1
|
Fu Z, Zhao L, Guo Y, Yang J. Gene therapy for hereditary hearing loss. Hear Res 2025; 455:109151. [PMID: 39616957 DOI: 10.1016/j.heares.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Gene therapy is a technique by which exogenous genetic material is introduced into target cells to treat or prevent diseases caused by genetic mutations. Hearing loss is the most common sensory disorder. Genetic factors contribute to approximately 50 % of all cases of profound hearing loss, and more than 150 independent genes have been reported as associated with hearing loss. Recent advances in CRISPR/Cas based gene-editing tools have facilitated the development of gene therapies for hereditary hearing loss (HHL). Viral delivery vectors, and especially adeno-associated virus (AAV) vectors, have been demonstrated as safe and efficient carriers for the delivery of transgenes into inner ear cells in animal models. More importantly, AAV-mediated gene therapy can restore hearing in some children with hereditary deafness. However, there are many different types of HHL that need to be identified and evaluated to determine appropriate gene therapy options. In the present review, we summarize recent animal model-based advances in gene therapy for HHL, as well as gene therapy strategies, gene-editing tools, delivery vectors, and administration routes. We also discuss the strengths and limitations of different gene therapy methods and describe future challenges for the eventual clinical application of gene therapy for HHL.
Collapse
Affiliation(s)
- Zeming Fu
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China
| | - Liping Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130022, China
| | - Yingyuan Guo
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China
| | - Jingpu Yang
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China.
| |
Collapse
|
2
|
Wang W, Yan L, Li J, Zhang C, He Y, Li S, Xia L. Engineering a robust Cas12i3 variant-mediated wheat genome editing system. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39690508 DOI: 10.1111/pbi.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/23/2024] [Indexed: 12/19/2024]
Abstract
Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is one of the most important food crops in the world. CRISPR/Cas12i3, which belongs to the type V-I Cas system, has attracted extensive attention recently due to its smaller protein size and its less-restricted canonical 'TTN' protospacer adjacent motif (PAM). However, due to its relatively lower editing efficacy in plants and the hexaploidy complex nature of wheat, Cas12i3/Cas12i3-5M-mediated genome editing in wheat has not been documented yet. Here, we report the engineering of a robust Cas12i3-5M-mediated genome editing system in wheat through the fusion of T5 exonuclease (T5E) in combination with an optimised crRNA expression strategy (Opt). We first showed that fusion of T5E, rather than ExoI, to Cas12i3-5M increased the gene editing efficiencies by up to 1.34-fold and 3.87-fold, compared to Cas12i3-5M and Cas12i3 in HEK293T cells, respectively. However, its editing efficiency remains low in wheat. We then optimised the crRNA expression strategy and demonstrated that Opt-T5E-Cas12i3-5M could enhance the editing efficiency by 1.20- to 1.33-fold and 4.05- to 7.95-fold in wheat stable lines compared to Opt-Cas12i3-5M and Opt-Cas12i3, respectively, due to progressive 5'-end resection of the DNA strand at the cleavage site with increased deletion size. The Opt-T5E-Cas12i3-5M enabled an editing efficiency ranging from 60.71% to 90.00% across four endogenous target genes in stable lines of three elite Chinese wheat varieties. Together, the developed robust Opt-T5E-Cas12i3-5M system enriches wheat genome editing toolkits for either biological research or genetic improvement and may be extended to other important polyploidy crop species.
Collapse
Affiliation(s)
- Wenxue Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), CAAS/Hainan Seed Industry Laboratory, Sanya, Hainan Province, China
| | - Lei Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jingying Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), CAAS/Hainan Seed Industry Laboratory, Sanya, Hainan Province, China
| | - Chen Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yubing He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), CAAS/Hainan Seed Industry Laboratory, Sanya, Hainan Province, China
| | - Shaoya Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), CAAS/Hainan Seed Industry Laboratory, Sanya, Hainan Province, China
| | - Lanqin Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), CAAS/Hainan Seed Industry Laboratory, Sanya, Hainan Province, China
| |
Collapse
|
3
|
Hosseini SA, Elahian F, Mirzaei SA. Innovative genetic scissor strategies and their applications in cancer treatment and prevention: CRISPR modules and challenges. Int J Biol Macromol 2024; 279:135239. [PMID: 39218175 DOI: 10.1016/j.ijbiomac.2024.135239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
There are lots of gene editing tools for targeting genome sequences. Some are almost known, and most are a complete mystery and undiscovered. CRISPR/Cas editing tools have brought about a major revolution in medicine. Researchers have shown that CRISPR can modify DNA much more accurately, economically and easily than previous methods. CRISPR has proven itself effective for the deletion, replacement and insertion of DNA fragments into cell types, tissues and organisms. Recently, combining CRISPR/Cas with factors (transcription factors/repressors, exonucleases, endonucleases, transposons, caspase, fluorescent proteins, oxidoreductive enzymes, DNA/RNA polymerases), and elements (aptamers, barcodes, fluorescent probes, Trigger) have provided genome, transcriptome, proteome and epigenome modification. These modules are being investigated for cancer prevention and therapy and this review focuses on such innovative combinations that hopefully will become a clinical reality in the near future.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
4
|
Aghaali Z, Naghavi MR. Developing benzylisoquinoline alkaloid-enriched opium poppy via CRISPR-directed genome editing: A review. BMC PLANT BIOLOGY 2024; 24:700. [PMID: 39048937 PMCID: PMC11267691 DOI: 10.1186/s12870-024-05412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Among plant-derived secondary metabolites are benzylisoquinoline alkaloids (BIAs) that play a vital role in medicine. The most conspicuous BIAs frequently found in opium poppy are morphine, codeine, thebaine, papaverine, sanguinarine, and noscapine. BIAs have provided abundant clinically useful drugs used in the treatment of various diseases and ailments With an increasing demand for these herbal remedies, genetic improvement of poppy plants appears to be essential to live up to the expectations of the pharmaceutical industry. With the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9), the field of metabolic engineering has undergone a paradigm shift in its approach due to its appealing attributes, such as the transgene-free editing capability, precision, selectivity, robustness, and versatility. The potentiality of the CRISPR system for manipulating metabolic pathways in opium poppy was demonstrated, but further investigations regarding the use of CRISPR in BIA pathway engineering should be undertaken to develop opium poppy into a bioreactor synthesizing BIAs at the industrial-scale levels. In this regard, the recruitment of RNA-guided genome editing for knocking out miRNAs, flower responsible genes, genes involved in competitive pathways, and base editing are described. The approaches presented here have never been suggested or applied in opium poppy so far.
Collapse
Affiliation(s)
- Zahra Aghaali
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Naghavi
- Division of Plant Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
5
|
Shi H, Li L, Mu S, Gou S, Liu X, Chen F, Chen M, Jin Q, Lai L, Wang K. Exonuclease editor promotes precision of gene editing in mammalian cells. BMC Biol 2024; 22:119. [PMID: 38769511 PMCID: PMC11107001 DOI: 10.1186/s12915-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Many efforts have been made to improve the precision of Cas9-mediated gene editing through increasing knock-in efficiency and decreasing byproducts, which proved to be challenging. RESULTS Here, we have developed a human exonuclease 1-based genome-editing tool, referred to as exonuclease editor. When compared to Cas9, the exonuclease editor gave rise to increased HDR efficiency, reduced NHEJ repair frequency, and significantly elevated HDR/indel ratio. Robust gene editing precision of exonuclease editor was even superior to the fusion of Cas9 with E1B or DN1S, two previously reported precision-enhancing domains. Notably, exonuclease editor inhibited NHEJ at double strand breaks locally rather than globally, reducing indel frequency without compromising genome integrity. The replacement of Cas9 with single-strand DNA break-creating Cas9 nickase further increased the HDR/indel ratio by 453-fold than the original Cas9. In addition, exonuclease editor resulted in high microhomology-mediated end joining efficiency, allowing accurate and flexible deletion of targeted sequences with extended lengths with the aid of paired sgRNAs. Exonuclease editor was further used for correction of DMD patient-derived induced pluripotent stem cells, where 30.0% of colonies were repaired by HDR versus 11.1% in the control. CONCLUSIONS Therefore, the exonuclease editor system provides a versatile and safe genome editing tool with high precision and holds promise for therapeutic gene correction.
Collapse
Affiliation(s)
- Hui Shi
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Lei Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangshuang Mu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Xiaoyi Liu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Menglong Chen
- Department of Neurology and Stroke Centre, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
6
|
Schreiber T, Prange A, Schäfer P, Iwen T, Grützner R, Marillonnet S, Lepage A, Javelle M, Paul W, Tissier A. Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR-Cas endonucleases. MOLECULAR PLANT 2024; 17:824-837. [PMID: 38520090 DOI: 10.1016/j.molp.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.
Collapse
Affiliation(s)
- Tom Schreiber
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Anja Prange
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Petra Schäfer
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Thomas Iwen
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Ramona Grützner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Aurélie Lepage
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Marie Javelle
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Wyatt Paul
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
7
|
Capdeville N, Schindele P, Puchta H. Increasing deletion sizes and the efficiency of CRISPR/Cas9-mediated mutagenesis by SunTag-mediated TREX1 recruitment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:277-287. [PMID: 38113345 DOI: 10.1111/tpj.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Previously, it has been shown that mutagenesis frequencies can be improved by directly fusing the human exonuclease TREX2 to Cas9, resulting in a strong increase in the frequency of smaller deletions at the cut site. Here, we demonstrate that, by using the SunTag system for recruitment of TREX2, the mutagenesis efficiency can be doubled in comparison to the direct fusion in Arabidopsis thaliana. Therefore, we also tested the efficiency of the system for targeted deletion formation by recruiting two other 3'-5' exonucleases, namely the human TREX1 and E. coli ExoI. It turns out that SunTag-mediated recruitment of TREX1 not only improved the general mutation induction efficiency slightly in comparison to TREX2, but that, more importantly, the mean size of the induced deletions was also enhanced, mainly via an increase of deletions of 25 bp or more. EcExoI also yielded a higher amount of larger deletions. However, only in the case of TREX1 and TREX2, the effect was predominately SunTag-dependent, indicating efficient target-specific recruitment. Using SunTag-mediated TREX1 recruitment at other genomic sites, we were able to obtain similar deletion patterns. Thus, we were able to develop an attractive novel editing tool that is especially useful for obtaining deletions in the range from 20 to 40 bp around the cut site. Such sizes are often required for the manipulation of cis-regulatory elements. This feature is closing an existing gap as previous approaches, based on single nucleases or paired nickases or nucleases, resulted in either shorter or longer deletions, respectively.
Collapse
Affiliation(s)
- Niklas Capdeville
- Department of Molecular Biology, Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Patrick Schindele
- Department of Molecular Biology, Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Holger Puchta
- Department of Molecular Biology, Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
8
|
Liu D, Myers EA, Xuan S, Prichard LE, Donahue LI, Ellison EE, Starker CG, Voytas DF. Heritable, multinucleotide deletions in plants using viral delivery of a repair exonuclease and guide RNAs. PLANT PHYSIOLOGY 2024; 194:2229-2239. [PMID: 38243587 DOI: 10.1093/plphys/kiae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024]
Abstract
CRISPR/Cas9-mediated mutagenesis typically results in short insertion/deletion mutations, which are often too small to disrupt the function of cis-acting regulatory elements. Here, we describe a highly efficient in planta gene editing approach called VirTREX2-HLDel that achieves heritable multinucleotide deletions in both protein-coding genes and noncoding DNA regulatory elements. VirTREX2-HLDel uses RNA viruses to deliver both the 3 prime repair exonuclease 2 (TREX2) and single-guide RNAs. Our method enables recovery of multiplexed heritable deletions and increases the heritable gene editing frequency at poorly edited sites. We identified functional conservation and divergence of MICRORNA164 (miR164) in Nicotiana benthamiana and tomato (Solanum lycopersicum) using VirTREX2-HLDel and observed previously uncharacterized phenotypes in plants with large deletions at this locus. Our viral delivery method reduces the need for tissue culture and will accelerate the understanding of protein-coding and regulatory regions in plants.
Collapse
Affiliation(s)
- Degao Liu
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Erik A Myers
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Shuya Xuan
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Lynn E Prichard
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Lilee I Donahue
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Evan E Ellison
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Colby G Starker
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
9
|
Wang Y, Feng YL, Liu Q, Xiao JJ, Liu SC, Huang ZC, Xie AY. TREX2 enables efficient genome disruption mediated by paired CRISPR-Cas9 nickases that generate 3'-overhanging ends. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102072. [PMID: 38028195 PMCID: PMC10661556 DOI: 10.1016/j.omtn.2023.102072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Paired SpCas9 nickases (SpCas9n) are an effective strategy to reduce off-target effect in genome editing. However, this approach is not efficient with 3'-overhanging ends, limiting its applications. In order to expand the utility of paired SpCas9n in genome editing, we tested the effect of the TREX2 3'-5' exonuclease on repair of 3'-overhanging ends. We found ectopic overexpression of Trex2 stimulates the efficiency of paired SpCas9n in genome disruption with 3'-overhanging ends up to 400-fold with little stimulation of off-target editing. TREX2 overexpressed preferentially deletes entire 3' overhangs but has no significant effect on 5' overhangs. Trex2 overexpression also stimulates genome disruption by paired SpCas9n that potentially generate short 3'-overhanging ends at overlapping SpCas9n target sites, suggesting sequential nicking of overlapping target sites by SpCas9n. This approach is further simplified with improved efficiency and safety by fusion of TREX2 and particularly its DNA-binding-deficient mutant to SpCas9n. Junction analysis at overlapping targets revealed the different extent of end resection of 3' single-stranded DNA (ssDNA) by free TREX2 and TREX2 fused to SpCas9n. SpCas9n-TREX2 fusion is more convenient and safer than overexpression of free TREX2 to process 3'-overhanging ends for efficient genome disruption by paired SpCas9n, allowing practical use of this TREX2-based strategy in genome editing.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, P.R. China
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang 310018, P.R. China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, P.R. China
| | - Yi-Li Feng
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, P.R. China
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang 310018, P.R. China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, P.R. China
| | - Qian Liu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, P.R. China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, P.R. China
| | - Jing-Jing Xiao
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, P.R. China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, P.R. China
| | - Si-Cheng Liu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, P.R. China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, P.R. China
| | - Zhi-Cheng Huang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, P.R. China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, P.R. China
| | - An-Yong Xie
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, P.R. China
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang 310018, P.R. China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, P.R. China
| |
Collapse
|
10
|
Shi L, Su J, Cho MJ, Song H, Dong X, Liang Y, Zhang Z. Promoter editing for the genetic improvement of crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4349-4366. [PMID: 37204916 DOI: 10.1093/jxb/erad175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Gene expression plays a fundamental role in the regulation of agronomically important traits in crop plants. The genetic manipulation of plant promoters through genome editing has emerged as an effective strategy to create favorable traits in crops by altering the expression pattern of the pertinent genes. Promoter editing can be applied in a directed manner, where nucleotide sequences associated with favorable traits are precisely generated. Alternatively, promoter editing can also be exploited as a random mutagenic approach to generate novel genetic variations within a designated promoter, from which elite alleles are selected based on their phenotypic effects. Pioneering studies have demonstrated the potential of promoter editing in engineering agronomically important traits as well as in mining novel promoter alleles valuable for plant breeding. In this review, we provide an update on the application of promoter editing in crops for increased yield, enhanced tolerance to biotic and abiotic stresses, and improved quality. We also discuss several remaining technical bottlenecks and how this strategy may be better employed for the genetic improvement of crops in the future.
Collapse
Affiliation(s)
- Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Hao Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
11
|
Liang Z, Wu Y, Guo Y, Wei S. Addition of the T5 exonuclease increases the prime editing efficiency in plants. J Genet Genomics 2023; 50:582-588. [PMID: 36958601 DOI: 10.1016/j.jgg.2023.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/25/2023]
Abstract
Prime editing (PE) is a versatile genome editing tool without the need for double-stranded DNA breaks or donor DNA templates, but is limited by low editing efficiency. We previously fused the M-MLV reverse transcriptase to the Cas9 nickase, generating the PE2 (v1) system, but the editing efficiency of this system is still low. Here we develop different versions of PE2 by adding the 5'-to-3' exonuclease at different positions of the nCas9-M-MLV RT fusion protein. PE2 (v2), in which the T5 exonuclease fused to the N-terminus of the nCas9-MMLV fusion protein enhances prime editing efficiency of base substitutions, deletions, and insertions at several genomic sites by 1.7- to 2.9-fold in plant cells compared to PE2 (v1). The improved editing efficiency of PE2 (v2) is further confirmed by generating increased heritable prime edits in stable transgenic plants compared to the previously established PE-P1, PE-P2, and PPE systems. Using PE2 (v2), we generate herbicide-resistant rice by simultaneously introducing mutations causing amino acid substitutions at two target sites. The PE efficiency is further improved by combining PE2 (v2) and dual-pegRNAs. Taken together, the increased genome editing efficiency of PE2 (v2) developed in this study may enhance the applications of PE in plants.
Collapse
Affiliation(s)
- Zhen Liang
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Yuqing Wu
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yingjie Guo
- Research Institute of Big Data Science and Industry, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sha Wei
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
12
|
Tang Y, Zhang Z, Yang Z, Wu J. CRISPR/Cas9 and Agrobacterium tumefaciens virulence proteins synergistically increase efficiency of precise genome editing via homology directed repair in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3518-3530. [PMID: 36919203 PMCID: PMC10797490 DOI: 10.1093/jxb/erad096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
CRISPR/Cas9 genome editing and Agrobacterium tumefaciens-mediated genetic transformation are widely-used plant biotechnology tools derived from bacterial immunity-related systems, each involving DNA modification. The Cas9 endonuclease introduces DNA double-strand breaks (DSBs), and the A. tumefaciens T-DNA is released by the VirD2 endonuclease assisted by VirDl and attached by VirE2, transferred to the plant nucleus and integrated into the genome. Here, we explored the potential for synergy between the two systems and found that Cas9 and three virulence (Vir) proteins achieve precise genome editing via the homology directed repair (HDR) pathway in tobacco and rice plants. Compared with Cas9T (Cas9, VirD1, VirE2) and CvD (Cas9-VirD2) systems, the HDR frequencies of a foreign GFPm gene in the CvDT system (Cas9-VirD2, VirD1, VirE2) increased 52-fold and 22-fold, respectively. Further optimization of the CvDT process with a donor linker (CvDTL) achieved a remarkable increase in the efficiency of HDR-mediated genome editing. Additionally, the HDR efficiency of the three rice endogenous genes ACETOLACTATE SYNTHASE (ALS), PHYTOENE DESATURASE (PDS), and NITROGEN TRANSPORTER 1.1 B (NRT1.1B) increased 24-, 32- and 16-fold, respectively, in the CvDTL system, compared with corresponding Cas9TL (Cas9T process with a donor linker). Our results suggest that collaboration between CRISPR/Cas9 and Agrobacterium-mediated genetic transformation can make great progress towards highly efficient and precise genome editing via the HDR pathway.
Collapse
Affiliation(s)
- Ye Tang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhennan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Liu Z, Chen S, Xie W, Yu H, Lai L, Li Z. Versatile and efficient genome editing with Neisseria cinerea Cas9. Commun Biol 2022; 5:1296. [PMID: 36435853 PMCID: PMC9701194 DOI: 10.1038/s42003-022-04258-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
The CRISPR/Cas9 system is a versatile genome editing platform in biotechnology and therapeutics. However, the requirement of protospacer adjacent motifs (PAMs) limits the genome targeting scope. To expand this repertoire, we revisited and engineered a compact Cas9 orthologue derived from Neisseria cinerea (NcCas9) for efficient genome editing in mammal cells. We demonstrated that NcCas9 generates genome editing at target sites with N4GYAT (Y = T/C) PAM which cannot be recognized by existing Cas9s. By optimizing the NcCas9 architecture and its spacer length, editing efficacy of NcCas9 was further improved in human cells. In addition, the NcCas9-derived Base editors can efficiently generate base conversions. Six anti-CRISPR (Acr) proteins were identified as off-switches for NcCas9. Moreover, NcCas9 successfully generated efficient editing of mouse embryos by microinjection of NcCas9 mRNA and the corresponding sgRNA. Thus, the NcCas9 holds the potential to broaden the CRISPR/Cas9 toolsets for efficient gene modifications and therapeutic applications.
Collapse
Affiliation(s)
- Zhiquan Liu
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062 China
| | - Siyu Chen
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062 China
| | - Wanhua Xie
- grid.415680.e0000 0000 9549 5392The Precise Medicine Center, Shenyang Medical College, Shenyang, 110000 China
| | - Hao Yu
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062 China
| | - Liangxue Lai
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062 China ,grid.9227.e0000000119573309CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL), Guangzhou, 510005 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhanjun Li
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062 China
| |
Collapse
|
14
|
Deng F, Zeng F, Shen Q, Abbas A, Cheng J, Jiang W, Chen G, Shah AN, Holford P, Tanveer M, Zhang D, Chen ZH. Molecular evolution and functional modification of plant miRNAs with CRISPR. TRENDS IN PLANT SCIENCE 2022; 27:890-907. [PMID: 35165036 DOI: 10.1016/j.tplants.2022.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Gene editing using clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) has revolutionized biotechnology and provides genetic tools for medicine and life sciences. However, the application of this technology to miRNAs, with the function as negative gene regulators, has not been extensively reviewed in plants. Here, we summarize the evolution, biogenesis, and structure of miRNAs, as well as their interactions with mRNAs and computational models for predicting target genes. In addition, we review current advances in CRISPR/Cas for functional analysis and for modulating miRNA genes in plants. Extending our knowledge of miRNAs and their manipulation with CRISPR will provide fundamental understanding of the functions of plant miRNAs and facilitate more sustainable and publicly acceptable genetic engineering of crops.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qiufang Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7004, Australia.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
15
|
Lainšček D, Forstnerič V, Mikolič V, Malenšek Š, Pečan P, Benčina M, Sever M, Podgornik H, Jerala R. Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. Nat Commun 2022; 13:3604. [PMID: 35739111 PMCID: PMC9226073 DOI: 10.1038/s41467-022-31386-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The CRISPR/Cas system has emerged as a powerful and versatile genome engineering tool, revolutionizing biological and biomedical sciences, where an improvement of efficiency could have a strong impact. Here we present a strategy to enhance gene editing based on the concerted action of Cas9 and an exonuclease. Non-covalent recruitment of exonuclease to Cas9/gRNA complex via genetically encoded coiled-coil based domains, termed CCExo, recruited the exonuclease to the cleavage site and robustly increased gene knock-out due to progressive DNA strand recession at the cleavage site, causing decreased re-ligation of the nonedited DNA. CCExo exhibited increased deletion size and enhanced gene inactivation efficiency in the context of several DNA targets, gRNA selection, Cas variants, tested cell lines and type of delivery. Targeting a sequence-specific oncogenic chromosomal translocation using CCExo in cells of chronic myelogenous leukemia patients and in an animal model led to the reduction or elimination of cancer, establishing it as a highly specific tool for treating CML and potentially other appropriate diseases with genetic etiology.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana, 1000, Slovenia
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
| | - Veronika Mikolič
- Department of Hematology, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška 7, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Peter Pečan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana, 1000, Slovenia
| | - Matjaž Sever
- Department of Hematology, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška 7, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, 1000, Slovenia
| | - Helena Podgornik
- Department of Hematology, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška 7, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, 1000, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia.
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana, 1000, Slovenia.
| |
Collapse
|
16
|
Chen S, Liu Z, Yu H, Lai L, Li Z. Efficient multi-nucleotide deletions using deaminase-Cas9 fusions in human cells. J Genet Genomics 2022; 49:927-933. [DOI: 10.1016/j.jgg.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
|
17
|
Han B, Zhang Y, Zhou Y, Zhang B, Krueger CJ, Bi X, Zhu Z, Tong X, Zhang B. ErCas12a and T5exo-ErCas12a Mediate Simple and Efficient Genome Editing in Zebrafish. BIOLOGY 2022; 11:biology11030411. [PMID: 35336785 PMCID: PMC8945719 DOI: 10.3390/biology11030411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/13/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023]
Abstract
Simple Summary CRISPR/Cas9 enables efficient mutagenesis and generation of various knockout and knockin alleles in many species including zebrafish. However, the application of the Cas12a nuclease in zebrafish is far from ideal due to demanding experimental conditions, especially the requirements for delivery such as a purified protein and the heatshock of embryos. Here we show that ErCas12a, the only Cas12a reported to be effective when injected as mRNA in zebrafish, is highly efficient for large fragment knockin via either microhomology-mediated or non-homologous end joining pathways with mild heatshock conditions. Moreover, we fused T5 exonuclease to ErCas12a and found that the fusion protein could efficiently induce gene knockout and knockin without heatshock. Therefore, we demonstrated the efficacy of multiple genome-editing applications using ErCas12a and its variant with simplified conditions in zebrafish. Abstract In zebrafish, RNA-guided endonucleases such as Cas9 have enabled straightforward gene knockout and the construction of reporter lines or conditional alleles via targeted knockin strategies. However, the performance of another commonly used CRISPR system, Cas12a, is significantly limited due to both the requirement of delivery as purified protein and the necessity of heatshock of injected embryos. To explore the potential of CRISPR/Cas12a-mediated genome editing and simplify its application in zebrafish, we took advantage of the recently reported mRNA-active ErCas12a and investigated its efficacy for the knockin of large DNA fragments, such as fluorescent reporter genes. For knockin via either microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ) pathways, ErCas12a-injected embryos with a brief heatshock displayed comparable knockin efficiency with Cas9 injection. Through the fusion of T5 exonuclease (T5exo) to the N-terminus of ErCas12a (T5exo-ErCas12a), we further demonstrated high efficiency gene knockout and knockin at a normal incubation temperature, eliminating the embryo-damaging heatshock step. In summary, our results demonstrate the feasibility of ErCas12a- and T5exo-ErCas12a-mediated genome manipulation under simplified conditions, and further expand the genome editing toolbox for various applications in zebrafish.
Collapse
Affiliation(s)
- Bingzhou Han
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China; (B.H.); (Y.Z.); (Y.Z.); (B.Z.); (X.B.); (Z.Z.); (X.T.)
| | - Yage Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China; (B.H.); (Y.Z.); (Y.Z.); (B.Z.); (X.B.); (Z.Z.); (X.T.)
| | - Yang Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China; (B.H.); (Y.Z.); (Y.Z.); (B.Z.); (X.B.); (Z.Z.); (X.T.)
| | - Biao Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China; (B.H.); (Y.Z.); (Y.Z.); (B.Z.); (X.B.); (Z.Z.); (X.T.)
| | - Christopher J. Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Xuetong Bi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China; (B.H.); (Y.Z.); (Y.Z.); (B.Z.); (X.B.); (Z.Z.); (X.T.)
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China; (B.H.); (Y.Z.); (Y.Z.); (B.Z.); (X.B.); (Z.Z.); (X.T.)
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China; (B.H.); (Y.Z.); (Y.Z.); (B.Z.); (X.B.); (Z.Z.); (X.T.)
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China; (B.H.); (Y.Z.); (Y.Z.); (B.Z.); (X.B.); (Z.Z.); (X.T.)
- Correspondence:
| |
Collapse
|
18
|
Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Mol Cell 2021; 82:333-347. [PMID: 34968414 DOI: 10.1016/j.molcel.2021.12.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Abstract
The emergence of CRISPR-Cas systems has accelerated the development of gene editing technologies, which are widely used in the life sciences. To improve the performance of these systems, workers have engineered and developed a variety of CRISPR-Cas tools with a broader range of targets, higher efficiency and specificity, and greater precision. Moreover, CRISPR-Cas-related technologies have also been expanded beyond making cuts in DNA by introducing functional elements that permit precise gene modification, control gene expression, make epigenetic changes, and so on. In this review, we introduce and summarize the characteristics and applications of different types of CRISPR-Cas tools. We discuss certain limitations of current approaches and future prospects for optimizing CRISPR-Cas systems.
Collapse
Affiliation(s)
- Guanwen Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiupeng Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shuai Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. SCIENCE CHINA-LIFE SCIENCES 2021; 65:731-738. [PMID: 34406572 DOI: 10.1007/s11427-021-1949-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 10/20/2022]
Abstract
Genome editing is an unprecedented technological breakthrough but low plant regeneration frequencies and genotype dependence hinder its implementation for crop improvement. Here, we found that transient expression of a complex of the growth regulators TaGRF4 and TaGIF1 (TaGRF4-TaGIF1) increased regeneration and genome editing frequency in wheat. When we introduced synonymous mutation in the miR396 target site of TaGRF4, the resulting complex (mTaGRF4-TaGIF1) performed better than original TaGRF4-TaGIF1. Use of mTaGRF4-TaGIF1 together with a cytosine base editor targeting TaALS resulted in 2-9-fold increases in regeneration and transgene-free genome editing in 11 elite common wheat cultivars. Therefore, mTaGRF4-TaGIF1 will undoubtedly be of great value in crop improvement and especially in commercial applications, since it greatly increased the range of cultivars available for transformation.
Collapse
|
20
|
Lin Q, Zhu Z, Liu G, Sun C, Lin D, Xue C, Li S, Zhang D, Gao C, Wang Y, Qiu JL. Genome editing in plants with MAD7 nuclease. J Genet Genomics 2021; 48:444-451. [PMID: 34120856 DOI: 10.1016/j.jgg.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/03/2021] [Accepted: 04/11/2021] [Indexed: 12/31/2022]
Abstract
MAD7 is an engineered nuclease of the Class 2 type V-A CRISPR-Cas (Cas12a/Cpf1) family with a low level of homology to canonical Cas12a nucleases. It has been publicly released as a royalty-free nuclease for both academic and commercial use. Here, we demonstrate that the CRISPR-MAD7 system can be used for genome editing and recognizes T-rich PAM sequences (YTTN) in plants. Its editing efficiency in rice and wheat is comparable to that of the widely used CRISPR-LbCas12a system. We develop two variants, MAD7-RR and MAD7-RVR that increase the target range of MAD7, as well as an M-AFID (a MAD7-APOBEC fusion-induced deletion) system that creates predictable deletions from 5'-deaminated Cs to the MAD7-cleavage site. Moreover, we show that MAD7 can be used for multiplex gene editing and that it is effective in generating indels when combined with other CRISPR RNA orthologs. Using the CRISPR-MAD7 system, we have obtained regenerated mutant rice and wheat plants with up to 65.6% efficiency.
Collapse
Affiliation(s)
- Qiupeng Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanwen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dexing Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengnan Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Genome engineering for crop improvement and future agriculture. Cell 2021; 184:1621-1635. [PMID: 33581057 DOI: 10.1016/j.cell.2021.01.005] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Feeding the ever-growing population is a major challenge, especially in light of rapidly changing climate conditions. Genome editing is set to revolutionize plant breeding and could help secure the global food supply. Here, I review the development and application of genome editing tools in plants while highlighting newly developed techniques. I describe new plant breeding strategies based on genome editing and discuss their impact on crop production, with an emphasis on recent advancements in genome editing-based plant improvements that could not be achieved by conventional breeding. I also discuss challenges facing genome editing that must be overcome before realizing the full potential of this technology toward future crops and food production.
Collapse
|
22
|
Fan R, Chai Z, Xing S, Chen K, Qiu F, Chai T, Qiu JL, Zhang Z, Zhang H, Gao C. Shortening the sgRNA-DNA interface enables SpCas9 and eSpCas9(1.1) to nick the target DNA strand. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1619-1630. [PMID: 32592086 DOI: 10.1007/s11427-020-1722-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
The length of the sgRNA-DNA complementary sequence is a key factor influencing the cleavage activity of Streptococcus pyogenes Cas9 (SpCas9) and its variants. The detailed mechanism remains unknown. Here, based on in vitro cleavage assays and base editing analysis, we demonstrate that reducing the length of this complementary region can confer nickase activity on SpCas9 and eSpCas9(1.1). We also show that these nicks are made on the target DNA strand. These properties encouraged us to develop a dual-functional system that simultaneously carries out double-strand DNA cleavage and C-to-T base conversions at separate targets. This system provides a novel tool for achieving trait stacking in plants.
Collapse
Affiliation(s)
- Rong Fan
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuangzhuang Chai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sinian Xing
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengti Qiu
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Xing S, Chen K, Zhu H, Zhang R, Zhang H, Li B, Gao C. Fine-tuning sugar content in strawberry. Genome Biol 2020; 21:230. [PMID: 32883370 PMCID: PMC7470447 DOI: 10.1186/s13059-020-02146-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 01/30/2023] Open
Abstract
Fine-tuning quantitative traits for continuous subtle phenotypes is highly advantageous. We engineer the highly conserved upstream open reading frame (uORF) of FvebZIPs1.1 in strawberry (Fragaria vesca), using base editor A3A-PBE. Seven novel alleles are generated. Sugar content of the homozygous T1 mutant lines is 33.9-83.6% higher than that of the wild-type. We also recover a series of transgene-free mutants with 35 novel genotypes containing a continuum of sugar content. All the novel genotypes could be immediately fixed in subsequent generations by asexual reproduction. Genome editing coupled with asexual reproduction offers tremendous opportunities for quantitative trait improvement.
Collapse
Affiliation(s)
- Sinian Xing
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Haocheng Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bingbing Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Wang S, Zong Y, Lin Q, Zhang H, Chai Z, Zhang D, Chen K, Qiu JL, Gao C. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. Nat Biotechnol 2020; 38:1460-1465. [PMID: 32601432 DOI: 10.1038/s41587-020-0566-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/19/2020] [Indexed: 01/24/2023]
Abstract
Short insertions and deletions can be produced in plant genomes using CRISPR-Cas editors, but reliable production of larger deletions in specific target sites has proven difficult to achieve. We report the development of a series of APOBEC-Cas9 fusion-induced deletion systems (AFIDs) that combine Cas9 with human APOBEC3A (A3A), uracil DNA-glucosidase and apurinic or apyrimidinic site lyase. In rice and wheat, AFID-3 generated deletions from 5'-deaminated C bases to the Cas9-cleavage site. Approximately one-third of deletions produced using AFID-3 in rice and wheat protoplasts (30.2%) and regenerated plants (34.8%) were predictable. We show that eAFID-3, in which the A3A in AFID-3 is replaced with truncated APOBEC3B (A3Bctd), produced more uniform deletions from the preferred TC motif to the double-strand break. AFIDs could be applied to study regulatory regions and protein domains to improve crop plants.
Collapse
Affiliation(s)
- Shengxing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuan Zong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiupeng Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhuangzhuang Chai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Zhang
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jin-Long Qiu
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|