1
|
Fu J, Zhang H, Li R, Gao H, Jin S, Na G. Dynamic modeling of the occurrence, sources, and environmental behavior of polybrominated diphenyl ethers in Zhelin Bay, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171294. [PMID: 38417503 DOI: 10.1016/j.scitotenv.2024.171294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
This study analyzed polybrominated diphenyl ethers (PBDEs) in Zhelin Bay, China, investigating their occurrence, sources, and environmental behavior. PBDE congeners were detected in all sampled media. The Σ13PBDE concentrations in the dissolved phase ranged from 1.04 to 41.40 ng/L, while the concentrations ranged in suspended particulate matter from 0.02 to 12.56 ng/L. In sediments, PBDE concentrations ranged from 1.41 to 8.57 ng/g. The higher proportion of PBDEs in the dissolved phase in the bay than in the estuary is attributable to the type of PBDE products used in the aquacultural process in Zhelin Bay. Moreover, correlation analysis between PBDE concentrations and environmental parameters showed that the primary factor influencing PBDE concentrations in Zhelin Bay sediments may shift from riverine inputs to aquaculture. Principal component analysis and positive matrix factorization revealed that PBDEs in the water of Zhelin Bay primarily originated from the degradation of octa-BDE, deca-BDE, and penta-BDE products employed in aquaculture. In contrast, the PBDEs in Zhelin Bay sediments mainly originated from riverine inputs. In addition, a level IV dynamic fugacity-based multimedia model was used to simulate the temporal variation of PBDE concentrations in Zhelin Bay. Modeled short-term trends showed a relatively swift transport of PBDE congeners in the water column to the atmosphere and sediments. Over the long term, sediment concentrations gradually decreased, in contrast to the less rapid declines observed in the atmosphere and water. Furthermore, this study revealed that the transport and transformation processes of PBDEs in the Zhelin Bay environment were considerably influenced by the diffusion coefficient in water, the water-side mass transfer coefficient at the water-sediment interface, the sediment resuspension rate, and the organic carbon-water partition coefficient.
Collapse
Affiliation(s)
- Jie Fu
- National Marine Environmental Monitoring Center, Dalian 116023, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Haibo Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuaichen Jin
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Guangshui Na
- Laboratory for coastal marine eco-environment process and carbon sink of Hainan province/Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
2
|
Fu J, Zhang H, Li R, Shi T, Wang L, Cheng G, Huang J, Li S, Gao H, Jin S, Na G. Spatial distribution, source, and ecological risk of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in Jiaozhou Bay, China. MARINE POLLUTION BULLETIN 2023; 192:114978. [PMID: 37209659 DOI: 10.1016/j.marpolbul.2023.114978] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) are commonly found in the environment as components of brominated flame retardants. Due to their potential impact on human health and wildlife, it is imperative to closely monitor and manage their levels in the environment. This study investigated the spatial distribution, sources, and ecological risks of PBDEs and HBCDs in Jiaozhou Bay (JZB), a large bay situated on the eastern coast of China. The results showed that PBDE concentrations ranged from not detected (ND) to 7.93 ng/L in the water and ND to 65.76 ng/g in the sediment, while HBCD concentrations ranged from ND to 0.31 ng/L in the water and ND to 16.63 ng/g in the sediment. Furthermore, we observed significantly higher concentrations of PBDEs and HBCDs in the inner JZB compared to the outer JZB. Our source apportionment analysis showed that PBDEs primarily originated from the production and debromination of BDE-209, as well as the emission of commercial PeBDEs, whereas HBCDs in sediments mostly stemmed from anthropogenic activities and river input. Finally, our eco-logical risk assessment highlighted the need for continuous monitoring of PBDEs in JZB sediments. Overall, our study aims to provide valuable assistance for the environmental management of the JZB bay area, which is characterized by a complex net-work of rivers and a thriving economy.
Collapse
Affiliation(s)
- Jie Fu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Haibo Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Tengda Shi
- National Marine Environmental Monitoring Center, Dalian 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Lisha Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Guanjie Cheng
- National Marine Environmental Monitoring Center, Dalian 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Jiajin Huang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shisheng Li
- Laboratory for Coastal Marine Eco-environment Process and Carbon Sink of Hainan Province/Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuaichen Jin
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Guangshui Na
- Laboratory for Coastal Marine Eco-environment Process and Carbon Sink of Hainan Province/Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
3
|
Yin H, Tang Z, Meng T, Zhang M. Concentration profile, spatial distributions and temporal trends of polybrominated diphenyl ethers in sediments across China: Implications for risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111205. [PMID: 32882573 DOI: 10.1016/j.ecoenv.2020.111205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) in sediments of China have been extensively investigated; however, most studies conducted to date have focused on specific locations, and the pollution and risk posed by these chemicals in sediments at the national scale remain unknown. Therefore, we analyzed the concentrations and risks of PBDEs in sediments in China and their spatiotemporal variations based on available literature. Overall, the sediments across China contain moderate to high levels of PBDEs, with BDE-209 being the dominant congener, followed by BDE-47 and BDE-99. The sediment concentrations of PBDEs were highest in southern China and lowest in northeastern China. Additionally, based on their PBDE concentrations, 18.4%, 30.0%, and 11.9% of sediment samples from rivers, lakes, and coastal waters, respectively, posed low to moderate eco-toxicological risks, but 6.90% of river sediments posed high risks. Between 2001 and 2017, the concentrations and risks of PBDEs in the sediments from rivers and coastal waters tended to decrease gradually. Additionally, there were low to moderate risks from PBDEs in lake sediments, and the risks in 2012-2017 were 3.30 times higher than those in 2006-2011. However, more studies about the spatial and temporal trends in PBDEs in sediment across China and their impacts on aquatic organisms are needed because there is still a general lack of relevant information.
Collapse
Affiliation(s)
- Hongmin Yin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Tong Meng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Minna Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
4
|
Ge W, Mou Y, Chai C, Zhang Y, Wang J, Ju T, Jiang T, Xia B. Polybrominated diphenyl ethers in the dissolved and suspended phases of seawater from Sanggou Bay, east China. CHEMOSPHERE 2018; 203:253-262. [PMID: 29625314 DOI: 10.1016/j.chemosphere.2018.03.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The levels and profiles of polybrominated diphenyl ethers (PBDEs) in dissolved phase (DP) and suspended particulate matter (SPM) in seawater of Sanggou Bay (SGB) in four seasons were determined. The distribution and potential sources of these compounds were analyzed, and the ecological risk was assessed. The total concentrations of 14 PBDEs (∑14PBDE) in DP and SPM in the surface water ranged from 0.10 ng L-1 to 2.20 ng L-1 and from 0.51 ng L-1 to 6.15 ng L-1, respectively. The highest value was obtained in August. The concentrations of ∑14PBDE in the surface water were higher than those in the bottom water, and PBDEs were mainly partitioned into the SPM fraction. BDE209 was the most dominant PBDE congener, having average relative contributions of 86.5%-94.8% in DP and 40.5%-56.5% in SPM, followed by BDE47. The profiles of PBDEs in seawater of SGB were different from those of commercial PBDE products. The concentrations of ∑14PBDE were higher in the inner bay than in the outer bay, suggesting that the terrestrial input and human activities affected the PBDE distribution in SGB. Results of nonparametric multidimensional scaling suggested that BDE209 and BDE47 were important congeners discriminating PBDE contamination in SGB. The potential sources of PBDEs in SGB included commercial PentaBDE and DecaBDE products from the land, the atmospheric transport of commercial OctaBDE, and the degradation of high brominated congeners. The ecological risks from PentaBDE and OctaBDE were low, and those from DecaBDE were moderate in seawater of SGB.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanan Mou
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yan Zhang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinye Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ting Ju
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tao Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Fisheries Science Academy, Qingdao, 266071, China
| | - Bin Xia
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Fisheries Science Academy, Qingdao, 266071, China
| |
Collapse
|
5
|
Ju T, Ge W, Jiang T, Chai C. Polybrominated diphenyl ethers in dissolved and suspended phases of seawater and in surface sediment from Jiaozhou Bay, North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:571-578. [PMID: 27037878 DOI: 10.1016/j.scitotenv.2016.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
The concentration and distribution of polybrominated diphenyl ethers (PBDEs) in the dissolved phase (DP) and suspended particulate matter (SPM) of seawater and in surface sediment obtained from Jiaozhou Bay (JZB) were determined. The potential sources of these compounds were evaluated. The total concentrations of 14 PBDEs (∑14PBDE) in DP and SPM were 0.09-1.35 and 1.17-5.45ng/L, respectively, indicating that the PBDE congeners are predominantly partitioned into the SPM fraction. The ∑14PBDE concentrations in sediment ranged from 2.18ng/g to 10.59ng/g with a mean value of 6.59ng/g. BDE-209 was dominant among 14 PBDE congeners, and BDE-47 was another abundant congener in the SPM and sediment samples. The PBDE concentration in SPM showed a significantly positive correlation with chlorophyll a level (r(2)=0.496, p<0.05), and that in the sediment exhibited a significantly positive correlation with clay proportion (r(2)=0.846, p<0.01). This result suggests that the phytoplankton or debris in the suspended particulates play an important role in PBDE accumulation and transportation and that PBDEs are preferentially enriched in clays in the sediment. PBDE concentrations were higher in the inner and mouth regions than in the outer and middle regions, and decreased with water depth in the water column. Non-parametric multidimensional scaling ordination showed that BDE-209 and BDE-47 are the important products discriminating PBDE contamination. This result is associated with industrial waste discharge from urban areas and with heavy ship traffic, indicating that DecaBDE and PentaBDE products are the potential sources of PBDEs. PBDE concentrations were lower in the sediment in JZB than in other coastal areas in South China, although the PBDE concentrations in DP were higher than those in some coastal areas worldwide. Moreover, the PBDE concentrations in DP and sediment increased in the last decade.
Collapse
Affiliation(s)
- Ting Ju
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Fisheries Science Academy, Qingdao 266071, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Wang Z, Na G, Ma X, Ge L, Lin Z, Yao Z. Characterizing the distribution of selected PBDEs in soil, moss and reindeer dung at Ny-Ålesund of the Arctic. CHEMOSPHERE 2015; 137:9-13. [PMID: 25965290 DOI: 10.1016/j.chemosphere.2015.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
Distribution of 12 selected polybrominated diphenyl ethers (PBDEs) was characterized in soil, moss and reindeer dung samples collected simultaneously at Ny-Ålesund of the Arctic. The average PBDE concentrations were 42 pg/g (dry weight) in soil, 122 pg/g in moss and 72 pg/g in reindeer dung. Significant log/log-linear relationship was observed between the soil/moss quotients (QSM) and the sub-cooled liquid vapor pressures of PBDEs (r(2)=0.80). Moreover, excellent log/log-linear relationships between QSM and the octanol/air partition coefficients as well as between the moss/dung quotient (QMD) and the octanol/water partition coefficients of PBDEs were also observed, indicating that the physicochemical properties of PBDEs are appropriate parameters for characterizing the distribution of PBDEs in soil, moss and reindeer dung at Ny-Ålesund. Capsule abstract: Significant log-linear correlations were observed between physicochemical properties of PBDEs and their soil/moss (moss/dung) quotients.
Collapse
Affiliation(s)
- Zhen Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Guangshui Na
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xindong Ma
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Linke Ge
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhongsheng Lin
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ziwei Yao
- National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
7
|
Giandomenico S, Spada L, Annicchiarico C, Assennato G, Cardellicchio N, Ungaro N, Di Leo A. Chlorinated compounds and polybrominated diphenyl ethers (PBDEs) in mussels (Mytilus galloprovincialis) collected from Apulia Region coasts. MARINE POLLUTION BULLETIN 2013; 73:243-51. [PMID: 23751882 DOI: 10.1016/j.marpolbul.2013.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 05/04/2023]
Abstract
This project was carried out to assess the levels and spatial distribution of organochlorine compounds in the coastal marine environment, using mussels as bioindicators to evaluate the coastal water quality. Levels of polychlorobiphenils (PCB), chlorinated pesticides (DDT isomers, HCH isomers, Aldrin, Dieldrin, alfa-Endosulfan, Hexachlorobenzene, Pentachlorobenzene) and polybrominated diphenyl ethers (PBDEs) were determined in tissues from mussels (Mytilus galloprovincialis) collected along the Apulia Region coasts (Mediterranean Sea). Results indicate that contamination by organochlorine compounds is higher in mussels sampled in the Ionian Sea than in those from the Adriatic Sea, with PCB levels up to seven times higher in mussels from Ionian than from the Adriatic Sea. Although PCB levels were above the maximum values indicated by both European Community (EC) and National regulation in several sample sites, the PCB concentrations were particularly high in some stations, suggesting that these locations require a much specific attention. Conversely, results on the mussel contamination by PBDEs highlight their ubiquitous environmental distribution, and underline the need to establish the maximum level for these compounds in foodstuff, according to European Regulations.
Collapse
Affiliation(s)
- Santina Giandomenico
- C.N.R. - Institute for Coastal Marine Environment, Operative Unit of Taranto, via Roma 3, 74123 Taranto, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang Y, Beesoon S, Benskin JP, De Silva AO, Genuis SJ, Martin JW. Enantiomer fractions of chiral Perfluorooctanesulfonate (PFOS) in human sera. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8907-8914. [PMID: 21882865 DOI: 10.1021/es2023434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is the most prominent perfluoroalkyl contaminant in humans and wildlife, but there is great uncertainty in exposure pathways, particularly with respect to the importance of PFOS-precursors (PreFOS). We explored the hypothesis that nonracemic proportions of chiral PFOS in serum are qualitative and semiquantitative biomarkers of human PreFOS exposure. A new chiral HPLC-MS/MS method was developed for alpha-perfluoromethyl branched PFOS (1m-PFOS, typically 2-3% of total PFOS) and applied to enantiomer fraction (EF) analysis in biological samples. In blood and tissues of rodents exposed subchronically to electrochemical PFOS, 1m-PFOS was racemic (EF = 0.485-0.511) and no evidence for enantioselective excretion was found in this model mammal. 1m-PFOS in serum of pregnant women, from Edmonton, was significantly nonracemic, with a mean EF (±standard deviation) of 0.432 ± 0.009, similar to pooled North American serum. In a highly exposed Edmonton family (mother, father, and 5 children) living in a house where ScotchGard had been applied repeatedly to carpet and upholstery, EFs ranged from 0.35 to 0.43, significantly more nonracemic than in pregnant women. Semiquantitative estimates of % serum 1m-PFOS coming from 1m-PreFOS biotransformation in both subpopulations were in reasonable agreement with model predictions of human exposure to PFOS from PreFOS. The data were overall suggestive that the measured nonracemic EFs were influenced by the relative extent of exposure to PreFOS. The possibility of using 1m-PFOS EFs for assessing the relative contribution of 1m-PreFOS (or PreFOS in general) in biological samples requires further application before being fully validated, but could be a powerful tool for probing general sources of PFOS in environments where the importance of PreFOS is unknown.
Collapse
Affiliation(s)
- Yuan Wang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Wang Z, Ma X, Lin Z, Na G, Yao Z. Congener specific distributions of polybrominated diphenyl ethers (PBDEs) in sediment and mussel (Mytilus edulis) of the Bo Sea, China. CHEMOSPHERE 2009; 74:896-901. [PMID: 19095284 DOI: 10.1016/j.chemosphere.2008.10.064] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 05/27/2023]
Abstract
Congener specific distributions of polybrominated diphenyl ethers (PBDEs) were investigated in sediment and mussel (Mytilus edulis) collected from the coast of Bo Sea, China. The median values of BDE-209 and SigmaPBDEs (including BDE-17, -28, -47, -66, -71, -85, -99, -100, -138, -153, -154, -183 and -190) were 2.29 and 0.16 ng g(-1)dry weight in sediment, and 2.43 and 0.68 ng g(-1)dry weight in mussel, respectively. BDE-209 was the predominant congener (61-99% in mussel and 75-99% in sediment except for one sample with 17%). Different congener patterns (excluding BDE-209) were observed between sediment and mussel, which were attributed to individual congener's bioaccumulation potential and/or the ability to metabolize. The four most abundant congeners were BDE-47 (40.3%), -99 (22.5%), -71 (8.9%) and -28 (5.8%) in sediment, and -47 (36.4%), -28 (14.5%), -154 (8.6%) and -71 (8.6%) in mussel, respectively. The ratios of BDE-47/BDE-99 and BDE-100/BDE-99 in sediment were lower than those in mussel, indicating higher transformation and uptake rate of BDE-99 in mussel. The biota-sediment accumulation factor (BSAF) of individual PBDE congeners declined with the increase of their logarithm of octanol-water partition coefficients (log K(OW)) except for BDE-154, indicating congeners with higher logK(OW) were more likely to retain in sediment. These can be explained with a high affinity of these compounds for carbonaceous geosorbents, and molecular steric hindrance that limits large, very hydrophobic organic compounds from penetrating the cellular membranes.
Collapse
Affiliation(s)
- Zhen Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | | | | | | | | |
Collapse
|