOI: 10.1007/s42994-023-00107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/25/2023] [Indexed: 11/17/2023]
Abstract
Flowering time (or heading date) is an important agronomic trait that determines the environmental adaptability and yield of many crops, including rice (Oryza sativa L.). Hd3a BINDING REPRESSOR FACTOR 1 (HBF1), a basic leucine zipper transcription factor, delays flowering by decreasing the expression of Early heading date 1 (Ehd1), Heading date 3a (Hd3a), and RICE FLOWERING LOCUS T 1 (RFT1), but the underlying molecular mechanisms have not been fully elucidated. Here, we employed the hybrid transcriptional factor (HTF) strategy to enhance the transcriptional activity of HBF1 by fusing it to four copies of the activation domain from Herpes simplex virus VP16. We discovered that transgenic rice lines overexpressing HBF1-VP64 (HBF1V) show significant delays in time to flower, compared to lines overexpressing HBF1-MYC or wild-type plants, via the Ehd1-Hd3a/RFT1 pathway, under both long-day and short-day conditions. Transcriptome deep sequencing analysis indicated that 19 WRKY family genes are upregulated in the HBF1V overexpression line. We demonstrate that the previously unknown gene, OsWRKY64, is a direct downstream target of HBF1 and represses flowering in rice, whereas three known flowering repressor genes, Days to heading 7 (DTH7), CONSTANS 3 (OsCO3), and OsWRKY104, are also direct target genes of HBF1 in flowering regulation. Taking these results together, we propose detailed molecular mechanisms by which HBF1 regulates the time to flower in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00107-7.
Collapse
Affiliation(s)
- Cong Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 China
| | - Liya Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chunsheng Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tao Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hongyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chunyu Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
4
|
Ding C, Lin X, Zuo Y, Yu Z, Baerson SR, Pan Z, Zeng R, Song Y. Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1346-1364. [PMID: 34582078 DOI: 10.1111/tpj.15515] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Tiller angle is an important determinant of plant architecture in rice (Oryza sativa L.). Auxins play a critical role in determining plant architecture; however, the underlying metabolic and signaling mechanisms are still largely unknown. In this study, we have identified a member of the bZIP family of TGA class transcription factors, OsbZIP49, that participates in the regulation of plant architecture and is specifically expressed in gravity-sensing tissues, including the shoot base, nodes and lamina joints. Transgenic rice plants overexpressing OsbZIP49 displayed a tiller-spreading phenotype with reduced plant height and internode lengths. In contrast, CRISPR/Cas9-mediated knockout of OsbZIP49 resulted in a compact architecture. Follow-up studies indicated that the effects of OsbZIP49 on tiller angles are mediated through changes in shoot gravitropic responses. Additionally, we provide evidence that OsbZIP49 activates the expression of indole-3-acetic acid-amido synthetases OsGH3-2 and OsGH3-13 by directly binding to TGACG motifs located within the promoters of both genes. Increased GH3-catalyzed conjugation of indole-3-acetic acid (IAA) in rice transformants overexpressing OsbZIP49 resulted in the increased accumulation of IAA-Asp and IAA-Glu, and a reduction in local free auxin, tryptamine and IAA-Glc levels. Exogenous IAA or naphthylacetic acid (NAA) partially restored shoot gravitropic responses in OsbZIP49-overexpressing plants. Knockout of OsbZIP49 led to reduced expression of both OsGH3-2 and OsGH3-13 within the shoot base, and increased accumulation of IAA and increased OsIAA20 expression levels were observed in transformants following gravistimulation. Taken together, the present results reveal the role transcription factor OsbZIP49 plays in determining plant architecture, primarily due to its influence on local auxin homeostasis.
Collapse
Affiliation(s)
- Chaohui Ding
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xianhui Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Zuo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhilin Yu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Scott R Baerson
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi, 38677, USA
| | - Zhiqiang Pan
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi, 38677, USA
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
5
|
Fang J, Guo T, Xie Z, Chun Y, Zhao J, Peng L, Zafar SA, Yuan S, Xiao L, Li X. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice. PLANT PHYSIOLOGY 2021; 185:1722-1744. [PMID: 33793928 PMCID: PMC8133684 DOI: 10.1093/plphys/kiaa121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 05/31/2023]
Abstract
Moderate leaf rolling is beneficial for leaf erectness and compact plant architecture. However, our understanding regarding the molecular mechanisms of leaf rolling is still limited. Here, we characterized a semi-dominant rice (Oryza sativa L.) mutant upward rolled leaf 1 (Url1) showing adaxially rolled leaves due to a decrease in the number and size of bulliform cells. Map-based cloning revealed that URL1 encodes the homeodomain-leucine zipper (HD-Zip) IV family member RICE OUTERMOST CELL-SPECIFIC 8 (ROC8). A single-base substitution in one of the two conserved complementary motifs unique to the 3'-untranslated region of this family enhanced URL1 mRNA stability and abundance in the Url1 mutant. URL1 (UPWARD ROLLED LEAF1) contains an ethylene-responsive element binding factor-associated amphiphilic repression motif and functions as a transcriptional repressor via interaction with the TOPLESS co-repressor OsTPL2. Rather than homodimerizing, URL1 heterodimerizes with another HD-ZIP IV member ROC5. URL1 could bind directly to the promoter and suppress the expression of abaxially curled leaf 1 (ACL1), a positive regulator of bulliform cell development. Knockout of OsTPL2 or ROC5 or overexpression of ACL1 in the Url1 mutant partially suppressed the leaf-rolling phenotype. Our results reveal a regulatory network whereby a transcriptional repression complex composed of URL1, ROC5, and the transcriptional corepressor TPL2 suppresses the expression of the ACL1 gene, thus modulating bulliform cell development and leaf rolling in rice.
Collapse
Affiliation(s)
- Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Zhiwei Xie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixiang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoujiang Yuan
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Zhu T, Tang W, Chen D, Li J, Su J. Identification of a novel efficient transcriptional activation domain from Chinese fir (Cunninghamia lanceolata). J Genet Genomics 2021; 48:257-259. [PMID: 33722521 DOI: 10.1016/j.jgg.2020.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Tengfei Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyu Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Delan Chen
- Bureau of Forestry, Wuyishan, Fujian 354300, China
| | - Jian Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Cai M, Zhu S, Wu M, Zheng X, Wang J, Zhou L, Zheng T, Cui S, Zhou S, Li C, Zhang H, Chai J, Zhang X, Jin X, Cheng Z, Zhang X, Lei C, Ren Y, Lin Q, Guo X, Zhao L, Wang J, Zhao Z, Jiang L, Wang H, Wan J. DHD4, a CONSTANS-like family transcription factor, delays heading date by affecting the formation of the FAC complex in rice. MOLECULAR PLANT 2021; 14:330-343. [PMID: 33246053 DOI: 10.1016/j.molp.2020.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Heading date (or flowering time) is one of the most important agronomic traits in rice, influencing its regional adaptability and crop yield. Many major-effect genes for rice heading date have been identified, but in practice they are difficult to be used for rice molecular breeding because of their dramatic effects on heading date. Genes with minor effects on heading date, which are more desirable for fine-tuning flowering time without significant yield penalty, were seldom reported. In this study, we identified a new minor-effect heading date repressor, Delayed Heading Date 4 (DHD4). The dhd4 mutant shows a slightly earlier flowering phenotype without a notable yield penalty compared with wild-type plants under natural long-day conditions. DHD4 encodes a CONSTANS-like transcription factor localized in the nucleus. Molecular, biochemical, and genetic assays show that DHD4 can compete with 14-3-3 to interact with OsFD1, thus affecting the formation of the Hd3a-14-3-3-OsFD1 tri-protein FAC complex, resulting in reduced expression of OsMADS14 and OsMADS15, and ultimately delaying flowering. Taken together, these results shed new light on the regulation of flowering time in rice and provide a promising target for fine-tuning flowering time to improve the regional adaptability of rice.
Collapse
Affiliation(s)
- Maohong Cai
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianhui Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Juntao Chai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyue Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Fang C, Yang L, Chen W, Li L, Zhang P, Li Y, He H, Lin W. MYB57 transcriptionally regulates MAPK11 to interact with PAL2;3 and modulate rice allelopathy. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2127-2141. [PMID: 31811717 PMCID: PMC7242072 DOI: 10.1093/jxb/erz540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/06/2019] [Indexed: 05/14/2023]
Abstract
Rice allelopathy is a natural method of weed control that is regarded as an eco-friendly practice in agroecology. The allelopathic potential of rice is regulated by various genes, including those that encode transcription factors. Our study characterized a MYB transcription factor, OsMYB57, to explore its role in the regulation of rice allelopathy. Increasing the expression of OsMYB57 in rice using the transcription activator VP64 resulted in increased inhibitory ratios against barnyardgrass. The gene expression levels of OsPAL, OsC4H, OsOMT, and OsCAD from the phenylpropanoid pathway were also up-regulated, and the content of l-phenylalanine increased. Chromatin immunoprecipitation incorporated with HiSeq demonstrated that OsMYB57 transcriptionally regulated a mitogen-activated protein kinase (OsMAPK11); in addition, OsMAPK11 interacted with OsPAL2;3. The expression of OsPAL2;3was higher in the allelopathic rice PI312777 than in the non-allelopathic rice Lemont, and OsPAL2;3 was negatively regulated by Whirly transcription factors. Moreover, microbes with weed-suppression potential, including Penicillium spp. and Bacillus spp., were assembled in the rhizosphere of the rice accession Kitaake with increased expression of OsMYB57, and were responsible for phenolic acid induction. Our findings suggest that OsMYB57 positively regulates rice allelopathy, providing an option for the improvement of rice allelopathic traits through genetic modification.
Collapse
Affiliation(s)
- Changxun Fang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Luke Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Weisi Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Lanlan Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Pengli Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yingzhe Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Haibin He
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Correspondence: ,
| |
Collapse
|
9
|
Yang S, Xu K, Chen S, Li T, Xia H, Chen L, Liu H, Luo L. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice. BMC PLANT BIOLOGY 2019; 19:260. [PMID: 31208338 PMCID: PMC6580479 DOI: 10.1186/s12870-019-1872-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Drought is a major abiotic stress factor that influences the yield of crops. Basic leucine zipper motif (bZIP) transcription factors play an important regulatory role in plant drought stress responses. However, the functions of a number of bZIP transcription factors in rice are still unknown. RESULTS In this study, a novel drought stress-related bZIP transcription factor, OsbZIP62, was identified in rice. This gene was selected from a transcriptome analysis of several typical rice varieties with different drought tolerances. OsbZIP62 expression was induced by drought, hydrogen peroxide, and abscisic acid (ABA) treatment. Overexpression of OsbZIP62-VP64 (OsbZIP62V) enhanced the drought tolerance and oxidative stress tolerance of transgenic rice, while osbzip62 mutants exhibited the opposite phenotype. OsbZIP62-GFP was localized to the nucleus, and the N-terminal sequence (amino acids 1-68) was necessary for the transcriptional activation activity of OsbZIP62. RNA-seq analysis showed that the expression of many stress-related genes (e.g., OsGL1, OsNAC10, and DSM2) was upregulated in OsbZIP62V plants. Moreover, OsbZIP62 could bind to the promoters of several putative target genes and could interact with stress/ABA-activated protein kinases (SAPKs). CONCLUSIONS OsbZIP62 is involved in ABA signalling pathways and positively regulates rice drought tolerance by regulating the expression of genes associated with stress, and this gene could be used for the genetic modification of crops with improved drought tolerance.
Collapse
Affiliation(s)
- Shiqin Yang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Kai Xu
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Shoujun Chen
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| | - Lijun Luo
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
| |
Collapse
|
10
|
Xia H, Luo Z, Xiong J, Ma X, Lou Q, Wei H, Qiu J, Yang H, Liu G, Fan L, Chen L, Luo L. Bi-directional Selection in Upland Rice Leads to Its Adaptive Differentiation from Lowland Rice in Drought Resistance and Productivity. MOLECULAR PLANT 2019; 12:170-184. [PMID: 30584948 DOI: 10.1016/j.molp.2018.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Drought resistance is required in rice breeding to address the challenge of frequent droughts. However, the evolutionary mechanism of rice drought resistance is not fully understood. We investigated the genetic differentiation between upland and lowland rice domesticated in agro-ecosystems with contrasting water-soil conditions using genome-wide SNPs. We estimated morphological differences among upland and lowland rice in drought resistance and productivity through common garden experiments. Upland rice had better drought resistance but poorer productivity. The negative correlations between traits of drought resistance and productivity are attributed to the underlying genetic trade-offs through tight linkages (e.g., DCA1 and OsCesA7) or pleiotropic effects (e.g., LAX1). The genetic trade-offs are common and greatly shape the evolution of drought resistance in upland rice. In genomic regions associated with both productivity and drought resistance, signs of balancing selection were detected in upland rice, while signs of directional selection were detected in lowland rice, potentially contributing to their adaptive differentiation. Signs of balancing selection in upland rice resulted from bi-directional selection during its domestication in drought-prone upland agro-ecosystems. Using genome-wide association analysis, we identified several valuable quantitative trait loci associated with drought resistance, for which highly differentiated genes should be considered candidates. Bi-directional selection breaking tight linkages by accumulating recombination events would be applicable in breeding water-saving and drought-resistance rice.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Zhi Luo
- Shanghai Agrobiological Gene Center, Shanghai, China; College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Xiong
- Shanghai Agrobiological Gene Center, Shanghai, China; College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Qiaojun Lou
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Haibin Wei
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Jie Qiu
- Institute of Crop Science & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hua Yang
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Guolan Liu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China; College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
11
|
Zhang H, Zhu S, Liu T, Wang C, Cheng Z, Zhang X, Chen L, Sheng P, Cai M, Li C, Wang J, Zhang Z, Chai J, Zhou L, Lei C, Guo X, Wang J, Wang J, Jiang L, Wu C, Wan J. DELAYED HEADING DATE1 interacts with OsHAP5C/D, delays flowering time and enhances yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:531-539. [PMID: 30107076 PMCID: PMC6335081 DOI: 10.1111/pbi.12996] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 05/03/2023]
Abstract
Heading date is an important agronomic trait affecting crop yield. The GRAS protein family is a plant-specific super family extensively involved in plant growth and signal transduction. However, GRAS proteins are rarely reported have a role in regulating rice heading date. Here, we report a GRAS protein DHD1 (Delayed Heading Date1) delays heading and enhances yield in rice. Biochemical assays showed DHD1 physically interacts with OsHAP5C/D both in vitro and in vivo. DHD1 and OsHAP5C/D located in the nucleus and showed that rhythmic expression. Both DHD1 and OsHAP5C/D affect heading date by regulating expression of Ehd1. We propose that DHD1 interacts with OsHAP5C/D to delay heading date by inhibiting expression of Ehd1.
Collapse
Affiliation(s)
- Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Tianzhen Liu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Liping Chen
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Zhe Zhang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Juntao Chai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Liang Zhou
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
12
|
The rice TRIANGULAR HULL1 protein acts as a transcriptional repressor in regulating lateral development of spikelet. Sci Rep 2017; 7:13712. [PMID: 29057928 PMCID: PMC5651839 DOI: 10.1038/s41598-017-14146-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/06/2017] [Indexed: 11/08/2022] Open
Abstract
As a basic unit of rice inflorescence, spikelet has profound influence on grain size, weight and yield. The molecular mechanism underlying spikelet development has not been fully elucidated. Here, we identified four allelic rice mutants, s2-89, xd151, xd281 and xd425, which exhibited reduced width of spikelet, especially in the apical region. Map-based cloning revealed that all these mutants had missense mutation in the TRIANGULAR HULL1 (TH1) gene, encoding an ALOG family protein. TH1 has been shown to regulate the lateral development of spikelet, but its mode of action remains unclear. Microscopic analysis revealed that the reduction in spikelet width was caused by decreased cell size rather than cell division. The TH1 protein was shown to localize in the nucleus and possess transcriptional repression activity. TH1 could form a homodimer and point mutation in the s2-89, xd281 and xd425 mutant inhibited homodimerization. The transcriptional repression activity of TH1 was partially relieved by the His129Tyr substitution in the s2-89 mutant. Fusion of an exogenous EAR transcription suppression domain to the mutant protein TH1s2-89 could largely complemented the narrow spikelet phenotype. These results indicate that TH1 functions as a transcription repressor and regulates cell expansion during the lateral development of spikelet.
Collapse
|
13
|
Sun Y, Li Y, Huang G, Wu Q, Wang L. Application of the yeast one-hybrid technique to plant functional genomics studies. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1378595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yao Sun
- Biotechnology Laboratory, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, PR China
| | - Yao Li
- Biotechnology Laboratory, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, PR China
| | - Guoqing Huang
- Biotechnology Laboratory, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, PR China
| | - Qiong Wu
- Biotechnology Laboratory, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, PR China
| | - Lei Wang
- Biotechnology Laboratory, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, PR China
| |
Collapse
|
14
|
Zhang C, Li C, Liu J, Lv Y, Yu C, Li H, Zhao T, Liu B. The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4695-4707. [PMID: 28981779 PMCID: PMC5853872 DOI: 10.1093/jxb/erx260] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Water deprivation causes substantial losses in crop yields around the world. In this study, we show that when overexpressed in transgenic rice (Oryza sativa), the bZIP transcription factor OsABF1 confers distinctly different drought-tolerance phenotypes when tethered to the transcriptional activator VP16 versus the transcriptional repressor EAR. We performed chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) assays on transgenic rice lines and determined that OsABF1 binds to DNA sequences containing an ACGT core motif. Analysis of the overlap between the RNA-sequencing and chromatin immunoprecipitation-sequencing data identified 242 OsABF1 target genes involved in multiple aspects of the drought response. Overexpression of one of these genes, COR413-TM1, which encodes a putative thylakoid membrane protein, resulted in a drought-tolerance phenotype without obvious side effects. In addition, OsABF1 directly regulates the expression of the protein phosphatase 2C (OsPP48 and OsPP108) and bZIP (OsbZIP23, OsbZIP46, and OsbZIP72) genes, thus forming a complex feedback circuit in the drought/abscisic acid signaling pathway.
Collapse
Affiliation(s)
- Chunyu Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yandong Lv
- College of Agricultural Sciences, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunsheng Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: or
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: or
| |
Collapse
|
15
|
Zhang Y, Yu C, Lin J, Liu J, Liu B, Wang J, Huang A, Li H, Zhao T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One 2017; 12:e0180825. [PMID: 28708834 PMCID: PMC5510837 DOI: 10.1371/journal.pone.0180825] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/21/2017] [Indexed: 12/03/2022] Open
Abstract
Plant height is a major trait affecting yield potential in rice. Using a large-scale hybrid transcription factor approach, we identified the novel MYB-like transcription factor OsMPH1 (MYB-like gene of Plant Height 1), which is involved in the regulation of plant height in rice. Overexpression of OsMPH1 leads to increases of plant height and grain yield in rice, while knockdown of OsMPH1 leads to the opposite phenotypes. Microscopy of longitudinal stem sections indicated that a change in internode cell length resulted in the change in plant height. RNA sequencing (RNA-seq) analysis of transgenic rice lines showed that multiple genes related to cell elongation and cell wall synthesis, which are associated with plant height and yield phenotypes, exhibited an altered expression profile. These results imply that OsMPH1 might be involved in specific recognition and signal transduction processes related to plant height and yield formation, providing further insights into the mechanisms underlying the regulation of plant height and providing a candidate gene for the efficient improvement of rice yield.
Collapse
Affiliation(s)
- Yongxing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunsheng Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianzhong Lin
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Jun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Aobo Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (TZ); (HL)
| | - Tao Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (TZ); (HL)
| |
Collapse
|
16
|
Zhu S, Wang J, Cai M, Zhang H, Wu F, Xu Y, Li C, Cheng Z, Zhang X, Guo X, Sheng P, Wu M, Wang J, Lei C, Wang J, Zhao Z, Wu C, Wang H, Wan J. The OsHAPL1-DTH8-Hd1 complex functions as the transcription regulator to repress heading date in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:553-568. [PMID: 28043949 PMCID: PMC6055584 DOI: 10.1093/jxb/erw468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heading date is an important agronomic trait related to crop yield. Many genes related to heading date have already been identified in rice (Oryza sativa), and a complicated, preliminary regulatory genetic network has also already been established, but the protein regulatory network is poorly understood. We have identified a novel heading date regulator, Heme Activator Protein like 1 (OsHAPL1), which inhibits flowering under long-day conditions. OsHAPL1 is a nuclear-localized protein that is highly expressed in leaves in a rhythmic manner. OsHAPL1 can physically interact with Days To Heading on chromosome 8 (DTH8), which physically interacts with Heading date 1 (Hd1) both in vitro and in vivo. OsHAPL1 forms a complex with DTH8 and Hd1 in Escherichia coli. OsHAPL1, DTH8, and Hd1 physically interact with the HAP complex, and also with general transcription factors in yeast (Saccharomyces cerevisiae). Further studies showed that OsHAPL1 represses the expression of the florigen genes and FLOWERING LOCUS T 1 (RFT1) and Hd3a through Early heading date 1 (Ehd1). We propose that OsHAPL1 functions as a transcriptional regulator and, together with DTH8, Hd1, the HAP complex, and general transcription factors, regulates the expression of target genes and then affects heading date by influencing the expression of Hd3a and RFT1 through Ehd1.
Collapse
Affiliation(s)
- Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mingming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
- Correspondence:
| |
Collapse
|
17
|
Wang J, Wu F, Zhu S, Xu Y, Cheng Z, Wang J, Li C, Sheng P, Zhang H, Cai M, Guo X, Zhang X, Wang C, Wan J. Overexpression of OsMYB1R1-VP64 fusion protein increases grain yield in rice by delaying flowering time. FEBS Lett 2016; 590:3385-3396. [DOI: 10.1002/1873-3468.12374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| |
Collapse
|
18
|
Sheng P, Wu F, Tan J, Zhang H, Ma W, Chen L, Wang J, Wang J, Zhu S, Guo X, Wang J, Zhang X, Cheng Z, Bao Y, Wu C, Liu X, Wan J. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. PLANT MOLECULAR BIOLOGY 2016; 92:209-222. [PMID: 27405463 DOI: 10.1007/s11103-016-0506-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Flowering time determines the adaptability of crop plants to different local environments, thus being one of the most important agronomic traits targeted in breeding programs. Photoperiod is one of the key factors that control flowering in plant. A number of genes that participate in the photoperiod pathway have been characterized in long-day plants such as Arabidopsis, as well as in short-day plants such as Oryza sativa. Of those, CONSTANS (CO) as a floral integrator promotes flowering in Arabidopsis under long day conditions. In rice, Heading date1 (Hd1), a homologue of CO, functions in an opposite way, which inhibits flowering under long day conditions and induces flowering under short day conditions. Here, we show that another CONSTANS-like (COL) gene, OsCOL13, negatively regulates flowering in rice under both long and short day conditions. Overexpression of OsCOL13 delays flowering regardless of day length. We also demonstrated that OsCOL13 has a constitutive and rhythmic expression pattern, and that OsCOL13 is localized to the nucleus. OsCOL13 displays transcriptional activation activity in the yeast assays and likely forms homodimers in vivo. OsCOL13 suppresses the florigen genes Hd3a and RFT1 by repressing Ehd1, but has no relationship with other known Ehd1 regulators as determined by using mutants or near isogenic lines. In addition, the transcriptional level of OsCOL13 significantly decreased in the osphyb mutant, but remained unchanged in the osphya and osphyc mutants. Thus, we conclude that OsCOL13 functions as a negative regulator downstream of OsphyB and upstream of Ehd1 in the photoperiodic flowering in rice.
Collapse
Affiliation(s)
- Peike Sheng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Fuqing Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Junjie Tan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Huan Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Weiwei Ma
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Liping Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiachang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jie Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Shanshan Zhu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yiqun Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chuanyin Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, People's Republic of China.
| | - Jianmin Wan
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
19
|
OsLBD3-7 Overexpression Induced Adaxially Rolled Leaves in Rice. PLoS One 2016; 11:e0156413. [PMID: 27258066 PMCID: PMC4892467 DOI: 10.1371/journal.pone.0156413] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/13/2016] [Indexed: 01/25/2023] Open
Abstract
Appropriate leaf rolling enhances erect-leaf habits and photosynthetic efficiency, which consequently improves grain yield. Here, we reported the novel lateral organ boundaries domain (LBD) gene OsLBD3-7, which is involved in the regulation of leaf rolling. OsLBD3-7 works as a transcription activator and its protein is located on the plasma membrane and in the nucleus. Overexpression of OsLBD3-7 leads to narrow and adaxially rolled leaves. Microscopy of flag leaf cross-sections indicated that overexpression of OsLBD3-7 led to a decrease in both bulliform cell size and number. Transcriptional analysis showed that key genes that had been reported to be negative regulators of bulliform cell development were up-regulated in transgenic plants. These results indicated that OsLBD3-7 might acts as an upstream regulatory gene of bulliform cell development to regulate leaf rolling, which will give more insights on the leaf rolling regulation mechanism.
Collapse
|