1
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2024:10.1007/s12035-024-04457-1. [PMID: 39240280 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Jiang J, Wang A, Shi H, Jiang S, Li W, Jiang T, Wang L, Zhang X, Sun M, Zhao M, Zou X, Xu J. Clinical and neuroimaging association between neuropsychiatric symptoms and nutritional status across the Alzheimer's disease continuum: a longitudinal cohort study. J Nutr Health Aging 2024; 28:100182. [PMID: 38336502 DOI: 10.1016/j.jnha.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVES To investigate the association between neuropsychiatric symptoms (NPS) and nutritional status, and explore their shared regulatory brain regions on the Alzheimer's disease (AD) continuum. DESIGN A longitudinal, observational cohort study. SETTING Data were collected from the Chinese Imaging, Biomarkers, and Lifestyle study between June 1, 2021 and December 31, 2022. PARTICIPANTS Overall, 432 patients on the AD continuum, including amnestic mild cognitive impairment and AD dementia, were assessed at baseline, and only 165 patients completed the (10.37 ± 6.08) months' follow-up. MEASUREMENTS The Mini-Nutritional Assessment (MNA) and Neuropsychiatric Inventory (NPI) were used to evaluate nutritional status and NPS, respectively. The corrected cerebral blood flow (cCBF) measured by pseudo-continuous arterial spin labeling of the dietary nutrition-related brain regions was analyzed. The association between the NPS at baseline and subsequent change in nutritional status and the association between the changes in the severity of NPS and nutritional status were examined using generalized linear mixed models. RESULTS Increased cCBF in the left putamen was associated with malnutrition, general NPS, affective symptoms, and hyperactivity (P < 0.05). The presence of general NPS (β = -1.317, P = 0.003), affective symptoms (β = -1.887, P < 0.001), and appetite/eating disorders (β = -1.714, P < 0.001) at baseline were associated with a decline in the MNA scores during follow-up. The higher scores of general NPI (β = -0.048), affective symptoms (β = -0.181), and appetite/eating disorders (β = -0.416; all P < 0.001) were longitudinally associated with lower MNA scores after adjusting for confounding factors. CONCLUSIONS We found that baseline NPS were predictors of a decline in nutritional status on the AD continuum. The worse the severity of affective symptoms and appetite/eating disorders, the poorer the nutritional status. Furthermore, abnormal perfusion of the putamen may regulate the association between malnutrition and NPS, which suggests their potentially common neural regulatory basis.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Tianlin Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Linlin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Min Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
4
|
Jiang J, Liu Y, Wang A, Zhuo Z, Shi H, Zhang X, Li W, Sun M, Jiang S, Wang Y, Zou X, Zhang Y, Jia Z, Xu J. Development and validation of a nutrition-related genetic-clinical-radiological nomogram associated with behavioral and psychological symptoms in Alzheimer's disease. Chin Med J (Engl) 2023:00029330-990000000-00878. [PMID: 38031345 PMCID: PMC11407811 DOI: 10.1097/cm9.0000000000002914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Few evidence is available in the early prediction models of behavioral and psychological symptoms of dementia (BPSD) in Alzheimer's disease (AD). This study aimed to develop and validate a novel genetic-clinical-radiological nomogram for evaluating BPSD in patients with AD and explore its underlying nutritional mechanism. METHODS This retrospective study included 165 patients with AD from the Chinese Imaging, Biomarkers, and Lifestyle (CIBL) cohort between June 1, 2021, and March 31, 2022. Data on demoimagedatas, neuropsychological assessments, single-nucleotide polymorphisms of AD risk genes, and regional brain volumes were collected. A multivariate logistic regression model identified BPSD-associated factors, for subsequently constructing a diagnostic nomogram. This nomogram was internally validated through 1000-bootstrap resampling and externally validated using a time-series split based on the CIBL cohort data between June 1, 2022, and February 1, 2023. Area under receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used to assess the discrimination, calibration, and clinical applicability of the nomogram. RESULTS Factors independently associated with BPSD were: CETP rs1800775 (odds ratio [OR] = 4.137, 95% confidence interval [CI]: 1.276-13.415, P = 0.018), decreased Mini Nutritional Assessment score (OR = 0.187, 95% CI: 0.086-0.405, P <0.001), increased caregiver burden inventory score (OR = 8.993, 95% CI: 3.830-21.119, P <0.001), and decreased brain stem volume (OR = 0.006, 95% CI: 0.001-0.191, P = 0.004). These variables were incorporated into the nomogram. The area under the ROC curve was 0.925 (95% CI: 0.884-0.967, P <0.001) in the internal validation and 0.791 (95% CI: 0.686-0.895, P <0.001) in the external validation. The calibration plots showed favorable consistency between the prediction of nomogram and actual observations, and the DCA showed that the model was clinically useful in both validations. CONCLUSION A novel nomogram was established and validated based on lipid metabolism-related genes, nutritional status, and brain stem volumes, which may allow patients with AD to benefit from early triage and more intensive monitoring of BPSD. REGISTRATION Chictr.org.cn, ChiCTR2100049131.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yaou Liu
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Zhizheng Zhuo
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100081, China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Ziyan Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
5
|
Chen F, Wang N, Tian X, Su J, Qin Y, He R, He X. The Protective Effect of Mangiferin on Formaldehyde-Induced HT22 Cell Damage and Cognitive Impairment. Pharmaceutics 2023; 15:1568. [PMID: 37376018 DOI: 10.3390/pharmaceutics15061568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Formaldehyde (FA) has been found to induce major Alzheimer's disease (AD)-like features including cognitive impairment, Aβ deposition, and Tau hyperphosphorylation, suggesting that it may play a significant role in the initiation and progression of AD. Therefore, elucidating the mechanism underlying FA-induced neurotoxicity is crucial for exploring more comprehensive approaches to delay or prevent the development of AD. Mangiferin (MGF) is a natural C-glucosyl-xanthone with promising neuroprotective effects, and is considered to have potential in the treatment of AD. The present study was designed to characterize the effects and mechanisms by which MGF protects against FA-induced neurotoxicity. The results in murine hippocampal cells (HT22) revealed that co-treatment with MGF significantly decreased FA-induced cytotoxicity and inhibited Tau hyperphosphorylation in a dose-dependent manner. It was further found that these protective effects were achieved by attenuating FA-induced endoplasmic reticulum stress (ERS), as indicated by the inhibition of the ERS markers, GRP78 and CHOP, and downstream Tau-associated kinases (GSK-3β and CaMKII) expression. In addition, MGF markedly inhibited FA-induced oxidative damage, including Ca2+ overload, ROS generation, and mitochondrial dysfunction, all of which are associated with ERS. Further studies showed that the intragastric administration of 40 mg/kg/day MGF for 6 weeks significantly improved spatial learning ability and long-term memory in C57/BL6 mice with FA-induced cognitive impairment by reducing Tau hyperphosphorylation and the expression of GRP78, GSK-3β, and CaMKII in the brains. Taken together, these findings provide the first evidence that MGF exerts a significant neuroprotective effect against FA-induced damage and ameliorates mice cognitive impairment, the possible underlying mechanisms of which are expected to provide a novel basis for the treatment of AD and diseases caused by FA pollution.
Collapse
Affiliation(s)
- Fan Chen
- School of Basic Medical Sciences, Dali University, Dali 671003, China
| | - Na Wang
- School of Basic Medical Sciences, Dali University, Dali 671003, China
| | - Xinyan Tian
- School of Basic Medical Sciences, Dali University, Dali 671003, China
| | - Juan Su
- School of Basic Medical Sciences, Dali University, Dali 671003, China
| | - Yan Qin
- School of Basic Medical Sciences, Dali University, Dali 671003, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100045, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100045, China
| | - Xiaping He
- School of Basic Medical Sciences, Dali University, Dali 671003, China
| |
Collapse
|
6
|
Jiang J, Hong Y, Li W, Wang A, Jiang S, Jiang T, Wang Y, Wang L, Yang S, Ren Q, Zou X, Xu J. Chain Mediation Analysis of the Effects of Nutrition and Cognition on the Association of Apolipoprotein E ɛ4 with Neuropsychiatric Symptoms in Alzheimer's Disease. J Alzheimers Dis 2023; 96:669-681. [PMID: 37840496 DOI: 10.3233/jad-230577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND Apolipoprotein E (APOE) is the most recognized risk gene for cognitive decline and clinical progression of late-onset Alzheimer's disease (AD); nonetheless, its association with neuropsychiatric symptoms (NPSs) remains inconclusive. OBJECTIVE To investigate the association of APOE ɛ4 with NPSs and explore nutritional status and cognition as joint mediators of this association. METHODS Between June 2021 and October 2022, patients with amnestic mild cognitive impairment (aMCI) or AD were recruited from the Chinese Imaging, Biomarkers, and Lifestyle Study. NPSs were assessed using the Neuropsychiatric Inventory, while global cognition and nutritional status were evaluated using the Mini-Mental State Examination (MMSE) and Mini-Nutritional Assessment (MNA), respectively. Simple mediation and multiple chain mediation models were developed to examine the mediating effects of the MNA and MMSE scores on the relationship between APOE ɛ4 and specific neuropsychiatric symptom. RESULTS Among 310 patients, 229 (73.87%) had NPSs, and 110 (35.48%) carried APOE ɛ4. Patients with APOE ɛ4 were more likely to have hallucinations (p = 0.014), apathy (p = 0.008), and aberrant motor activity (p = 0.018). MNA and MMSE scores mediated the association between APOE ɛ4 and hallucinations (17.97% and 37.13%, respectively), APOE ɛ4 and apathy (30.73% and 57.72%, respectively), and APOE ɛ4 and aberrant motor activity (17.82% and 34.24%), respectively. Chain-mediating effects of MNA and MMSE scores on the association of APOE ɛ4 with hallucinations, apathy, and aberrant motor activity after adjusting for confounding factors were 6.84%, 11.54%, and 6.19%, respectively. CONCLUSION Nutritional status and cognition jointly mediate the association between APOE ɛ4 and neuropsychiatric symptoms in patients with aMCI or AD.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Yin Hong
- Department of Health Management, Beijing Tian Tan Hospital, Capital Medical University, Fengtai District, Beijing, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Tianlin Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Linlin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Shiyi Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| |
Collapse
|