1
|
Park SY, Cha N, Kim S, Chae S, Lee WJ, Jung H, Bae H. Blocking Microglial Proliferation by CSF-1R Inhibitor Does Not Alter the Neuroprotective Effects of Adoptive Regulatory T Cells in 3xTg Alzheimer's Disease Mice. Curr Issues Mol Biol 2024; 46:2871-2883. [PMID: 38666910 PMCID: PMC11049167 DOI: 10.3390/cimb46040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes cognitive impairment. Neuroinflammation induced by activated microglia exacerbates AD. Regulatory T cells (Tregs) play roles in limiting neuroinflammation by converting microglial polarization. Therefore, adoptive Treg therapy is considered an attractive option for neurodegenerative disorders. However, the mechanism underlying Treg therapy via microglial modulation is not fully understood. In this study, we sought to determine whether adoptively transferred Tregs were effective when microglia proliferation was inhibited by using GW2580, which is an inhibitor of CSF1R. We found that inhibition of microglial proliferation during Treg transfer did not alter the therapeutic effects of Tregs on cognitive deficits and the accumulation of Aβ and pTAU in 3xTg-AD mice. The expression of pro- and anti-inflammatory markers in the hippocampus of 3xTg mice showed that GW2580 did not affect the inhibition of neuroinflammation by Treg transfer. Additionally, adoptively transferred Tregs were commonly detected in the brain on day 7 after transfer and their levels decreased slowly over 100 days. Our findings suggest that adoptively transferred Tregs can survive longer than 100 days in the brain, suppressing microglial activation and thus alleviating AD pathology. The present study provides valuable evidence to support the prolonged efficacy of adoptive Treg therapy in AD.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nari Cha
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soyoung Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songah Chae
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won-Jun Lee
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunjae Jung
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunsu Bae
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Abstract
Significance: Central nervous system (CNS) diseases are disorders of the brain and/or spinal cord and include neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor belonging to the cap-n-collar family that harbors a unique basic leucine zipper motif and plays as a master regulator of homeostatic responses. Recent Advances: Kelch-like ECH-associated protein 1 (KEAP1) is an adaptor of the Cullin3 (CUL3)-based ubiquitin E3 ligase that enhances the ubiquitylation of NRF2, which promotes the degradation of NRF2 to suppress its transcriptional activity in the absence of stress. Cysteine residues of KEAP1 are modified under stress conditions, and NRF2 degradation is attenuated, allowing it to accumulate and induce the expression of target genes. This regulatory system is referred to as the KEAP1-NRF2 system and plays a central role in protecting cells against various stresses. NRF2 also negatively regulates the expression of inflammatory cytokine and chemokine genes and suppresses pathological inflammation. As oxidative stress, inflammation, and proteostasis are known to contribute to neurodegenerative diseases, the KEAP1-NRF2 system is an attractive target for the treatment of these diseases. Critical Issues: In mouse models of neurodegenerative diseases, Nrf2 depletion exacerbates symptoms and enhances oxidative damage and inflammation in the CNS. In contrast, chemical or genetic NRF2 activation improves these symptoms. Indeed, the NRF2-activating chemical dimethyl fumarate is now widely used for the clinical treatment of MS. Future Directions: The KEAP1-NRF2 system is a promising therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Uruno A, Yamamoto M. The KEAP1-NRF2 system and neurodegenerative diseases. Antioxid Redox Signal 2023. [PMID: 36734430 DOI: 10.1089/ars.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Significance: Central nervous system (CNS) diseases are disorders of the brain and/or spinal cord and include neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). NF-E2-related factor 2 (NRF2) is a transcription factor belonging to the cap-n-collar (CNC) family that harbors a unique basic leucine zipper motif and plays as a master regulator of homeostatic responses. Recent Advances: Kelch-like ECH-associated protein 1 (KEAP1) is an adaptor of the Cullin3 (CUL3)-based ubiquitin E3 ligase that enhances the ubiquitylation of NRF2, which promotes the degradation of NRF2 to suppress its transcriptional activity in the absence of stress. Cysteine residues of KEAP1 are modified under stress conditions, and NRF2 degradation is attenuated, allowing it to accumulate and induce the expression of target genes. This regulatory system is referred to as the KEAP1-NRF2 system and plays a central role in protecting cells against various stresses. NRF2 also negatively regulates the expression of inflammatory cytokine and chemokine genes and suppresses pathological inflammation. As oxidative stress, inflammation, and proteostasis are known to contribute to neurodegenerative diseases, the KEAP1-NRF2 system is an attractive target for the treatment of these diseases. Critical Issues: In mouse models of neurodegenerative diseases, Nrf2 depletion exacerbates symptoms and enhances oxidative damage and inflammation in the CNS. In contrast, chemical or genetic NRF2 activation improves these symptoms. Indeed, the NRF2-activating chemical dimethyl fumarate (DMF) is now widely used for the clinical treatment of MS. Future Directions: The KEAP1-NRF2 system is a promising therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Akira Uruno
- Tohoku University, 13101, 2-1 Seiryo-cho, Aoba-ku, Sendai, Sendai, Miyagi, Japan, 980-8577;
| | - Masayuki Yamamoto
- Tohoku University Graduate School of Medicine, Department of Medical Biochemistry, 2-1 Seiryo-machi, Aoba-ku, Sendai, Sendai, Japan, 980-8575;
| |
Collapse
|
4
|
Passaro AP, Lebos AL, Yao Y, Stice SL. Immune Response in Neurological Pathology: Emerging Role of Central and Peripheral Immune Crosstalk. Front Immunol 2021; 12:676621. [PMID: 34177918 PMCID: PMC8222736 DOI: 10.3389/fimmu.2021.676621] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a key component of neurological disorders and is an important therapeutic target; however, immunotherapies have been largely unsuccessful. In cases where these therapies have succeeded, particularly multiple sclerosis, they have primarily focused on one aspect of the disease and leave room for improvement. More recently, the impact of the peripheral immune system is being recognized, since it has become evident that the central nervous system is not immune-privileged, as once thought. In this review, we highlight key interactions between central and peripheral immune cells in neurological disorders. While traditional approaches have examined these systems separately, the immune responses and processes in neurological disorders consist of substantial crosstalk between cells of the central and peripheral immune systems. Here, we provide an overview of major immune effector cells and the role of the blood-brain barrier in regard to neurological disorders and provide examples of this crosstalk in various disorders, including stroke and traumatic brain injury, multiple sclerosis, neurodegenerative diseases, and brain cancer. Finally, we propose targeting central-peripheral immune interactions as a potential improved therapeutic strategy to overcome failures in clinical translation.
Collapse
Affiliation(s)
- Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
| | - Abraham L. Lebos
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Microbiology, University of Georgia, Athens, GA, United States
| | - Yao Yao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Yang Z, Zhu T, Mondello S, Akel M, Wong AT, Kothari IM, Lin F, Shear DA, Gilsdorf JS, Leung LY, Bramlett HM, Dixon CE, Dietrich WD, Hayes RL, Povlishock JT, Tortella FC, Kochanek PM, Wang KKW. Serum-Based Phospho-Neurofilament-Heavy Protein as Theranostic Biomarker in Three Models of Traumatic Brain Injury: An Operation Brain Trauma Therapy Study. J Neurotrauma 2018; 36:348-359. [PMID: 29987972 DOI: 10.1089/neu.2017.5586] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase (UCH-L1), markers of glial and neuronal cell body injury, respectively, have been previously selected by the Operation Brain Trauma Therapy (OBTT) pre-clinical therapy and biomarker screening consortium as drug development tools. However, traumatic axonal injury (TAI) also represents a major consequence and determinant of adverse outcomes after traumatic brain injury (TBI). Thus, biomarkers capable of assessing TAI are much needed. Neurofilaments (NFs) are found exclusively in axons. Here, we evaluated phospho-neurofilament-H (pNF-H) protein as a possible new TAI marker in serum and cerebrospinal fluid (CSF) across three rat TBI models in studies carried out by the OBTT consortium, namely, controlled cortical impact (CCI), parasagittal fluid percussion (FPI), and penetrating ballistics-like brain injury (PBBI). We indeed found that CSF and serum pNF-H levels are robustly elevated by 24 h post-injury in all three models. Further, in previous studies by OBTT, levetiracetam showed the most promising benefits, whereas nicotinamide showed limited benefit only at high dose (500 mg/kg). Thus, serum samples from the same repository collected by OBTT were evaluated. Treatment with 54 mg/kg intravenously of levetiracetam in the CCI model and 170 mg/kg in the PBBI model significantly attenuated pNF-H levels at 24 h post-injury as compared to respective vehicle groups. In contrast, nicotinamide (50 or 500 mg/kg) showed no reduction of pNF-H levels in CCI or PBBI models. Our current study suggests that pNF-H is a useful theranostic blood-based biomarker for TAI across different rodent TBI models. In addition, our data support levetiracetam as the most promising TBI drug candidate screened by OBTT to date.
Collapse
Affiliation(s)
- Zhihui Yang
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Tian Zhu
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Stefania Mondello
- 2 Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,3 Department of Neurology, Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy
| | - Miis Akel
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Aaron T Wong
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Isha M Kothari
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Fan Lin
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Deborah A Shear
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Janice S Gilsdorf
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Lai Yee Leung
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Helen M Bramlett
- 5 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida.,6 Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - C Edward Dixon
- 7 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - W Dalton Dietrich
- 5 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ronald L Hayes
- 8 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida
| | - John T Povlishock
- 9 Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Frank C Tortella
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Patrick M Kochanek
- 10 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kevin K W Wang
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Su M, Lin Y, Cui C, Tian X, Lu X, He Z, Lai L. ESC-derived thymic epithelial cells expressing MOG prevents EAE by central and peripheral tolerance mechanisms. Cell Immunol 2017; 322:84-91. [PMID: 29074250 DOI: 10.1016/j.cellimm.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for multiple sclerosis (MS), and is induced by immunization with disease-causative self-antigens such as myelin oligodendrocyte glycoprotein (MOG). We have previously reported that transplantation of MOG expressing thymic epithelial progenitors (TEPs) derived from 129S6SvEv Tac mouse embryonic stem cells (mESCs) prevented the development of EAE. In this study, we expand our previous studies to show that transplantation of MOG expressing mESC-TEPs derived from C57BL/6 mice also prevents EAE development. Furthermore, by using a MOG-specific T cell receptor (TCR) transgenic mouse model, we demonstrate that both central and peripheral tolerances are involved in the prevention of EAE induced by MOG expressing mESC-TEPs. Our results suggest that transplantation of human ESC-TEPs expressing MOG may provide an effective approach for the induction of MOG-specific immune tolerance, thereby the prevention and treatment of MS.
Collapse
Affiliation(s)
- Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA; Tissue Engineering and Stem Cell Research Center, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China
| | - Yujun Lin
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Cheng Cui
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Xiaohong Tian
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Zhixu He
- Tissue Engineering and Stem Cell Research Center, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China; Pediatric Department of the Affiliated Hospital, Guizhou Medical University, Guizhou, China.
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA; University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
7
|
Pilli D, Zou A, Tea F, Dale RC, Brilot F. Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System. Front Immunol 2017. [PMID: 28638382 PMCID: PMC5461350 DOI: 10.3389/fimmu.2017.00652] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is being increasingly recognized that a dysregulation of the immune system plays a vital role in neurological disorders and shapes the treatment of the disease. Aberrant T cell responses, in particular, are key in driving autoimmunity and have been traditionally associated with multiple sclerosis. Yet, it is evident that there are other neurological diseases in which autoreactive T cells have an active role in pathogenesis. In this review, we report on the recent progress in profiling and assessing the functionality of autoreactive T cells in central nervous system (CNS) autoimmune disorders that are currently postulated to be primarily T cell driven. We also explore the autoreactive T cell response in a recently emerging group of syndromes characterized by autoantibodies against neuronal cell-surface proteins. Common methodology implemented in T cell biology is further considered as it is an important determinant in their detection and characterization. An improved understanding of the contribution of autoreactive T cells expands our knowledge of the autoimmune response in CNS disorders and can offer novel methods of therapeutic intervention.
Collapse
Affiliation(s)
- Deepti Pilli
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Alicia Zou
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Lossius A, Johansen JN, Vartdal F, Holmøy T. High-throughput sequencing of immune repertoires in multiple sclerosis. Ann Clin Transl Neurol 2016; 3:295-306. [PMID: 27081660 PMCID: PMC4818741 DOI: 10.1002/acn3.295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/21/2015] [Accepted: 01/18/2016] [Indexed: 12/24/2022] Open
Abstract
T cells and B cells are crucial in the initiation and maintenance of multiple sclerosis (MS), and the activation of these cells is believed to be mediated through specific recognition of antigens by the T‐ and B‐cell receptors. The antigen receptors are highly polymorphic due to recombination (T‐ and B‐cell receptors) and mutation (B‐cell receptors) of the encoding genes, which can therefore be used as fingerprints to track individual T‐ and B‐cell clones. Such studies can shed light on mechanisms driving the immune responses and provide new insights into the pathogenesis. Here, we summarize studies that have explored the T‐ and B‐cell receptor repertoires using earlier methodological approaches, and we focus on how high‐throughput sequencing has provided new knowledge by surveying the immune repertoires in MS in even greater detail and with unprecedented depth.
Collapse
Affiliation(s)
- Andreas Lossius
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway; Department of Neurology Oslo University Hospital Rikshospitalet Oslo Norway; Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Jorunn N Johansen
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway
| | - Frode Vartdal
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway; Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Trygve Holmøy
- Institute of Clinical Medicine University of Oslo Oslo Norway; Department of Neurology Akershus University Hospital Lørenskog Norway
| |
Collapse
|
9
|
Renaud J, Thérien HM, Plouffe M, Martinoli MG. [Neuroinflammation: Dr Jekyll or Mr Hyde?]. Med Sci (Paris) 2015; 31:979-88. [PMID: 26576605 DOI: 10.1051/medsci/20153111012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sheltered in a bony cage, populated by cells with little regenerative potential, the central nervous system (CNS) could likely not withstand classic inflammation without risking major sequelae. As a consequence, it had to develop an original way to provide surveillance, defence and reparation, which relies on both the complex architecture of the periphery-nervous parenchyma exchange zones, and the tightly regulated collaboration between all the cell populations that reside in or pass through the CNS. Despite its tight regulation, neuroinflammation is sometimes the cause of irreversible loss but it is also where the solution stands. The specific immune crosstalk that takes place in the CNS needs to be decoded in order to identify the best therapeutic strategies aimed at helping the CNS to restore homeostasis in problematic situations, such as in the case of neurodegenerative disorders. This review deals with this double-edged sword nature of neuroinflammation.
Collapse
Affiliation(s)
- Justine Renaud
- Groupe de recherche en neurosciences, Département de biologie médicale, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, G9A 5H7 Trois-Rivières, Québec, Canada
| | - Hélène-Marie Thérien
- Département de biologie médicale, Université du Québec à Trois-Rivières, Québec, Canada
| | - Marilyn Plouffe
- Groupe de recherche en neurosciences, Département de biologie médicale, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, G9A 5H7 Trois-Rivières, Québec, Canada
| | - Maria-Grazia Martinoli
- Groupe de recherche en neurosciences, Département de biologie médicale, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, G9A 5H7 Trois-Rivières, Québec, Canada - Département de psychiatrie et neurosciences, Université Laval et Centre de recherche du CHUL, Québec, Canada
| |
Collapse
|
10
|
Administration of embryonic stem cell-derived thymic epithelial progenitors expressing MOG induces antigen-specific tolerance and ameliorates experimental autoimmune encephalomyelitis. J Autoimmun 2015; 58:36-47. [DOI: 10.1016/j.jaut.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 12/29/2022]
|
11
|
Wang Y, Cao L, Xu LM, Cao FF, Peng B, Zhang X, Shen YF, Uzan G, Zhang DH. Celastrol Ameliorates EAE Induction by Suppressing Pathogenic T Cell Responses in the Peripheral and Central Nervous Systems. J Neuroimmune Pharmacol 2015; 10:506-16. [PMID: 25773257 DOI: 10.1007/s11481-015-9598-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is the prototypical inflammatory demyelinating disease of the central nervous system (CNS), and MS results in physical and cognitive impairments, such as fatigue, pain, depression and bladder dysfunction. Though many therapies for MS have been developed, the safety profile and effectiveness of these therapies still need to be defined. Thus, new therapies for MS must be explored. Celastrol, a quinonemethide triterpene, is a pharmacologically active compound present in Thunder God Vine root extracts used to treat inflammatory and autoimmune diseases. Molecular studies have identified several molecular targets, which are mostly centered on the inhibition of IKK-NF-κB signaling. The animal model of experimental autoimmune encephalomyelitis (EAE) has been widely used in MS studies; thus, we tried to explore the role of celastrol in EAE development in this study. We demonstrated that the intraperitoneal injection of celastrol significantly attenuated EAE disease. Th17 cell responses in the peripheral lymph nodes in EAE mice were also inhibited by celastrol. We determined that celastroldownregulated cytokine production in bone-marrow derived dendritic cells (BMDCs). Accordingly, T cells that were co-cultured with either BMDCs pre-treated with celastrolor splenic DCs and then collected on day 7 after EAE immunizationshowed that Th17 cell polarization is suppressed in the above two situations. Moreover, celastrol was required for tissue-infiltrating DCs to sustain Th17 responses in the central nervous system (CNS). Taken together, the results of our study demonstrate that celastrol ameliorates EAE development by suppressing pathogenic Th17 responses; this finding offers a better understanding of the role of celastrol in EAE development as well as new proposals for clinical interventions.
Collapse
Affiliation(s)
- Ying Wang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, Secondary Military Medical University, 219 Miao Pu Road, Pudong New District, Shanghai, 200135, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dhama K, Kesavan M, Karthik K, . A, Tiwari R, Sunkara LT, Singh R. Neuroimmunomodulation Countering Various Diseases, Disorders, Infections, Stress and Aging. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.76.94] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Reynolds BC, Turner DG, McPherson RC, Prendergast CT, Phelps RG, Turner NA, O'Connor RA, Anderton SM. Exposure to inflammatory cytokines selectively limits GM-CSF production by induced T regulatory cells. Eur J Immunol 2014; 44:3342-52. [PMID: 25168419 PMCID: PMC4257504 DOI: 10.1002/eji.201444687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/10/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022]
Abstract
Interest in manipulating the immunosuppressive powers of Foxp3-expressing T regulatory cells as an immunotherapy has been tempered by their reported ability to produce proinflammatory cytokines when manipulated in vitro, or in vivo. Understanding processes that can limit this potentially deleterious effect of Treg cells in a therapeutic setting is therefore important. Here, we have studied this using induced (i) Treg cells in which de novo Foxp3 expression is driven by TCR-stimulation in vitro in the presence of TGF-β. We show that iTreg cells can produce significant amounts of three proinflammatory cytokines (IFN-γ, GM-CSF and TNF-α) upon secondary TCR stimulation. GM-CSF is a critical T-cell derived cytokine for the induction of EAE in mice. Despite their apparent capacity to produce GM-CSF, myelin autoantigen-responsive iTreg cells were unable to provoke EAE. Instead, they maintained strong suppressive function in vivo, preventing EAE induction by their CD4+Foxp3− counterparts. We identified that although iTreg cells maintained the ability to produce IFN-γ and TNF-α in vivo, their ability to produce GM-CSF was selectively degraded upon antigen stimulation under inflammatory conditions. Furthermore, we show that IL-6 and IL-27 individually, or IL-2 and TGF-β in combination, can mediate the selective loss of GM-CSF production by iTreg cells.
Collapse
Affiliation(s)
- Ben C Reynolds
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|