1
|
Hossain A, Gnanagobal H, Cao T, Chakraborty S, Chukwu-Osazuwa J, Soto-Dávila M, Vasquez I, Santander J. Role of cold shock proteins B and D in Aeromonas salmonicida subsp. salmonicida physiology and virulence in lumpfish ( Cyclopterus lumpus). Infect Immun 2024; 92:e0001124. [PMID: 38920386 PMCID: PMC11320987 DOI: 10.1128/iai.00011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.
Collapse
Affiliation(s)
- Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Manuel Soto-Dávila
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| |
Collapse
|
2
|
Cardoza E, Singh H. From Stress Tolerance to Virulence: Recognizing the Roles of Csps in Pathogenicity and Food Contamination. Pathogens 2024; 13:69. [PMID: 38251376 PMCID: PMC10819108 DOI: 10.3390/pathogens13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Be it for lab studies or real-life situations, bacteria are constantly exposed to a myriad of physical or chemical stresses that selectively allow the tolerant to survive and thrive. In response to environmental fluctuations, the expression of cold shock domain family proteins (Csps) significantly increases to counteract and help cells deal with the harmful effects of stresses. Csps are, therefore, considered stress adaptation proteins. The primary functions of Csps include chaperoning nucleic acids and regulating global gene expression. In this review, we focus on the phenotypic effects of Csps in pathogenic bacteria and explore their involvement in bacterial pathogenesis. Current studies of csp deletions among pathogenic strains indicate their involvement in motility, host invasion and stress tolerance, proliferation, cell adhesion, and biofilm formation. Through their RNA chaperone activity, Csps regulate virulence-associated genes and thereby contribute to bacterial pathogenicity. Additionally, we outline their involvement in food contamination and discuss how foodborne pathogens utilize the stress tolerance roles of Csps against preservation and sanitation strategies. Furthermore, we highlight how Csps positively and negatively impact pathogens and the host. Overall, Csps are involved in regulatory networks that influence the expression of genes central to stress tolerance and virulence.
Collapse
Affiliation(s)
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle West, Mumbai 400056, India
| |
Collapse
|
3
|
Albicoro FJ, Vacca C, Cafiero JH, Draghi WO, Martini MC, Goulian M, Lagares A, Del Papa MF. Comparative Proteomic Analysis Revealing ActJ-Regulated Proteins in Sinorhizobium meliloti. J Proteome Res 2023; 22:1682-1694. [PMID: 37017314 PMCID: PMC10834056 DOI: 10.1021/acs.jproteome.2c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.
Collapse
Affiliation(s)
- Francisco Javier Albicoro
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Hilario Cafiero
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Carla Martini
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA. USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA. USA
| | - Antonio Lagares
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
4
|
Chen Y, Fu Y, Kong L, Wang F, Peng X, Zhang Z, Shi Q, Wu Q, Wu T. Pal Affects the Proliferation in Macrophages and Virulence of Brucella, and as Mucosal Adjuvants, Provides an Effective Protection to Mice Against Salmonella Enteritidis. Curr Microbiol 2023; 80:2. [PMID: 36418790 PMCID: PMC9684781 DOI: 10.1007/s00284-022-03107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to elucidate the roles of peptidoglycan-associated lipoprotein (Pal protein) in the proliferation of Brucella in macrophage and bacterial virulence, and to evaluate the immune effect of Pal protein to Salmonella enteritidis. Murine macrophage-like cell line Raw264.7 was stimulated by recombinant Pal protein, and the expression of TNF-α and IFN-γ were up-regulated, but not it of IL-1β and IL-6. The macrophages infection and in vitro simulated stress assays showed that deletion of pal gene reduced the proliferation of Brucella in macrophages, the survival in acidic, oxidative and polymyxin B-contained environment. The mice infection assay showed that mice challenged with the pal mutant strain were found to have more severe splenomegaly, but less bacterial load. After oral immunization of mice, Pal protein induced a higher titer of mucosal and humoral antibody (IgA and IgG) against heat-killed Salmonella enteritidis, and a stronger Th1 cellular immune response. The challengte experiments showed Pal protein elevated the survival rate and reduced the bacterial load of spleens in immunized mice. In conclusion, our results revealed the important roles of pal gene in Brucella virulence, and Pal protein was a potentially valuable adjuvant against mucosal pathogens, such as Salmonella enteritidis.
Collapse
Affiliation(s)
- Yubin Chen
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, NO.123, Road Xueyuan, District Changli, Qinhuangdao, 066600, People's Republic of China
| | - Yanfang Fu
- Hebei Provincial Animal Husbandry Station, Shijiazhuang, People's Republic of China
| | - Lingcong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| | - Fengjie Wang
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, NO.123, Road Xueyuan, District Changli, Qinhuangdao, 066600, People's Republic of China
| | - Xiaowei Peng
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Zhiqiang Zhang
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, NO.123, Road Xueyuan, District Changli, Qinhuangdao, 066600, People's Republic of China
| | - Qiumei Shi
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, NO.123, Road Xueyuan, District Changli, Qinhuangdao, 066600, People's Republic of China
| | - Qingmin Wu
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Tonglei Wu
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, NO.123, Road Xueyuan, District Changli, Qinhuangdao, 066600, People's Republic of China.
| |
Collapse
|
5
|
Muchaamba F, von Ah U, Stephan R, Stevens MJA, Tasara T. Deciphering the global roles of Cold shock proteins in Listeria monocytogenes nutrient metabolism and stress tolerance. Front Microbiol 2022; 13:1057754. [PMID: 36605504 PMCID: PMC9808409 DOI: 10.3389/fmicb.2022.1057754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes (Lm) accounts for serious public health and food safety problems owing to its stress resilience and pathogenicity. Based on their regulatory involvement in global gene expression events, cold-shock domain family proteins (Csps) are crucial in expression of various stress fitness and virulence phenotypes in bacteria. Lm possesses three Csps (CspA, CspB, and CspD) whose regulatory roles in the context of the genetic diversity of this bacterium are not yet fully understood. We examined the impacts of Csps deficiency on Lm nutrient metabolism and stress tolerance using a set of csp deletion mutants generated in different genetic backgrounds. Phenotype microarrays (PM) analysis showed that the absence of Csps in ∆cspABD reduces carbon (C-) source utilization capacity and increases Lm sensitivity to osmotic, pH, various chemical, and antimicrobial stress conditions. Single and double csp deletion mutants in different Lm genetic backgrounds were used to further dissect the roles of individual Csps in these phenotypes. Selected PM-based observations were further corroborated through targeted phenotypic assays, confirming that Csps are crucial in Lm for optimal utilization of various C-sources including rhamnose and glucose as well as tolerance against NaCl, β-phenyethylamine (PEA), and food relevant detergent stress conditions. Strain and genetic lineage background-based differences, division of labour, epistasis, and functional redundancies among the Csps were uncovered with respect to their roles in various processes including C-source utilization, cold, and PEA stress resistance. Finally, targeted transcriptome analysis was performed, revealing the activation of csp gene expression under defined stress conditions and the impact of Csps on expression regulation of selected rhamnose utilization genes. Overall, our study shows that Csps play important roles in nutrient utilization and stress responses in Lm strains, contributing to traits that are central to the public health and food safety impacts of this pathogen.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland,*Correspondence: Francis Muchaamba,
| | | | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J. A. Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Muchaamba F, Wambui J, Stephan R, Tasara T. Cold Shock Proteins Promote Nisin Tolerance in Listeria monocytogenes Through Modulation of Cell Envelope Modification Responses. Front Microbiol 2022; 12:811939. [PMID: 35003042 PMCID: PMC8740179 DOI: 10.3389/fmicb.2021.811939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes continues to be a food safety challenge owing to its stress tolerance and virulence traits. Several listeriosis outbreaks have been linked to the consumption of contaminated ready-to-eat food products. Numerous interventions, including nisin application, are presently employed to mitigate against L. monocytogenes risk in food products. In response, L. monocytogenes deploys several defense mechanisms, reducing nisin efficacy, that are not yet fully understood. Cold shock proteins (Csps) are small, highly conserved nucleic acid-binding proteins involved in several gene regulatory processes to mediate various stress responses in bacteria. L. monocytogenes possesses three csp gene paralogs; cspA, cspB, and cspD. Using a panel of single, double, and triple csp gene deletion mutants, the role of Csps in L. monocytogenes nisin tolerance was examined, demonstrating their importance in nisin stress responses of this bacterium. Without csp genes, a L. monocytogenes ΔcspABD mutant displayed severely compromised growth under nisin stress. Characterizing single (ΔcspA, ΔcspB, and ΔcspD) and double (ΔcspBD, ΔcspAD, and ΔcspAB) csp gene deletion mutants revealed a hierarchy (cspD > cspB > cspA) of importance in csp gene contributions toward the L. monocytogenes nisin tolerance phenotype. Individual eliminations of either cspA or cspB improved the nisin stress tolerance phenotype, suggesting that their expression has a curbing effect on the expression of nisin resistance functions through CspD. Gene expression analysis revealed that Csp deficiency altered the expression of DltA, MprF, and penicillin-binding protein-encoding genes. Furthermore, the ΔcspABD mutation induced an overall more electronegative cell surface, enhancing sensitivity to nisin and other cationic antimicrobials as well as the quaternary ammonium compound disinfectant benzalkonium chloride. These observations demonstrate that the molecular functions of Csps regulate systems important for enabling the constitution and maintenance of an optimal composed cell envelope that protects against cell-envelope-targeting stressors, including nisin. Overall, our data show an important contribution of Csps for L. monocytogenes stress protection in food environments where antimicrobial peptides are used. Such knowledge can be harnessed in the development of better L. monocytogenes control strategies. Furthermore, the potential that Csps have in inducing cross-protection must be considered when combining hurdle techniques or using them in a series.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| |
Collapse
|
7
|
Rang J, Li Y, Cao L, Shuai L, Liu Y, He H, Wan Q, Luo Y, Yu Z, Zhang Y, Sun Y, Ding X, Hu S, Xie Q, Xia L. Deletion of a hybrid NRPS-T1PKS biosynthetic gene cluster via Latour gene knockout system in Saccharopolyspora pogona and its effect on butenyl-spinosyn biosynthesis and growth development. Microb Biotechnol 2021; 14:2369-2384. [PMID: 33128503 PMCID: PMC8601190 DOI: 10.1111/1751-7915.13694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
Butenyl-spinosyn, a promising biopesticide produced by Saccharopolyspora pogona, exhibits stronger insecticidal activity and a broader pesticidal spectrum. However, its titre in the wild-type S. pogona strain is too low to meet the industrial production requirements. Deletion of non-target natural product biosynthetic gene clusters resident in the genome of S. pogona could reduce the consumption of synthetic precursors, thereby promoting the biosynthesis of butenyl-spinosyn. However, it has always been a challenge for scientists to genetically engineer S. pogona. In this study, the Latour gene knockout system (linear DNA fragment recombineering system) was established in S. pogona. Using the Latour system, a hybrid NRPS-T1PKS cluster (˜20 kb) which was responsible for phthoxazolin biosynthesis was efficiently deleted in S. pogona. The resultant mutant S. pogona-Δura4-Δc14 exhibited an extended logarithmic phase, increased biomass and a lower glucose consumption rate. Importantly, the production of butenyl-spinosyn in S. pogona-Δura4-Δc14 was increased by 4.72-fold compared with that in the wild-type strain. qRT-PCR analysis revealed that phthoxazolin biosynthetic gene cluster deletion could promote the expression of the butenyl-spinosyn biosynthetic gene cluster. Furthermore, a TetR family transcriptional regulatory gene that could regulate the butenyl-spinosyn biosynthesis has been identified from the phthoxazolin biosynthetic gene cluster. Because dozens of natural product biosynthetic gene clusters exist in the genome of S. pogona, the strategy reported here will be used to further promote the production of butenyl-spinosyn by deleting other secondary metabolite synthetic gene clusters.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of ResourcesCollege of Chemistry and Chemical EngineeringHunan Normal UniversityChangsha410081China
| | - Yunlong Li
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Qianqian Wan
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Yuewen Luo
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Youming Zhang
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of ResourcesCollege of Chemistry and Chemical EngineeringHunan Normal UniversityChangsha410081China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| |
Collapse
|
8
|
Listeria monocytogenes Cold Shock Proteins: Small Proteins with A Huge Impact. Microorganisms 2021; 9:microorganisms9051061. [PMID: 34068949 PMCID: PMC8155936 DOI: 10.3390/microorganisms9051061] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes has evolved an extensive array of mechanisms for coping with stress and adapting to changing environmental conditions, ensuring its virulence phenotype expression. For this reason, L. monocytogenes has been identified as a significant food safety and public health concern. Among these adaptation systems are cold shock proteins (Csps), which facilitate rapid response to stress exposure. L. monocytogenes has three highly conserved csp genes, namely, cspA, cspB, and cspD. Using a series of csp deletion mutants, it has been shown that L. monocytogenes Csps are important for biofilm formation, motility, cold, osmotic, desiccation, and oxidative stress tolerance. Moreover, they are involved in overall virulence by impacting the expression of virulence-associated phenotypes, such as hemolysis and cell invasion. It is postulated that during stress exposure, Csps function to counteract harmful effects of stress, thereby preserving cell functions, such as DNA replication, transcription and translation, ensuring survival and growth of the cell. Interestingly, it seems that Csps might suppress tolerance to some stresses as their removal resulted in increased tolerance to stresses, such as desiccation for some strains. Differences in csp roles among strains from different genetic backgrounds are apparent for desiccation tolerance and biofilm production. Additionally, hierarchical trends for the different Csps and functional redundancies were observed on their influences on stress tolerance and virulence. Overall current data suggest that Csps have a wider role in bacteria physiology than previously assumed.
Collapse
|
9
|
Rajendhran J. Genomic insights into Brucella. INFECTION GENETICS AND EVOLUTION 2020; 87:104635. [PMID: 33189905 DOI: 10.1016/j.meegid.2020.104635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
Brucellosis is a zoonotic disease caused by certain species of Brucella. Each species has its preferred host animal, though it can infect other animals too. For a longer period, only six classical species were recognized in the genus Brucella. No vaccine is available for human brucellosis. Therefore, human brucellosis can be controlled only by controlling brucellosis in animals. The genus is now expanding with the newly isolated atypical strains from various animals, including marine mammals. Presently, 12 species of Brucella have been recognized. The first genome of Brucella was released in 2002, and today, we have more than 1500 genomes of Brucella spp. isolated worldwide. Multiple genome sequences are available for the major zoonotic species, B. abortus, B. melitensis, and B. suis. The Brucella genome has two chromosomes with the approximate sizes of 2.1 and 1.2 Mbp. The genome of Brucella is highly conserved across all the species at the nucleotide level. One of the unanswered questions is what makes host preference in different species of Brucella. Here, I summarize the recent advancements in the Brucella genomics research.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
10
|
Narra HP, Sahni A, Alsing J, Schroeder CLC, Golovko G, Nia AM, Fofanov Y, Khanipov K, Sahni SK. Comparative transcriptomic analysis of Rickettsia conorii during in vitro infection of human and tick host cells. BMC Genomics 2020; 21:665. [PMID: 32977742 PMCID: PMC7519539 DOI: 10.1186/s12864-020-07077-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pathogenic Rickettsia species belonging to the spotted fever group are arthropod-borne, obligate intracellular bacteria which exhibit preferential tropism for host microvascular endothelium in the mammalian hosts, resulting in disease manifestations attributed primarily to endothelial damage or dysfunction. Although rickettsiae are known to undergo evolution through genomic reduction, the mechanisms by which these pathogens regulate their transcriptome to ensure survival in tick vectors and maintenance by transovarial/transstadial transmission, in contrast to their ability to cause debilitating infections in human hosts remain unknown. In this study, we compare the expression profiles of rickettsial sRNAome/transcriptome and determine the transcriptional start sites (TSSs) of R. conorii transcripts during in vitro infection of human and tick host cells. RESULTS We performed deep sequencing on total RNA from Amblyomma americanum AAE2 cells and human microvascular endothelial cells (HMECs) infected with R. conorii. Strand-specific RNA sequencing of R. conorii transcripts revealed the expression 32 small RNAs (Rc_sR's), which were preferentially expressed above the limit of detection during tick cell infection, and confirmed the expression of Rc_sR61, sR71, and sR74 by quantitative RT-PCR. Intriguingly, a total of 305 and 132 R. conorii coding genes were differentially upregulated (> 2-fold) in AAE2 cells and HMECs, respectively. Further, enrichment for primary transcripts by treatment with Terminator 5'-Phosphate-dependent Exonuclease resulted in the identification of 3903 and 2555 transcription start sites (TSSs), including 214 and 181 primary TSSs in R. conorii during the infection to tick and human host cells, respectively. Seventy-five coding genes exhibited different TSSs depending on the host environment. Finally, we also observed differential expression of 6S RNA during host-pathogen and vector-pathogen interactions in vitro, implicating an important role for this noncoding RNA in the regulation of rickettsial transcriptome depending on the supportive host niche. CONCLUSIONS In sum, the findings of this study authenticate the presence of novel Rc_sR's in R. conorii, reveal the first evidence for differential expression of coding transcripts and utilization of alternate transcriptional start sites depending on the host niche, and implicate a role for 6S RNA in the regulation of coding transcriptome during tripartite host-pathogen-vector interactions.
Collapse
Affiliation(s)
- Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jessica Alsing
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Casey L C Schroeder
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anna M Nia
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
11
|
Peng X, Liu Y, Qin Y, Jiang H, Feng Y, Sun J, Niu K, Gao Q, Dong H, Ding J. Comparative Transcriptome Analysis of Artificially Induced Rough-Mutant Brucella Strain RM57 and Its Parent Strain Brucella melitensis M1981. Front Vet Sci 2020; 6:459. [PMID: 31998758 PMCID: PMC6966878 DOI: 10.3389/fvets.2019.00459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/28/2019] [Indexed: 01/28/2023] Open
Abstract
Brucellosis is one of the most common zoonotic epidemics with a serious threat to public health and livestock development in many countries across the world. Vaccination is a key control strategy toward preventing brucellosis in high-prevalence regions. Recently, a rough-type Brucella melitensis mutant strain (RM57) induced from a B. melitensis strain M1981 showed protective effects in guinea pigs indicating that it is a good vaccine candidate. In this study, stress response assays were performed to reveal the mechanisms underlying virulence attenuation of RM57. In addition, a genome-wide transcriptome profile of RM57 was analyzed relative to the parent strain M1981 in order to reveal genetic factors controlling the phenotypes. Our results indicated a similar sensitivity to various stress conditions in RM57 owing to a lack of significant differences from its parent strain. Transcriptome analysis showed that a total of 1,205 genes were differentially expressed between RM57 and M1981 with gene ontology terms revealing that these genes are involved in energy production and conversion, translation, ribosomal structure, and biogenesis. Pathway enrichment analysis revealed that genes involved in oxidative phosphorylation, ribosome, nitrogen metabolism, tyrosine metabolism, and two-component system were significantly affected. As a result of these differences at the molecular level, the function of type IV secretion system in RM57 was found to be affected leading to reduced virulence of the RM57 mutant strain in both macrophage and mice infection models.
Collapse
Affiliation(s)
- Xiaowei Peng
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Yufu Liu
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China.,South China Agricultural University, Guangzhou, China.,Zhaoqing Institute of Biotechnology Co., Ltd, Zhaoqing, China
| | - Yuming Qin
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Hui Jiang
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Yu Feng
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Jiali Sun
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Kai Niu
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Qiang Gao
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Hao Dong
- China Animal Disease Control Center, Beijing, China
| | - Jiabo Ding
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
12
|
Meta-Analysis of the Changes of Peripheral Blood T Cell Subsets in Patients with Brucellosis. J Immunol Res 2018; 2018:8439813. [PMID: 29888294 PMCID: PMC5985067 DOI: 10.1155/2018/8439813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is one of the most prevalent zoonotic diseases in the world, but its pathogenesis is not very clear. At present, it is thought that it may be related to the immunity of T cells. The conclusions of related studies are inconsistent, and its clinical significance is not explicit. We searched published articles in electronic databases up to December 2017 identified as relating to the clinical features of human brucellosis in China. Only eight studies had sufficient quality for data extraction. Meta-analysis showed a significantly decreased proportion of CD4+ T cells in human brucellosis patients compared to healthy subject individuals. The frequency of CD8+ T cells was significantly higher in human brucellosis patients than that in the healthy control group. The pooled analysis presented a significant decrease of the CD4+/CD8+ ratio in human brucellosis patients compared to healthy subjects. There is immunologic dysfunction of T lymphocyte in patients with human brucellosis, the CD4+ and CD8+ T cells might be the important factors affecting the progress of brucellosis.
Collapse
|
13
|
Abstract
Abstract
Brucellosis is one of the most prevalent zoonoses in the world. Incidence of the disease has increased significantly in recent years and has seriously affected the health of human beings and the development of animal husbandry. The pathogenesis of brucellosis remains unclear. Current studies suggest that this disease may be related to changes in natural killer cells, dendritic cells, and macrophages in immune cell subsets. Brucellosis may be also related to T helper (Th) 1 cell/Th2 cell imbalance in the CD4+ T cell subset, immunoregulation of regulatory T cells and Th17 cells, and the mechanism of action of CD8+ T cell. This paper aims to review the research progress on these inherent immune cells, the CD4+ T cell subset, and CD8+ T cells in Brucella infection.
Collapse
|
14
|
Eshwar AK, Guldimann C, Oevermann A, Tasara T. Cold-Shock Domain Family Proteins (Csps) Are Involved in Regulation of Virulence, Cellular Aggregation, and Flagella-Based Motility in Listeria monocytogenes. Front Cell Infect Microbiol 2017; 7:453. [PMID: 29124040 PMCID: PMC5662587 DOI: 10.3389/fcimb.2017.00453] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Cold shock-domain family proteins (Csps) are highly conserved nucleic acid binding proteins regulating the expression of various genes including those involved in stress resistance and virulence in bacteria. We show here that Csps are involved in virulence, cell aggregation and flagella-based extracellular motility of Listeria monocytogenes. A L. monocytogenes mutant deleted in all three csp genes (ΔcspABD) is attenuated with respect to human macrophage infection as well as virulence in a zebrafish infection model. Moreover, this mutant is incapable of aggregation and fails to express surface flagella or exhibit swarming motility. An evaluation of double csp gene deletion mutant (ΔcspBD, ΔcspAD and ΔcspAB) strains that produce single csp genes showed that there is redundancy as well as functional differences among the three L. monocytogenes Csps in their contributions to virulence, cellular aggregation, flagella production, and swarming motility. Protein and mRNA expression analysis further showed impaired expression of key virulence and motility genes in the csp mutants. Our observations at protein and mRNA level suggest Csp-dependent expression regulation of these genes at transcriptional and post-transcriptional levels. In a mutant lacking all csp genes (ΔcspABD) as well as those possessing single csp genes (ΔcspBD, ΔcspAD, and ΔcspAB) we detected reduced levels of proteins or activity as well as transcripts from the prfA, hly, mpl, and plcA genes suggesting a Csp-dependent transcriptional regulation of these genes. These csp mutants also had reduced or completely lacked ActA proteins and cell surface flagella but contained elevated actA and flaA mRNA levels compared to the parental wild type strain suggesting Csp involvement in post-transcriptional regulation of these genes. Overall, our results suggest that Csps contribute to the expression regulation of virulence and flagella-associated genes thereby promoting host pathogenicity, cell aggregation and flagella-based motility processes in L. monocytogenes.
Collapse
Affiliation(s)
- Athmanya K. Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Claudia Guldimann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Anna Oevermann
- Neuropathology—Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Hop HT, Arayan LT, Reyes AWB, Huy TXN, Min W, Lee HJ, Son JS, Kim S. Simultaneous RNA-seq based transcriptional profiling of intracellular Brucella abortus and B. abortus-infected murine macrophages. Microb Pathog 2017; 113:57-67. [PMID: 29054743 DOI: 10.1016/j.micpath.2017.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
Abstract
Brucella is a zoonotic pathogen that survives within macrophages; however the replicative mechanisms involved are not fully understood. We describe the isolation of sufficient Brucella abortus RNA from primary host cell environment using modified reported methods for RNA-seq analysis, and simultaneously characterize the transcriptional profiles of intracellular B. abortus and bone marrow-derived macrophages (BMM) from BALB/c mice at 24 h (replicative phase) post-infection. Our results revealed that 25.12% (801/3190) and 16.16% (515/3190) of the total B. abortus genes were up-regulated and down-regulated at >2-fold, respectively as compared to the free-living B. abortus. Among >5-fold differentially expressed genes, the up-regulated genes are mostly involved in DNA, RNA manipulations as well as protein biosynthesis and secretion while the down-regulated genes are mainly involved in energy production and metabolism. On the other hand, the host responses during B. abortus infection revealed that 14.01% (6071/43,346) of BMM genes were reproducibly transcribed at >5-fold during infection. Transcription of cytokines, chemokines and transcriptional factors, such as tumor necrosis factor (Tnf), interleukin-1α (Il1α), interleukin-1β (Il1β), interleukin-6 (Il6), interleukin-12 (Il12), chemokine C-X-C motif (CXCL) family, nuclear factor kappa B (Nf-κb), signal transducer and activator of transcription 1 (Stat1), that may contribute to host defense were markedly induced while transcription of various genes involved in cell proliferation and metabolism were suppressed upon B. abortus infection. In conclusion, these data suggest that Brucella modulates gene expression in hostile intracellular environment while simultaneously alters the host pathways that may lead to the pathogen's intracellular survival and infection.
Collapse
Affiliation(s)
- Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jee Soo Son
- iNtRON Biotechnology, Inc., Room 903, JungAng Induspia, 137, Sagimakgol-ro, Jungwon-gu, Seongnam, Gyeonggi-do 13202, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
16
|
The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response. Infect Immun 2016; 84:3458-3470. [PMID: 27672085 DOI: 10.1128/iai.00531-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/19/2016] [Indexed: 11/20/2022] Open
Abstract
Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.
Collapse
|
17
|
Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindström M, Korkeala H. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia. Front Microbiol 2016; 7:1151. [PMID: 27499753 PMCID: PMC4956666 DOI: 10.3389/fmicb.2016.01151] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/11/2016] [Indexed: 02/04/2023] Open
Abstract
Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp) as a response to rapid temperature downshift (cold shock). During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0°C and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia.
Collapse
Affiliation(s)
- Riikka Keto-Timonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| | - Nina Hietala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| | - Eveliina Palonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| | - Anna Hakakorpi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| |
Collapse
|