1
|
Tian J, Du Y, Wang B, Ji M, Li H, Xia Y, Zhang K, Li Z, Xie W, Gong W, Yu E, Wang G, Xie J. Hif1α/Dhrs3a Pathway Participates in Lipid Droplet Accumulation via Retinol and Ppar-γ in Fish Hepatocytes. Int J Mol Sci 2023; 24:10236. [PMID: 37373386 DOI: 10.3390/ijms241210236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Excessive hepatic lipid accumulation is a common phenomenon in cultured fish; however, its underlying mechanisms are poorly understood. Lipid droplet (LD)-related proteins play vital roles in LD accumulation. Herein, using a zebrafish liver cell line (ZFL), we show that LD accumulation is accompanied by differential expression of seven LD-annotated genes, among which the expression of dehydrogenase/reductase (SDR family) member 3 a/b (dhrs3a/b) increased synchronously. RNAi-mediated knockdown of dhrs3a delayed LD accumulation and downregulated the mRNA expression of peroxisome proliferator-activated receptor gamma (pparg) in cells incubated with fatty acids. Notably, Dhrs3 catalyzed retinene to retinol, the content of which increased in LD-enriched cells. The addition of exogenous retinyl acetate maintained LD accumulation only in cells incubated in a lipid-rich medium. Correspondingly, exogenous retinyl acetate significantly increased pparg mRNA expression levels and altered the lipidome of the cells by increasing the phosphatidylcholine and triacylglycerol contents and decreasing the cardiolipin, phosphatidylinositol, and phosphatidylserine contents. Administration of LW6, an hypoxia-inducible factor 1α (HIF1α) inhibitor, reduced the size and number of LDs in ZFL cells and attenuated hif1αa, hif1αb, dhrs3a, and pparg mRNA expression levels. We propose that the Hif-1α/Dhrs3a pathway participates in LD accumulation in hepatocytes, which induces retinol formation and the Ppar-γ pathway.
Collapse
Affiliation(s)
- Jingjing Tian
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572024, China
| | - Yihui Du
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Binbin Wang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Mengmeng Ji
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hongyan Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572024, China
| | - Yun Xia
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572024, China
| | - Kai Zhang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572024, China
| | - Zhifei Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572024, China
| | - Wenping Xie
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572024, China
| | - Wangbao Gong
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572024, China
| | - Ermeng Yu
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572024, China
| | - Guangjun Wang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572024, China
| | - Jun Xie
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572024, China
| |
Collapse
|
2
|
Xie S, He J, Masagounder K, Liu Y, Tian L, Tan B, Niu J. Dietary lysine levels modulate the lipid metabolism, mitochondrial biogenesis and immune response of grass carp, Ctenopharyngodon idellus. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
3
|
Xu J, Xie S, Chi S, Zhang S, Cao J, Tan B. Protective effects of taurocholic acid on the excessive hepatic lipid accumulation via regulation of bile acids metabolism in grouper. Food Funct 2022; 13:3050-3062. [DOI: 10.1039/d1fo04085e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary bile acids (BAs) supplementation can notably ameliorate the fatty liver disease caused by high dietary lipids, but the mechanism behind this is poorly understood. The present study was aimed...
Collapse
|
4
|
Huang H, Zhang X, Liang X, Wu X, Gu X, Han J, Xue M. N-carbamoylglutamate improves lipid metabolism, inflammation, and apoptosis responses in visceral adipocytes of Japanese seabass ( Lateolabrax japonicus), in vivo and in vitro. ACTA ACUST UNITED AC 2021; 7:707-715. [PMID: 34466675 PMCID: PMC8379344 DOI: 10.1016/j.aninu.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 01/06/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022]
Abstract
This study applied in vivo and in vitro methods to investigate the effect of dietary N-carbamoylglutamate (NCG) on lipid metabolism, inflammation and apoptosis related-gene expression in visceral adipose tissue and isolated adipocytes of Japanese seabass (Lateolabrax japonicus). A basal diet and a test diet supplemented with 720 mg/kg NCG were fed to the fish for 10 weeks. During the growth trial, no mortality and no significant differences in growth performance were observed in fish between the 2 groups (P > 0.05). Plasma Arg content and mRNA level of argininosuccinate synthetase (ASS) in adipose tissue were significantly increased, which indicated that NCG inclusion promoted endogenous Arg synthesis. Thereafter, the potential effects of NCG treatment on lipid metabolism-related genes expression were studied through in vivo and in vitro methods. In the present study, we successfully established a primary adipocytes culture system and isolated pre-adipocytes in vitro of Japanese seabass for the first time. Both the results in vivo and in vitro showed that NCG treatment decreased the mRNA levels of genes related to adipogenesis (fatty acid synthase, FASN), cholesterol synthesis (3-hydroxy-3-methylglutaryl-CoA reductase, HMGCR) and fat deposition (lipoprotein lipase [LPL] and leptin), which revealed the underlying mechanism of NCG on reducing fat deposition. The results of this study demonstrated that NCG inclusion reduced the expression of inflammatory and apoptosis cytokines markedly in vivo and in vitro. In conclusion, NCG did exert beneficial effects on ameliorating adipogenesis, inflammation and apoptosis via promoting Arg endogenous synthesis in Japanese seabass.
Collapse
Affiliation(s)
- Haoyan Huang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoran Zhang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiufeng Wu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Gu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Feed Processing Innovation Team, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
5
|
Huang X, Sun J, Bian C, Ji S, Ji H. Perilipin 1-3 in grass carp Ctenopharyngodon idella: molecular characterization, gene structure, tissue distribution, and mRNA expression in DHA-induced lipid droplet formation in adipocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2311-2322. [PMID: 32996002 DOI: 10.1007/s10695-020-00857-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Perilipin family is the main structural proteins of lipid droplet (LD) that is intracellular neutral lipid store ponds, and regulates LD assembly and formation, and is crucial for lipid metabolism. Here three paralogs of perilipin family were characterized from grass carp and their complete coding sequences (CDS) were obtained, including perilipin1, perilipin2, and perilipin3, coding peptides of 492, 454, and 419 amino acids, respectively. The alignment of the homology of grass carp perilipin deduced amino acid sequences with other teleost species showed that the homology with mammalian was less than 55%. PAT (perilipin) domain in mammalian was also predicted in grass carp perilipin 1-3 proteins. Genomic organization analysis revealed that grass carp perilipin1 contained 6 coding exons, while both perilipin2 and perilipin3 consisted of 7 coding exons. The mRNA encoding three paralogs were expressed in a wide range of tissues; perilipin1-3 were primarily expressed in adipose tissue and liver; besides, perilipin3 was also highly expressed in the heart. In vitro, 200 μM DHA increased the proportion of smaller lipid droplets effectively in fully differentiated adipocytes of grass carp. The mRNA expression of perilipin1, perilipin2, and perilipin3 was significantly increased in the adipocytes treated with DHA (P < 0.05, P < 0.01). The same responses of different paralogs in the adipocytes during DHA treatment suggest that they might play synergistic roles in the formation of LDs.
Collapse
Affiliation(s)
- Xiaocheng Huang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| |
Collapse
|
6
|
Basto-Silva C, Balbuena-Pecino S, Oliva-Teles A, Riera-Heredia N, Navarro I, Guerreiro I, Capilla E. Gilthead seabream (Sparus aurata) in vitro adipogenesis and its endocrine regulation by leptin, ghrelin, and insulin. Comp Biochem Physiol A Mol Integr Physiol 2020; 249:110772. [PMID: 32711163 DOI: 10.1016/j.cbpa.2020.110772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/29/2022]
Abstract
Leptin, ghrelin, and insulin influence lipid metabolism and thus can directly affect adipose tissue characteristics, modulating the organoleptic quality of aquaculture fish. The present study explored gilthead seabream (Sparus aurata) cultured preadipocytes development, and the regulation of adipogenesis by those three hormones. Preadipocytes presented a fibroblast-like phenotype during the proliferation phase that changed to round-shaped with an enlarged cytoplasm filled with lipid droplets after complete differentiation, confirming the characteristics of mature adipocytes. peroxisome proliferator-activated receptor-γ (pparγ) expression was higher at the beginning of the culture, while fatty acid synthase and 3-hydroxyacyl-CoA dehydrogenase gradually increased with cell maturation. The expression of lipoprotein lipase-like, lysosomal acid lipase (lipa), fatty acid translocase/cluster of differentiation-36 (cd36), and leptin receptor (lepr) were not affected during cell culture development; and undetectable expression levels were observed for leptin. Concerning regulation, leptin inhibited lipid accumulation significantly reducing pparγ and cd36 gene expression, both in early differentiating and mature adipocytes, while ghrelin decreased the expression of pparγ in the early differentiating phase but did not reduce intracellular lipid content significantly. Additional insulin past the onset of adipogenesis did not affect lipid accumulation either. In conclusion, at present culture conditions leptin has an anti-adipogenic function in differentiating preadipocytes of gilthead seabream and continues exerting this role in mature adipocytes, while ghrelin and insulin do not seem to influence adipogenesis progression. A better understanding of leptin, ghrelin, and insulin impact on the adipogenic process could help in the prevention of fat accumulation, improving aquaculture fish production and quality.
Collapse
Affiliation(s)
- Catarina Basto-Silva
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
| | - Sara Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Aires Oliva-Teles
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Inês Guerreiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Ji S, Sun J, Bian C, Huang X, Chang Z, Yang M, Lu RH, Ji H. cAMP-dependent protein kinase A in grass carp Ctenopharyngodon idella: Molecular characterization, gene structure, tissue distribution and mRNA expression in endoplasmic reticulum stress-induced adipocyte lipolysis. Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110479. [PMID: 32687978 DOI: 10.1016/j.cbpb.2020.110479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Protein kinase A (PKA), one of the most widely studied protein kinases, has many functions in cells, including regulating the metabolism of sugar and lipid. Here we identified nine isoforms of the PKA family in grass carp Ctenopharyngodon idella and obtained their complete coding sequences (CDS), including PRKACAa, PRKACAb, PRKACBa, PRKACBb, PRKAR1A, PRKAR1B, PRKAR2Aa, PRKAR2Ab and PRKAR2B, and PRKACA, PRKACB and PRKAR2A, which may experience fish-specific genome duplication. Sequence analysis showed that the predicted protein structures of PKA gene family members in grass carp were different. Grass carp PRKACAa, PRKACAb, PRKACBa, and PRKACBb contained serine/threonine protein kinases, while PRKAR1A, PRKAR1B, PRKAR2Aa, PRKAR2Ab and PRKAR2B contained two cyclic nucleotide-monophosphate binding domains. PRKACAa, PRKACBa, PRKACBb, PRKAR1A, PRKAR1B and PRKAR2Aa contained 10 coding exons, while PRKACAb and PRKAR2Ab consisted of 12 coding exons and 5 coding exons, respectively. The messenger RNA (mRNA) of the nine PKA isoforms was detected in a wide range of tissues, but their abundance showed tissue-dependent expression patterns. In tunicamycin-induced adipocyte lipolysis, only the mRNA levels of PRKACAb and PRKACBa showed a significant increase in adipocyte (p < .05), indicating that nine PKA isoforms may serve somewhat different roles in endoplasmic reticulum (ER) stress-mediated lipolysis in fish. These results suggested that nine grass carp PKA isoforms may play different roles in tissues, and their expression levels were differently modulated by ER stress in adipocyte.
Collapse
Affiliation(s)
- Shanghong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xiaocheng Huang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Zhiguang Chang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Minghui Yang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Rong-Hua Lu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China.
| |
Collapse
|
8
|
Cui T, Xing T, Huang J, Mu F, Jin Y, You X, Chu Y, Li H, Wang N. Nuclear Respiratory Factor 1 Negatively Regulates the P1 Promoter of the Peroxisome Proliferator-Activated Receptor-γ Gene and Inhibits Chicken Adipogenesis. Front Physiol 2018; 9:1823. [PMID: 30618832 PMCID: PMC6305991 DOI: 10.3389/fphys.2018.01823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipogenesis, and alterations in its function are associated with various pathological processes related to metabolic syndrome. Recently, we found that the chicken PPARγ gene is regulated by three alternative promoters (P1, P2 and P3), producing five different transcript isoforms and two protein isoforms. In this study, the P1 promoter structure was characterized. Bioinformatics identified six putative nuclear respiratory factor 1 (NRF1) binding sites in the P1 promoter, and a reporter assay showed that NRF1 inhibited the activity of the P1 promoter. Of the six putative NRF1 binding sites, individual mutations of three of them abolished the inhibitory effect of NRF1 on P1 promoter activity. Furthermore, a ChIP assay indicated that NRF1 directly bound to the P1 promoter, and real-time quantitative RT-PCR analysis showed that NRF1 mRNA expression was negatively correlated with PPARγ1 expression (Pearson’s r = -0.148, p = 0.033). Further study showed that NRF1 overexpression inhibited the differentiation of the immortalized chicken preadipocyte cell line (ICP1), which was accompanied by reduced PPARγ1 mRNA expression. Taken together, our findings indicated that NRF1 directly negatively regulates the P1 promoter of the chicken PPARγ gene and inhibits adipogenesis.
Collapse
Affiliation(s)
- Tingting Cui
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Institute of Animal Science of Heilongjiang Province, Qiqihar, China
| | - Tianyu Xing
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiaxin Huang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fang Mu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yanfei Jin
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xin You
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yankai Chu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Jin A, Shi XC, Liu Y, Sun J, Ji H. Docosahexaenoic acid induces PPARγ-dependent preadipocytes apoptosis in grass carp Ctenopharyngodon idella. Gen Comp Endocrinol 2018; 266:211-219. [PMID: 29782840 DOI: 10.1016/j.ygcen.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
Abstract
Our previous study showed that docosahexaenoic acid (DHA) plays an important role in decreasing lipid accumulation by inducing apoptosis of the adipocytes in grass carp. However, the mechanism involved remains unclear. DHA has been reported as the natural ligand of PPARγ. The present study aimed to assess whether PPARγ mediates the pro-apoptotic effects by DHA. Adipocytes of grass carp were cultured until 2 days post-confluence and were treated with DHA at various concentrations-0, 25, 50, 100, 200, and 400 μmol/L for 24 h and at 200 μmol/L for various time periods (0, 12, 24, and 48 h, respectively). Besides, the adipocytes were exposed to 200 μM DHA and PPARγ antagonist or inhibitor of certain key enzymes of apoptosis, following which the expression levels of key genes of the cell apoptotic and mitochondrial apoptotic pathways were detected. We found that DHA induced apoptosis of grass carp adipocytes in a time- and dose-dependent manner (P < 0.05). In addition, DHA treatment significantly increased the protein and gene expression levels of PPARγ (P < 0.05), but the PPARγ antagonist significantly abolished this effect and the DHA pro-apoptotic effect (P < 0.05). Moreover, treatment with caspase 9 inhibitor significantly attenuated the DHA-induced preadipocytes apoptosis effects, while treatment with caspase 8 inhibitor showed no influence. These observations suggest that the DHA-induced apoptosis in adipocytes might be mediated by PPARγ and via the intrinsic apoptotic pathway in grass carp.
Collapse
Affiliation(s)
- Ai Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Chen Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Yangyang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
10
|
Liu P, Tian JJ, Ji H, Sun J, Li C, Huang JQ, Li Y, Yu HB, Yu EM, Xie J. The Wnt/β-catenin pathway contributes to the regulation of adipocyte development induced by docosahexaenoic acid in grass carp, Ctenopharyngodon idellus. Comp Biochem Physiol B Biochem Mol Biol 2018; 216:18-24. [DOI: 10.1016/j.cbpb.2017.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/20/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
|
11
|
Wang YW, Zhang JL, Jiao JG, Du XX, Limbu SM, Qiao F, Zhang ML, Li DL, Du ZY. Physiological and metabolic differences between visceral and subcutaneous adipose tissues in Nile tilapia (Oreochromis niloticus). Am J Physiol Regul Integr Comp Physiol 2017; 313:R608-R619. [DOI: 10.1152/ajpregu.00071.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 01/04/2023]
Abstract
Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT) have different structures and metabolic functions and play different roles in the regulation of the mammal endocrine system. However, little is known about morphology and physiological and metabolic functions between VAT and SCAT in fish. We compared the morphological, physiological, and biochemical characteristics of VAT and SCAT in Nile tilapia and measured their functions in energy intake flux, lipolytic ability, and gene expression patterns. SCAT contained more large adipocytes and nonadipocytes than VAT in Nile tilapia. VAT had higher lipid content and was the primary site for lipid deposition. Conversely, SCAT had higher hormone-induced lipolytic activity. Furthermore, SCAT had a higher percentage of monounsaturated and lower polyunsaturated fatty acids than VAT. SCAT had higher mitochondrial DNA, gene expression for fatty acid β-oxidation, adipogenesis, and brown adipose tissue characteristics, but it also had a lower gene expression for inflammation and adipocyte differentiation than VAT. SCAT and VAT have different morphological structures, as well as physiological and metabolic functions in fish. VAT is the preferable lipid deposition tissue, whereas SCAT exhibits higher lipid catabolic activity than VAT. The physiological functions of SCAT in fish are commonly overlooked. The present study indicates that SCAT has specific metabolic characteristics that differ from VAT. The differences between VAT and SCAT should be considered in future metabolism studies using fish as models, either in biomedical or aquaculture studies.
Collapse
Affiliation(s)
- Ya-Wen Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ji-Lei Zhang
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China; and
| | - Jian-Gang Jiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiao-Xia Du
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China; and
| | - Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
- Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|