1
|
Marciniak B, Kciuk M, Mujwar S, Sundaraj R, Bukowski K, Gruszka R. In Vitro and In Silico Investigation of BCI Anticancer Properties and Its Potential for Chemotherapy-Combined Treatments. Cancers (Basel) 2023; 15:4442. [PMID: 37760412 PMCID: PMC10526149 DOI: 10.3390/cancers15184442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND DUSP6 phosphatase serves as a negative regulator of MAPK kinases involved in numerous cellular processes. BCI has been identified as a potential allosteric inhibitor with anticancer activity. Our study was designed to test the anticancer properties of BCI in colon cancer cells, to characterize the effect of this compound on chemotherapeutics such as irinotecan and oxaliplatin activity, and to identify potential molecular targets for this inhibitor. METHODS BCI cytotoxicity, proapoptotic activity, and cell cycle distribution were investigated in vitro on three colon cancer cell lines (DLD1, HT-29, and Caco-2). In silico investigation was prepared to assess BCI drug-likeness and identify potential molecular targets. RESULTS The exposure of colorectal cancer cells with BCI resulted in antitumor effects associated with cell cycle arrest and induction of apoptosis. BCI exhibited strong cytotoxicity on DLD1, HT-29, and Caco-2 cells. BCI showed no significant interaction with irinotecan, but strongly attenuated the anticancer activity of oxaliplatin when administered together. Analysis of synergy potential further confirmed the antagonistic interaction between these two compounds. In silico investigation indicated CDK5 as a potential new target of BCI. CONCLUSIONS Our studies point to the anticancer potential of BCI but note the need for a precise mechanism of action.
Collapse
Affiliation(s)
- Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Rajamanikandan Sundaraj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| | - Renata Gruszka
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| |
Collapse
|
2
|
Bayat H, Pourgholami MH, Rahmani S, Pournajaf S, Mowla SJ. Synthetic miR-21 decoy circularized by tRNA splicing mechanism inhibited tumorigenesis in glioblastoma in vitro and in vivo models. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:432-444. [PMID: 37181451 PMCID: PMC10173299 DOI: 10.1016/j.omtn.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is the deadliest primary central nervous system tumor. miRNAs (miRs), a class of non-coding RNAs, are considered pivotal post-transcriptional regulators of cell signaling pathways. miR-21 is a reliable oncogene that promotes tumorigenesis of cancer cells. We first performed an in silico analysis on 10 microarray datasets retrieved from TCGA and GEO databases to elucidate top differentially expressed miRs. Furthermore, we generated a circular miR-21 decoy, CM21D, using the tRNA-splicing mechanism in GBM cell models, U87 and C6. The inhibitory efficacy of CM21D with that of a linear form, LM21D, was compared under in vitro conditions and an intracranial C6 rat glioblastoma model. miR-21 significantly overexpressed in GBM samples and confirmed in GBM cell models using qRT-PCR. CM21D was more efficient than LM21D at inducing apoptosis, inhibiting cell proliferation and migration, and interrupting the cell cycle by restoring the expression of miR-21 target genes at RNA and protein levels. Moreover, CM21D suppressed tumor growth more effectively than LM21D in the C6-rat GBM model (p < 0.001). Our findings validate miR-21 as a promising therapeutic target for GBM. The introduced CM21D by sponging miR-21 reduced tumorigenesis of GBM and can be considered a potential RNA-base therapy to inhibit cancers.
Collapse
Affiliation(s)
- Hadi Bayat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | | | - Saeid Rahmani
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| |
Collapse
|
3
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Protopanaxatriol-type saponin protects against acetaminophen-induced liver injury through ROS-mediated JNK pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
5
|
Zhu L, Lu F, Jia X, Yan Q, Zhang X, Mu P. Amyloid-β (25-35) regulates neuronal damage and memory loss via SIRT1/Nrf2 in the cortex of mice. J Chem Neuroanat 2021; 114:101945. [PMID: 33716102 DOI: 10.1016/j.jchemneu.2021.101945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/30/2021] [Accepted: 03/09/2021] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. AD is pathologically characterized by synaptic dysfunction and cognitive decline due to the aggregation of a large amount of amyloid-β (Aβ) protein in the brain. However, recent studies have discovered that the Aβ is produced as an antimicrobial peptide that acts against bacteria and viruses. This has renewed interest in the effect of Aβ on AD. Thus, in this study, we investigated the different concentrations of Aβ25-35 on neuroprotection and further explore the related mechanisms. Firstly, we detected the cognitive function using the Y-maze test, novel object recognition memory task and Morris water maze test. Then, we analyzed the ultrastructure of synapses and mitochondria, in addition to evaluating SOD levels. We also examined the effect of Aβ25-35 on the viability and structure of the primary neurons. The western blot analysis was used to measure the protein levels. The results showed that mice treated with high concentration of Aβ25-35 impaired the learning-memory ability and disordered the structure of neurons and mitochondria. Meanwhile, high concentration of Aβ25-35 decreased the SIRT1/Nrf2 related antioxidant capacity and induced apoptosis. In contrast, mice treated with low concentration of Aβ25-35 increased SOD levels and SIRT1/Nrf2 expressions, and induced autophagy. Our data suggest that low concentration of Aβ25-35 may increase SOD levels through SIRT1/Nrf2 and induce autophagy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China; Center for Precision Medicine, Shenyang Medical Colleges, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China; Key Laboratory of Environment Pollution and Microecology, Shenyang Medical Colleges, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China
| | - Fangjin Lu
- Department of Pharmacology, Shenyang Medical Colleges, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China
| | - Xiaoyu Jia
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China
| | - Qiuying Yan
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China
| | - Xiaoran Zhang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China
| | - Ping Mu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China; Center for Precision Medicine, Shenyang Medical Colleges, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China; Key Laboratory of Environment Pollution and Microecology, Shenyang Medical Colleges, 146 Huanghe North Street, Yuhong District, Shenyang, Liaoning, 110034, People's Republic of China.
| |
Collapse
|
6
|
Priyanga J, Sharan Kumar B, Mahalakshmi R, Nirekshana K, Vinoth P, Sridharan V, Bhakta-Guha D, Guha G. A novel indenone derivative selectively induces senescence in MDA-MB-231 (breast adenocarcinoma) cells. Chem Biol Interact 2020; 331:109250. [PMID: 32956706 DOI: 10.1016/j.cbi.2020.109250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/27/2020] [Accepted: 08/28/2020] [Indexed: 11/15/2022]
Abstract
Triple-negative breast cancer is the most aggressive form of breast cancer with limited intervention options. Moreover, a number of belligerent therapeutic strategies adopted to treat such aggressive forms of cancer have demonstrated detrimental side effects. This necessitates exploration of targeted chemotherapeutics. We assessed the efficacy of a novel indenone derivative (nID) [(±)-N-(2-(-5-methoxy-1-oxo-3-(2-oxo-2-phenylethyl)-2,3-dihydro-1H-inden-2-yl)ethyl)-4-methylbenzenesulfonamide], synthesized by a novel internal nucleophile-assisted palladium-catalyzed hydration-olefin insertion cascade; against triple-negative breast cancer cells (MDA-MB-231). On 24 h treatment, the nID caused decline in the viability of MDA-MB-231 and MDA-MB-468 cells, but did not significantly (P < 0.05) affect WRL-68 (epithelial-like) cells. In fact, the nID demonstrated augmentation of p53 expression, and consequent p53-dependent senescence in both MDA-MB-231 and MDA-MB-468 cells, but not in WRL-68 cells. The breast cancer cells also exhibited reduced proliferation, downregulated p65/NF-κB and survivin, along with augmented p21Cip1/WAF1 expression, on treatment with the nID. This ensued cell cycle arrest at G1 stage, which might have driven the MDA-MB-231 cells to senescence. We observed a selectivity of the nID to target MDA-MB-231 cells, whereas WRL-68 cells did not show any considerable effect. The results underscored that the nID has potential to be developed into a cancer therapeutic.
Collapse
Affiliation(s)
- J Priyanga
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - B Sharan Kumar
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - R Mahalakshmi
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - K Nirekshana
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - P Vinoth
- Department of Chemistry, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu, India
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India.
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory, Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
7
|
Synthesis, characterization, anti-proliferative properties and DNA binding of benzochromene derivatives: Increased Bax/Bcl-2 ratio and caspase-dependent apoptosis in colorectal cancer cell line. Bioorg Chem 2019; 93:103329. [PMID: 31590040 DOI: 10.1016/j.bioorg.2019.103329] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Accepted: 09/28/2019] [Indexed: 01/13/2023]
Abstract
3-Amino-1-aryl-1H-benzo[f]chromene-2-carbonitrile derivatives were synthesized from three-component reaction of arylaldehyde, malononitrile and 2-naphthol in the presence of 1, 4-bis(4-ferrocenylbutyl)piperazine as a new catalyst. Cytotoxic potencies of the compounds were tested on HT-29 cells. 3-Amino-1-(4-fluorophenyl)-1H-benzo[f]chromene-2-carbonitrile (4c) was more active among these compounds and was selected for further studies. Apoptosis was investigated by acridine orange/ethidium bromide (AO/EtBr) double staining and flow cytometry. The qRT-PCR was used to analyze the expression of pro- and anti-apoptotic genes. The binding attributes of 4c with calf thymus DNA (ctDNA) was examined using multi-spectroscopic measurements. We found that 4c had potent cytotoxic activity against HT-29 cells with an IC50 value of 60 µM through induction of cell cycle arrest in the sub-G1 phase and apoptosis. RT-PCR analysis demonstrated down-regulation of Bcl-2 expression, while the expression of Bax, caspase-3, -8 and -9 genes was up-regulated in HT-29 cells incubated with 4c compared with control cells. These studies revealed that 4c interacts with DNA through groove binding mode with the intrinsic binding constant (Kb) of 3 × 102 M-1. Thus, 4c is a valuable candidate for further evaluation as a new series of potent chemotherapeutic family in colon cancer treatment.
Collapse
|
8
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Fang L, Li F, Gu C. GDF-15: A Multifunctional Modulator and Potential Therapeutic Target in Cancer. Curr Pharm Des 2019; 25:654-662. [PMID: 30947652 DOI: 10.2174/1381612825666190402101143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Various pathological processes are associated with the aberrant expression and function of cytokines, especially those belonging to the transforming growth factor-β (TGF-β) family. Nevertheless, the functions of members of the TGF-β family in cancer progression and therapy are still uncertain. Growth differentiation factor- 15, which exists in intracellular and extracellular forms, is classified as a divergent member of the TGF-β superfamily. It has been indicated that GDF-15 is also connected to the evolution of cancer both positively and negatively depending upon the cellular state and environment. Under normal physiological conditions, GDF-15 inhibits early tumour promotion. However, its abnormal expression in advanced cancers causes proliferation, invasion, metastasis, cancer stem cell formation, immune escape and a reduced response to therapy. As a clinical indicator, GDF-15 can be used as a tool for the diagnosis and therapy of an extensive scope of cancers. Although some basic functions of GDF-15 are noncontroversial, their mechanisms remain unclear and complicated at the molecular level. Therefore, GDF-15 needs to be further explored and reviewed.
Collapse
Affiliation(s)
- Lei Fang
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Fengzhou Li
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Chundong Gu
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
10
|
Kong D, Ding Y, Liu J, Liu R, Zhang J, Zhou Q, Long Z, Peng J, Li L, Bai H, Hai C. Chlorogenic acid prevents paraquat-induced apoptosis via Sirt1-mediated regulation of redox and mitochondrial function. Free Radic Res 2019; 53:680-693. [PMID: 31106605 DOI: 10.1080/10715762.2019.1621308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Paraquat (PQ) is a widely used agro-chemical in agriculture and highly toxic to humans. Although the mechanism of PQ poisoning is not clear, it has been well documented that reactive oxygen species (ROS) generation and apoptosis play pivotal roles. Alternatively, chlorogenic acid (CA) is a biologically active dietary polyphenol, playing several therapeutic roles. However, it is not known whether CA has protective effect on PQ-induced apoptosis. Here, we investigated the effect of CA in preventing PQ-induced apoptosis and explored the underlying mechanisms. A549 cells were pretreated with 100 µM CA for 24 h and then exposed to 160 µM PQ for 24 h. We found that CA was effective in preventing PQ-induced apoptotic features, including the release of cytochrome c from the mitochondria to cytoplasm, the cleavages of caspase 3 and caspase 9, and the increases in levels of Bcl-2-associated X protein (Bax) and intracellular calcium ions. CA alleviated ROS production and prevented the reduction of antioxidant capacity in cells exposed to PQ by increasing NF-E2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2) and glutathione levels. In addition, CA also attenuated PQ-induced alterations of mitochondrial structure and function (such as the decreases in membrane potential and adenosine triphosphate level), and the impaired autophagic flux was improved by CA. Down-regulation of sirtuin 1 (Sirt1) by short hairpin RNA reversed the protective effects of CA. Thus, CA may be viewed as a potential drug to treat PQ-induced lung epithelial cell apoptosis and other disorders with similar pathologic mechanisms.
Collapse
Affiliation(s)
- Deqin Kong
- a Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health , Air Force Medical University (Fourth Military Medical University) , Xi'an , PR China
| | - Yaqi Ding
- b Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , Nanjing , PR China
| | - Jiangzheng Liu
- a Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health , Air Force Medical University (Fourth Military Medical University) , Xi'an , PR China
| | - Rui Liu
- a Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health , Air Force Medical University (Fourth Military Medical University) , Xi'an , PR China
| | - Jiaxin Zhang
- a Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health , Air Force Medical University (Fourth Military Medical University) , Xi'an , PR China
| | - Qingbiao Zhou
- a Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health , Air Force Medical University (Fourth Military Medical University) , Xi'an , PR China
| | - Zi Long
- a Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health , Air Force Medical University (Fourth Military Medical University) , Xi'an , PR China
| | - Jie Peng
- a Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health , Air Force Medical University (Fourth Military Medical University) , Xi'an , PR China
| | - Lin Li
- b Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , Nanjing , PR China
| | - Hua Bai
- a Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health , Air Force Medical University (Fourth Military Medical University) , Xi'an , PR China
| | - Chunxu Hai
- a Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health , Air Force Medical University (Fourth Military Medical University) , Xi'an , PR China
| |
Collapse
|
11
|
Leukemia Inhibitory Factor Receptor Is Involved in Apoptosis in Rat Astrocytes Exposed to Oxygen-Glucose Deprivation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1613820. [PMID: 30937308 PMCID: PMC6415309 DOI: 10.1155/2019/1613820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
Leukemia inhibitory factor (LIF) and leukemia inhibitory factor receptor (Lifr) protect CNS cells, specifically neurons and myelin-sheath oligodendrocytes, in conditions of oxygen-glucose deprivation (OGD). In the case of astrocyte apoptosis resulting from reperfusion injury following hypoxia, the function of the Lifr remains to be fully elucidated. This study established models of in vivo ischemia/reperfusion (I/R) using an in vitro model of OGD to investigate the direct impact of silencing the Lifr on astrocyte apoptosis. Astrocytes harvested from newborn Wistar rats were exposed to OGD. Cell viability and apoptosis levels were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and annexin V/propidium iodide (PI) staining assays, respectively. Apoptosis was further investigated by the TdT-mediated dUTP nick-end labelling (TUNEL) assay. A standard western blotting protocol was applied to determine levels of the protein markers Bcl2, Bax, p-Akt/Akt, p-Stat3/Stat3, and p-Erk/Erk. The cell viability assay (MTT) showed that astrocyte viability decreased in response to OGD. Furthermore, blocking RNA to silence the Lifr further reduces astrocyte viability and increases levels of apoptosis as detected by annexin V/PI double staining. Likewise, western blotting after Lifr silencing demonstrated increased levels of the apoptosis-related proteins Bax and p-Erk/Erk and correspondingly lower levels of Bcl2, p-Akt/Akt, and p-Stat/Stat3. The data gathered in these analyses indicate that the Lifr plays a pivotal role in the astrocyte apoptosis induced by hypoxic/low-glucose environments. Further investigation of the relationship between apoptosis and the Lifr may provide a potential therapeutic target for the treatment of neurological injuries.
Collapse
|
12
|
Hao S, Yan Y, Li S, Zhao L, Zhang C, Liu L, Wang C. The In Vitro Anti-Tumor Activity of Phycocyanin against Non-Small Cell Lung Cancer Cells. Mar Drugs 2018; 16:md16060178. [PMID: 29882874 PMCID: PMC6025048 DOI: 10.3390/md16060178] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/01/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
Phycocyanin, a type of functional food colorant, is shown to have a potent anti-cancer property. Non-small cell lung cancer (NSCLC) is one of the most aggressive form of cancers with few effective therapeutic options. Previous studies have demonstrated that phycocyanin exerts a growth inhibitory effect on NSCLC A549 cells. However, its biological function and underlying regulatory mechanism on other cells still remain unknown. Here, we investigated the in vitro function of phycocyanin on three typical NSCLC cell lines, NCI-H1299, NCI-H460, and LTEP-A2, for the first time. The results showed that phycocyanin could significantly induce apoptosis, cell cycle arrest, as well as suppress cell migration, proliferation, and the colony formation ability of NSCLC cells through regulating multiple key genes. Strikingly, phycocyanin was discovered to affect the cell phenotype through regulating the NF-κB signaling of NSCLC cells. Our findings demonstrated the anti-neoplastic function of phycocyanin and provided valuable information for the regulation of phycocyanin in NSCLC cells.
Collapse
Affiliation(s)
- Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Chan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|