1
|
Manora L, Borlongan CV, Garbuzova-Davis S. Cellular and Noncellular Approaches for Repairing the Damaged Blood-CNS-Barrier in Amyotrophic Lateral Sclerosis. Cells 2024; 13:435. [PMID: 38474399 PMCID: PMC10931261 DOI: 10.3390/cells13050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Numerous reports have demonstrated the breakdown of the blood-CNS barrier (B-CNS-B) in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Re-establishing barrier integrity in the CNS is critical to prevent further motor neuron degeneration from harmful components in systemic circulation. Potential therapeutic strategies for repairing the B-CNS-B may be achieved by the replacement of damaged endothelial cells (ECs) via stem cell administration or enhancement of endogenous EC survival through the delivery of bioactive particles secreted by stem cells. These cellular and noncellular approaches are thoroughly discussed in the present review. Specific attention is given to certain stem cell types for EC replacement. Also, various nanoparticles secreted by stem cells as well as other biomolecules are elucidated as promising agents for endogenous EC repair. Although the noted in vitro and in vivo studies show the feasibility of the proposed therapeutic approaches to the repair of the B-CNS-B in ALS, further investigation is needed prior to clinical transition.
Collapse
Affiliation(s)
- Larai Manora
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA; (L.M.); (C.V.B.)
| | - Cesario V. Borlongan
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA; (L.M.); (C.V.B.)
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA; (L.M.); (C.V.B.)
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Salidroside-pretreated mesenchymal stem cells contribute to neuroprotection in cerebral ischemic injury in vitro and in vivo. J Mol Histol 2021; 52:1145-1154. [PMID: 34570327 DOI: 10.1007/s10735-021-10022-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/23/2021] [Indexed: 01/19/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered a promising tool for treating cerebral ischemic injury. However, their poor survival after transplantation limits their therapeutic effect and applications. Salidroside has been reported to exert potent cytoprotective and neuroprotective effects. This study aimed to investigate whether salidroside could improve MSC survival under hypoxic-ischemic conditions and, subsequently, alleviate cerebral ischemic injury in a rat model. MSCs were pretreated by salidroside under hypoxic-ischemic conditions. The cell proliferation, migratory capacity, and apoptosis were evaluated by means of Cell Counting Kit-8, transwell assay, and flow cytometry. MSCs pretreated with salidroside were transplanted into the rats subsequent to middle cerebral artery occlusion. The grip strength, 2,3,5-triphenyltetrazolium chloride, and hematoxylin-eosin staining were used to analyze the therapeutic efficiency and pathological changes. The mature neuron marker NeuN and astrocyte marker GFAP in the focal area were detected by immunofluorescence. These results indicated that salidroside promoted the proliferation, migration and reduced apoptosis of MSCs under hypoxic-ischemic conditions. In vivo experiments revealed that transplantation of salidroside-pretreated MSCs strengthened the therapeutic efficiency by enhancing neurogenesis and inhibiting neuroinflammation in the hippocampal CA1 area after ischemia. Our results suggest that pretreatment with salidroside could be an effective strategy to enhance the cell survival rate and the therapeutic effect of MSCs in treating cerebral ischemic injury.
Collapse
|
3
|
Rayasam A, Fukuzaki Y, Vexler ZS. Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiol (Oxf) 2021; 233:e13674. [PMID: 33991400 DOI: 10.1111/apha.13674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Development of the Central Nervous System (CNS) is reliant on the proper function of numerous intricately orchestrated mechanisms that mature independently, including constant communication between the CNS and the peripheral immune system. This review summarizes experimental knowledge of how cerebral ischaemia in infants and children alters physiological communication between leucocytes, brain immune cells, microglia and the neurovascular unit (NVU)-the "microglia-leucocyte axis"-and contributes to acute and long-term brain injury. We outline physiological development of CNS barriers in relation to microglial and leucocyte maturation and the plethora of mechanisms by which microglia and peripheral leucocytes communicate during postnatal period, including receptor-mediated and intracellular inflammatory signalling, lipids, soluble factors and extracellular vesicles. We focus on the "microglia-leucocyte axis" in rodent models of most common ischaemic brain diseases in the at-term infants, hypoxic-ischaemic encephalopathy (HIE) and focal arterial stroke and discuss commonalities and distinctions of immune-neurovascular mechanisms in neonatal and childhood stroke compared to stroke in adults. Given that hypoxic and ischaemic brain damage involve Toll-like receptor (TLR) activation, we discuss the modulatory role of viral and bacterial TLR2/3/4-mediated infection in HIE, perinatal and childhood stroke. Furthermore, we provide perspective of the dynamics and contribution of the axis in cerebral ischaemia depending on the CNS maturational stage at the time of insult, and modulation independently and in consort by individual axis components and in a sex dependent ways. Improved understanding on how to modify crosstalk between microglia and leucocytes will aid in developing age-appropriate therapies for infants and children who suffered cerebral ischaemia.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Yumi Fukuzaki
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Zinaida S. Vexler
- Department of Neurology University of California San Francisco San Francisco CA USA
| |
Collapse
|
4
|
Pathipati P, Lecuyer M, Faustino J, Strivelli J, Phinney DG, Vexler ZS. Mesenchymal Stem Cell (MSC)-Derived Extracellular Vesicles Protect from Neonatal Stroke by Interacting with Microglial Cells. Neurotherapeutics 2021; 18:1939-1952. [PMID: 34235636 PMCID: PMC8609070 DOI: 10.1007/s13311-021-01076-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies are beneficial in models of perinatal stroke and hypoxia-ischemia. Mounting evidence suggests that in adult injury models, including stroke, MSC-derived small extracellular vesicles (MSC-sEV) contribute to the neuroprotective and regenerative effects of MSCs. Herein, we examined if MSC-sEV protect neonatal brain from stroke and if this effect is mediated via communication with microglia. MSC-sEV derived from bone marrow MSCs were characterized by size distribution (NanoSight™) and identity (protein markers). Studies in microglial cells isolated from the injured or contralateral cortex of postnatal day 9 (P9) mice subjected to a 3-h middle cerebral artery occlusion (tMCAO) and cultured (in vitro) revealed that uptake of fluorescently labeled MSC-sEV was significantly greater by microglia from the injured cortex vs. contralateral cortex. The cell-type-specific spatiotemporal distribution of MSC-sEV was also determined in vivo after tMCAO at P9. MSC-sEV administered at reperfusion, either by intracerebroventricular (ICV) or by intranasal (IN) routes, accumulated in the hemisphere ipsilateral to the occlusion, with differing spatial distribution 2 h, 18 h, and 72 h regardless of the administration route. By 72 h, MSC-sEV in the IN group was predominantly observed in Iba1+ cells with retracted processes and in GLUT1+ blood vessels in ischemic-reperfused regions. MSC-sEV presence in Iba1+ cells was sustained. MSC-sEV administration also significantly reduced injury volume 72 h after tMCAO in part via modulatory effects on microglial cells. Together, these data establish feasibility for MSC-sEV delivery to injured neonatal brain via a clinically relevant IN route, which affords protection during sub-acute injury phase.
Collapse
Affiliation(s)
- Praneeti Pathipati
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Matthieu Lecuyer
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Joel Faustino
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | | | - Donald G Phinney
- Department of Molecular Medicine, Scripps Research Institute, Jupiter, FL, USA
| | - Zinaida S Vexler
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
5
|
Laloze J, Fiévet L, Desmoulière A. Adipose-Derived Mesenchymal Stromal Cells in Regenerative Medicine: State of Play, Current Clinical Trials, and Future Prospects. Adv Wound Care (New Rochelle) 2021; 10:24-48. [PMID: 32470315 PMCID: PMC7698876 DOI: 10.1089/wound.2020.1175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Significance: Wound healing is a complex process involving pain and inflammation, where innervation plays a central role. Managing wound healing and pain remains an important issue, especially in pathologies such as excessive scarring (often leading to fibrosis) or deficient healing, leading to chronic wounds. Recent Advances: Advances in therapies using mesenchymal stromal cells offer new insights for treating indications that previously lacked options. Adipose-derived mesenchymal stromal cells (AD-MSCs) are now being used to a much greater extent in clinical trials for regenerative medicine. However, to be really valid, these randomized trials must imperatively follow strict guidelines such as consolidated standards of reporting trials (CONSORT) statement. Indeed, AD-MSCs, because of their paracrine activities and multipotency, have potential to cure degenerative and/or inflammatory diseases. Combined with their relatively easy access (from adipose tissue) and proliferation capacity, AD-MSCs represent an excellent candidate for allogeneic treatments. Critical Issues: The success of AD-MSC therapy may depend on the robustness of the biological functions of AD-MSCs, which requires controlling source heterogeneity and production processes, and development of biomarkers that predict desired responses. Several studies have investigated the effect of AD-MSCs on innervation, wound repair, or pain management separately, but systematic evaluation of how those effects could be combined is lacking. Future Directions: Future studies that explore how AD-MSC therapy can be used to treat difficult-to-heal wounds, underlining the need to thoroughly characterize the cells used, and standardization of preparation processes are needed. Finally, how this a priori easy-to-use cell therapy treatment fits into clinical management of pain, improvement of tissue healing, and patient quality of life, all need to be explored.
Collapse
Affiliation(s)
- Jérôme Laloze
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
- Department of Maxillo-Facial and Reconstructive Surgery and Stomatology, University Hospital Dupuytren, Limoges, France
| | - Loïc Fiévet
- STROMALab, Etablissement Français du Sang (EFS)-Occitanie, INSERM 1031, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, University of Toulouse, Toulouse, France
| | - Alexis Desmoulière
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
| |
Collapse
|
6
|
Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer's mice. Cell Death Differ 2020; 28:203-218. [PMID: 32704089 PMCID: PMC7852675 DOI: 10.1038/s41418-020-0592-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022] Open
Abstract
The multiplicity of systems affected in Alzheimer's disease (AD) brains calls for multi-target therapies. Although mesenchymal stem cells (MSC) are promising candidates, their clinical application is limited because of risks related to their direct implantation in the host. This could be overcome by exploiting their paracrine action. We herein demonstrate that in vivo systemic administration of secretome collected from MSC exposed in vitro to AD mouse brain homogenates (MSC-CS), fully replicates the cell-mediated neuroreparative effects in APP/PS1 AD mice. We found a complete but transient memory recovery by 7 days, which vanished by 14 days, after a single MSC-CS intravenous administration in 12-month or 22-24-month-old mice. Treatment significantly reduced plaque load, microglia activation, and expression of cytokines in astrocytes in younger, but not aged, mice at 7 days. To optimize efficacy, we established a sustained treatment protocol in aged mice through intranasal route. Once-weekly intranasal administration of MSC-CS induced persistent memory recovery, with dramatic reduction of plaques surrounded by a lower density of β-amyloid oligomers. Gliosis and the phagocytic marker CD68 were decreased. We found a higher neuronal density in cortex and hippocampus, associated with a reduction in hippocampal shrinkage and a longer lifespan indicating healthier conditions of MSC-CS-treated compared to vehicle-treated APP/PS1 mice. Our data prove that MSC-CS displays a great multi-level therapeutic potential, and lay the foundation for identifying the therapeutic secretome bioreactors leading to the development of an efficacious multi-reparative cocktail drug, towards abrogating the need for MSC implantation and risks related to their direct use.
Collapse
|
7
|
Lindsay SL, McCanney GA, Willison AG, Barnett SC. Multi-target approaches to CNS repair: olfactory mucosa-derived cells and heparan sulfates. Nat Rev Neurol 2020; 16:229-240. [PMID: 32099190 DOI: 10.1038/s41582-020-0311-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) remains one of the biggest challenges in the development of neuroregenerative therapeutics. Cell transplantation is one of numerous experimental strategies that have been identified and tested for efficacy at both preclinical and clinical levels in recent years. In this Review, we briefly discuss the state of human olfactory cell transplantation as a therapy, considering both its current clinical status and its limitations. Furthermore, we introduce a mesenchymal stromal cell derived from human olfactory tissue, which has the potential to induce multifaceted reparative effects in the environment within and surrounding the lesion. We argue that no single therapy will be sufficient to treat SCI effectively and that a combination of cell-based, rehabilitation and pharmaceutical interventions is the most promising approach to aid repair. For this reason, we also introduce a novel pharmaceutical strategy based on modifying the activity of heparan sulfate, an important regulator of a wide range of biological cell functions. The multi-target approach that is exemplified by these types of strategies will probably be necessary to optimize SCI treatment.
Collapse
Affiliation(s)
- Susan L Lindsay
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - George A McCanney
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alice G Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Ma Y, Ma J, Zhao Y, Yang K, Zhou J, Gao F, Pan R, Lu G. Comparison of phenotypic markers and neural differentiation potential of human bone marrow stromal cells from the cranial bone and iliac crest. J Cell Physiol 2019; 234:15235-15242. [PMID: 30677139 DOI: 10.1002/jcp.28167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Cellular therapies represent a new frontier in the treatment of neurological diseases. Accumulating evidence from preclinical studies of animal models suggests that mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, are an effective therapy for neurological diseases. In this study, we established human MSC lines from both cranial bone marrow (cBMMSCs) and iliac crest bone marrow (iBMMSCs) from the same donors and found that cBMMSCs show higher expression of neural crest-associated genes than iBMMSCs. Moreover, as observed in both mRNA and protein assays, neurogenic-induced cells from cBMMSCs expressed significantly higher levels of neural markers, such as NESTIN, SLUG, SOX9, and TWIST, than those from iBMMSCs. Thus, cBMMSCs showed a greater tendency than iBMMSCs to differentiate into neuron-like cells.
Collapse
Affiliation(s)
- Yuyuan Ma
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuanyuan Zhao
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kaichuang Yang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jia Zhou
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Faliang Gao
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China.,Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
| | - Gang Lu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Vaes JEG, Vink MA, de Theije CGM, Hoebeek FE, Benders MJNL, Nijboer CHA. The Potential of Stem Cell Therapy to Repair White Matter Injury in Preterm Infants: Lessons Learned From Experimental Models. Front Physiol 2019; 10:540. [PMID: 31143126 PMCID: PMC6521595 DOI: 10.3389/fphys.2019.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Diffuse white matter injury (dWMI) is a major cause of morbidity in the extremely preterm born infant leading to life-long neurological impairments, including deficits in cognitive, motor, sensory, psychological, and behavioral functioning. At present, no treatment options are clinically available to combat dWMI and therefore exploration of novel strategies is urgently needed. In recent years, the pathophysiology underlying dWMI has slowly started to be unraveled, pointing towards the disturbed maturation of oligodendrocytes (OLs) as a key mechanism. Immature OL precursor cells in the developing brain are believed to be highly sensitive to perinatal inflammation and cerebral oxygen fluctuations, leading to impaired OL differentiation and eventually myelination failure. OL lineage development under normal and pathological circumstances and the process of (re)myelination have been studied extensively over the years, often in the context of other adult and pediatric white matter pathologies such as stroke and multiple sclerosis (MS). Various studies have proposed stem cell-based therapeutic strategies to boost white matter regeneration as a potential strategy against a wide range of neurological diseases. In this review we will discuss experimental studies focusing on mesenchymal stem cell (MSC) therapy to reduce white matter injury (WMI) in multiple adult and neonatal neurological diseases. What lessons have been learned from these previous studies and how can we translate this knowledge to application of MSCs for the injured white matter in the preterm infant? A perspective on the current state of stem cell therapy will be given and we will discuss different important considerations of MSCs including cellular sources, timing of treatment and administration routes. Furthermore, we reflect on optimization strategies that could potentially reinforce stem cell therapy, including preconditioning and genetic engineering of stem cells or using cell-free stem cell products, to optimize cell-based strategy for vulnerable preterm infants in the near future.
Collapse
Affiliation(s)
- Josine E G Vaes
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marit A Vink
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Caroline G M de Theije
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Freek E Hoebeek
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cora H A Nijboer
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Uccelli A, Laroni A, Brundin L, Clanet M, Fernandez O, Nabavi SM, Muraro PA, Oliveri RS, Radue EW, Sellner J, Soelberg Sorensen P, Sormani MP, Wuerfel JT, Battaglia MA, Freedman MS. MEsenchymal StEm cells for Multiple Sclerosis (MESEMS): a randomized, double blind, cross-over phase I/II clinical trial with autologous mesenchymal stem cells for the therapy of multiple sclerosis. Trials 2019; 20:263. [PMID: 31072380 PMCID: PMC6507027 DOI: 10.1186/s13063-019-3346-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory disease of the central nervous system with a degenerative component, leading to irreversible disability. Mesenchymal stem cells (MSC) have been shown to prevent inflammation and neurodegeneration in animal models of MS, but no large phase II clinical trials have yet assessed the exploratory efficacy of MSC for MS. Methods/design This is an academic, investigator-initiated, randomized, double-blind, placebo-compared phase I/II clinical trial with autologous, bone-marrow derived MSC in MS. Enrolled subjects will receive autologous MSC at either baseline or at week 24, through a cross-over design. Primary co-objectives are to test safety and efficacy of MSC treatment compared to placebo at 6 months. Secondary objectives will evaluate the efficacy of MSC at clinical and MRI levels. In order to overcome funding constraints, the MEsenchymal StEm cells for Multiple Sclerosis (MESEMS) study has been designed to merge partially independent clinical trials, following harmonized protocols and sharing some key centralized procedures, including data collection and analyses. Discussion Results will provide patients and the scientific community with data on the safety and efficacy of MSC for MS. The innovative approach utilized to obtain funds to support the MESEMS trial could represent a new model to circumvent limitation of funds encountered by academic trials. Trial registration Andalusia: NCT01745783, registered on Dec 10, 2012. Badalona: NCT02035514 EudraCT, 2010–024081–21. Registered on 2012. Canada: ClinicalTrials.gov, NCT02239393. Registered on September 12, 2014. Copenhagen: EudraCT, 2012–000518-13. Registered on June 21, 2012. Italy: EudraCT, 2011–001295-19, and ClinicalTrials.gov, NCT01854957. Retrospectively registered on May 16, 2013. London: Eudra CT 2012–002357-35, and ClinicalTrials.gov, NCT01606215. Registered on May 25, 2012. Salzburg: EudraCT, 2015–000137-78. Registered on September 15, 2015. Stockholm: ClinicalTrials.gov, NCT01730547. Registered on November 21, 2012. Toulouse: ClinicalTrials.gov, NCT02403947. Registered on March 31, 2015. Electronic supplementary material The online version of this article (10.1186/s13063-019-3346-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and Center of Excellence for Biomedical Research (CEBR), University of Genova, Largo Daneo 3, 16132, Genoa, Italy. .,IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Alice Laroni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and Center of Excellence for Biomedical Research (CEBR), University of Genova, Largo Daneo 3, 16132, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lou Brundin
- Karolinska Institutet, R3:04 Karolinska University Hospital 171 76, Stockholm, Sweden
| | - Michel Clanet
- CHU Toulouse, Université Paul Sabatier, INSERM UMR, 1043, Toulouse, France
| | - Oscar Fernandez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Regional University Hospital of Malaga, Malaga, Spain
| | - Seyed Massood Nabavi
- Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, Royan, Iran.,ACCR, Iran and Regenerative Biomedicine Center, MS, Neurology Clinic and Research Unit, Tehran, Iran
| | - Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Roberto S Oliveri
- Cell Therapy Unit, Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ernst W Radue
- Medical Image Analysis Centre Basel (MIAC AG), Basel, Switzerland
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Per Soelberg Sorensen
- Danish MS Center Department of Neurology, University of Copenhagen and Rigshospitalet, Copenhagen, Denmark
| | | | - Jens Thomas Wuerfel
- Medical Image Analysis Centre Basel (MIAC AG), Basel, Switzerland.,Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Mario A Battaglia
- Italian Multiple Sclerosis Foundation, Genoa, Italy.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Mark S Freedman
- Department of Medicine (Neurology), University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
11
|
Mesentier-Louro LA, Teixeira-Pinheiro LC, Gubert F, Vasques JF, Silva-Junior AJ, Chimeli-Ormonde L, Nascimento-Dos-Santos G, Mendez-Otero R, Santiago MF. Long-term neuronal survival, regeneration, and transient target reconnection after optic nerve crush and mesenchymal stem cell transplantation. Stem Cell Res Ther 2019; 10:121. [PMID: 30995945 PMCID: PMC6472105 DOI: 10.1186/s13287-019-1226-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
Background Retina and/or optic nerve injury may cause irreversible blindness, due to degeneration of retinal ganglion cells. We and others have previously shown that the intravitreal injection of mesenchymal stem cells (MSCs) protects injured retinal ganglion cells and stimulates their regeneration after optic nerve injury, but the long-term effects of this therapy are still unknown. Methods We injected rat MSC (rMSC) intravitreally in adult (3–5 months) Lister Hooded rats of either sex after optic nerve crush. Retinal ganglion cell survival, axonal regeneration, and reconnection were analyzed 60 and 240 days after crush by immunohistochemistry for Tuj1, anterograde labeling with cholera-toxin B and by immunohistochemistry for nerve growth factor-induced gene A (NGFI-A, driven by light stimulation) in the superior colliculus after a cycle of light deprivation-stimulation. Visual behaviors (optokinetic reflex, looming response, and preference for dark) were analyzed 70 days after crush. Results rMSC treatment doubled the number of surviving retinal ganglion cells, preferentially of a larger subtype, and of axons regenerating up to 0.5 mm. Some axons regenerated to the lateral geniculate nucleus and superior colliculus. NGFI-A+ cells were doubled in rMSC-treated animals 60 days after crush, but equivalent to vehicle-injected animals 240 days after crush, suggesting that newly formed synapses degenerated. Animals did not recover visual behaviors. Conclusions We conclude that rMSC-induced neuroprotection is sustained at longer time points. Although rMSCs promoted long-term neuroprotection and long-distance axon regeneration, the reconnection of retinal ganglion cells with their targets was transitory, indicating that they need additional stimuli to make stable reconnections. Electronic supplementary material The online version of this article (10.1186/s13287-019-1226-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise A Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Leandro C Teixeira-Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Juliana F Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Almir J Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Luiza Chimeli-Ormonde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Gabriel Nascimento-Dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
12
|
Hansmann F, Jungwirth N, Zhang N, Skripuletz T, Stein VM, Tipold A, Stangel M, Baumgärtner W. Beneficial and detrimental impact of transplanted canine adipose-derived stem cells in a virus-induced demyelinating mouse model. Vet Immunol Immunopathol 2018; 202:130-140. [PMID: 30078587 DOI: 10.1016/j.vetimm.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/01/2018] [Accepted: 07/07/2018] [Indexed: 01/17/2023]
Abstract
In recent years stem cell therapies have been broadly applied in various disease models specifically immune mediated and degenerative diseases. Whether adipose-derived stem cells might represent a useful therapeutic option in virus-triggered central nervous system diseases has not been investigated so far. Theiler's murine encephalomyelitis (TME) and canine distemper encephalitis are established, virus-mediated animal models sharing many similarities with multiple sclerosis (MS). Canine adipose-derived stem cells (ASC) were selected since dogs might serve as an important translational model for further therapeutic applications. The aim of the present study was to investigate whether canine ASC influence clinical signs, axonal damage, demyelination and inflammation during TME. ASC were transplanted intravenously (iv) or intra-cerebroventricularly (icv) at 7 (early) or 42 (late) days post infection (dpi) in TME virus (TMEV) infected mice. TMEV/ASC iv animals transplanted at 7dpi displayed a transient clinical deterioration in rotarod performance compared to TMEV/control animals. Worsening of clinical signs was associated with significantly increased numbers of microglia/macrophages and demyelination in the spinal cord. In contrast, late transplantation had no influence on clinical findings of TMEV-infected animals. However, late TMEV/ASC iv transplanted animals showed reduced axonal damage compared to TMEV/control animals. Screening of spinal cord and peripheral organs for transplanted ASC revealed no positive cells. Surprisingly, iv transplanted animals showed pulmonary follicular aggregates consisting of T- and B-lymphocytes. Thus, our data suggest that following intravenous application, the lung as priming organ for lymphocytes seems to play a pivotal role in the pathogenesis of TME. Consequences of T-lymphocyte priming in the lung depend on the disease phase and may be responsible for disease modifying effects of ASC.
Collapse
Affiliation(s)
- Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Nicole Jungwirth
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Ning Zhang
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Veronika Maria Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany; Division of Neurology, Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, Länggassstrasse 128, 3012, Bern, Switzerland
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.
| |
Collapse
|
13
|
Zhang B, Yan W, Zhu Y, Yang W, Le W, Chen B, Zhu R, Cheng L. Nanomaterials in Neural-Stem-Cell-Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705694. [PMID: 29543350 DOI: 10.1002/adma.201705694] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/17/2017] [Indexed: 05/24/2023]
Abstract
Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy. Nanomaterials have been envisioned as innovative components to further empower the field of NSC-based regenerative medicine, because their unique physicochemical characteristics provide unparalleled solutions to the imaging and treatment of diseases. By building on the advantages of nanomaterials, tremendous efforts have been devoted to facilitate research into the clinical translation of NSC-based therapy. Here, recent work on emerging nanomaterials is highlighted and their performance in the imaging and treatment of neurological diseases is evaluated, comparing the strengths and weaknesses of various imaging modalities currently used. The underlying mechanisms of therapeutic efficacy are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wei Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Yanjing Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Rongrong Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
14
|
Gómez RM, Sánchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, Moreno-Flores MT. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia 2018; 66:1267-1301. [PMID: 29330870 DOI: 10.1002/glia.23282] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.
Collapse
Affiliation(s)
- Rosa M Gómez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia
| | - Magdy Y Sánchez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia.,Maestría en Neurociencias, Universidad Nacional de Colombia, Bogota D.C, Colombia
| | - Maria Portela-Lomba
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Kemel Ghotme
- Facultad de Medicina, Universidad de la Sabana, Chía, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Javier Sierra
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
15
|
Monfrini M, Ravasi M, Maggioni D, Donzelli E, Tredici G, Cavaletti G, Scuteri A. Comparing the different response of PNS and CNS injured neurons to mesenchymal stem cell treatment. Mol Cell Neurosci 2018; 86:16-24. [DOI: 10.1016/j.mcn.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/03/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022] Open
|
16
|
Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response. Cell Immunol 2017; 326:86-93. [PMID: 29221689 DOI: 10.1016/j.cellimm.2017.11.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) exist in almost all tissues with the capability to differentiate into several different cell types and hold great promise in tissue repairs in a cell replacement manner. The study of the bidirectional regulation between MSCs and immune response has ushered an age of rethinking of tissue regeneration in the process of stem cell-based tissue repairs. By sensing damaged signals, both endogenous and exogenous MSCs migrate to the damaged site where they involve in the reconstitution of the immune microenvironment and empower tissue stem/progenitor cells and other resident cells, whereby facilitate tissue repairs. This MSC-based therapeutic manner is conferred as cell empowerment. In this process, MSCs have been found to exert extensive immunosuppression on both innate and adaptive immune response, while such regulation needs to be licensed by inflammation. More importantly, the immunoregulation of MSCs is highly plastic, especially in the context of pathological microenvironment. Understanding the immunoregulatory properties of MSCs is necessary for appropriate application of MSCs. Here we review the current studies on the crosstalk of MSCs and immune response in disease pathogenesis and therapy.
Collapse
|
17
|
Crosstalk with Inflammatory Macrophages Shapes the Regulatory Properties of Multipotent Adult Progenitor Cells. Stem Cells Int 2017; 2017:2353240. [PMID: 28785285 PMCID: PMC5529661 DOI: 10.1155/2017/2353240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/27/2017] [Accepted: 06/12/2017] [Indexed: 01/25/2023] Open
Abstract
Macrophages and microglia are key effector cells in immune-mediated neuroinflammatory disorders. Driving myeloid cells towards an anti-inflammatory, tissue repair-promoting phenotype is considered a promising strategy to halt neuroinflammation and promote central nervous system (CNS) repair. In this study, we defined the impact of multipotent adult progenitor cells (MAPC), a stem cell population sharing common mesodermal origin with mesenchymal stem cells (MSCs), on the phenotype of macrophages and the reciprocal interactions between these two cell types. We show that MAPC suppress the secretion of tumor necrosis factor alpha (TNF-α) by inflammatory macrophages partially through a cyclooxygenase 2- (COX-2-) dependent mechanism. In turn, we demonstrate that inflammatory macrophages trigger the immunomodulatory properties of MAPC, including an increased expression of immunomodulatory mediators (e.g., inducible nitric oxide synthase (iNOS) and COX-2), chemokines, and chemokine receptors. Macrophage-primed MAPC secrete soluble factors that suppress TNF-α release by macrophages. Moreover, the MAPC secretome suppresses the antigen-specific proliferation of autoreactive T cells and the T cell stimulatory capacity of macrophages. Finally, MAPC increase their motility towards secreted factors of activated macrophages. Collectively, these in vitro findings reveal intimate reciprocal interactions between MAPC and inflammatory macrophages, which are of importance in the design of MAPC-based therapeutic strategies for neuroinflammatory disorders in which myeloid cells play a crucial role.
Collapse
|
18
|
Abstract
Purpose of review Progress in stem cell research for blinding diseases over the past decade is now being applied to patients with retinal degenerative diseases and soon perhaps, glaucoma. However, the field still has much to learn about the conversion of stem cells into various retinal cell types, and the potential delivery methods that will be required to optimize the clinical efficacy of stem cells delivered into the eye. Recent findings Recent groundbreaking human clinical trials have demonstrated both the opportunities and current limitations of stem cell transplantation for retinal diseases. New progress in developing in vitro retinal organoids, coupled with the maturation of bio-printing technology, and non-invasive high-resolution imaging have created new possibilities for repairing and regenerating the diseased retina and rigorously validating its clinical impact in vivo. Summary While promising progress is being made, meticulous clinical trials with cells derived using good manufacturing practice, novel surgical methods, and improved methods to derive all of the neuronal cell types present in the retina will be indispensable for developing stem cell transplantation as a paradigm shift for the treatment of blinding diseases.
Collapse
|
19
|
Mert T, Kurt AH, Altun İ, Celik A, Baran F, Gunay I. Pulsed magnetic field enhances therapeutic efficiency of mesenchymal stem cells in chronic neuropathic pain model. Bioelectromagnetics 2017; 38:255-264. [PMID: 28130880 DOI: 10.1002/bem.22038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 01/11/2017] [Indexed: 12/27/2022]
Abstract
Cell-based or magnetic field therapies as alternative approaches to pain management have been tested in several experimental pain models. The aim of this study therefore was to investigate the actions of the cell-based therapy (adipose tissue derived mesenchymal stem cells; ADMSC) or pulsed magnetic field (PMF) therapy and magneto-cell therapy (combination of ADMSC and PMF) in chronic constriction nerve injury model (CCI). The actions of individual ADMSC (route dependent [systemic or local], time-dependent [a day or a week after surgery]), or PMF and their combination (magneto-cell) therapies on hyperalgesia and allodynia were investigated by using thermal plantar test and a dynamic plantar aesthesiometer, respectively. In addition, various cytokine levels (IL-1β, IL-6, and IL-10) of rat sciatic nerve after CCI were analyzed. Following the CCI, both latency and threshold significantly decreased. ADMSC or PMF significantly increased latencies and thresholds. The combination of ADMSC with PMF even more significantly increased latency and threshold when compared with ADMSC alone. However, ADMSC-induced decrease in pro-inflammatory or increase in anti-inflammatory cytokines levels were partially prevented by PMF treatments. Present findings may suggest that both cell-based and magnetic therapies can effectively attenuate chronic neuropathic pain symptoms. Combined magneto-cell therapy may also efficiently reverse neuropathic signs. Bioelectromagnetics. 38:255-264, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tufan Mert
- Department of Biophysics, School of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Akif Hakan Kurt
- Department of Pharmacology, School of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - İdiris Altun
- Department of Brain and Nerve Surgery, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ahmet Celik
- Department of Biochemistry, School of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Furkan Baran
- School of Medicine (Medical Student), Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ismail Gunay
- Department of Biophysics, School of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
20
|
Chu T, Shields LBE, Zhang YP, Feng SQ, Shields CB, Cai J. CXCL12/CXCR4/CXCR7 Chemokine Axis in the Central Nervous System: Therapeutic Targets for Remyelination in Demyelinating Diseases. Neuroscientist 2017; 23:627-648. [PMID: 29283028 DOI: 10.1177/1073858416685690] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The chemokine CXCL12 plays a vital role in regulating the development of the central nervous system (CNS) by binding to its receptors CXCR4 and CXCR7. Recent studies reported that the CXCL12/CXCR4/CXCR7 axis regulates both embryonic and adult oligodendrocyte precursor cells (OPCs) in their proliferation, migration, and differentiation. The changes in the expression and distribution of CXCL12 and its receptors are tightly associated with the pathological process of demyelination in multiple sclerosis (MS), suggesting that modulating the CXCL12/CXCR4/CXCR7 axis may benefit myelin repair by enhancing OPC recruitment and differentiation. This review aims to integrate the current findings of the CXCL12/CXCR4/CXCR7 signaling pathway in the CNS and to highlight its role in oligodendrocyte development and demyelinating diseases. Furthermore, this review provides potential therapeutic strategies for myelin repair by analyzing the relevance between the pathological changes and the regulatory roles of CXCL12/CXCR4/CXCR7 during MS.
Collapse
Affiliation(s)
- Tianci Chu
- 1 Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lisa B E Shields
- 2 Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Yi Ping Zhang
- 2 Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Shi-Qing Feng
- 3 Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | | | - Jun Cai
- 1 Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.,4 Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
21
|
Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Mol Neurobiol 2016; 54:7567-7584. [DOI: 10.1007/s12035-016-0245-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023]
|
22
|
van Velthoven CT, Dzietko M, Wendland MF, Derugin N, Faustino J, Heijnen CJ, Ferriero DM, Vexler ZS. Mesenchymal stem cells attenuate MRI-identifiable injury, protect white matter, and improve long-term functional outcomes after neonatal focal stroke in rats. J Neurosci Res 2016; 95:1225-1236. [PMID: 27781299 DOI: 10.1002/jnr.23954] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/01/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Cell therapy has emerged as a potential treatment for many neurodegenerative diseases including stroke and neonatal ischemic brain injury. Delayed intranasal administration of mesenchymal stem cells (MSCs) after experimental hypoxia-ischemia and after a transient middle cerebral artery occlusion (tMCAO) in neonatal rats has shown improvement in long-term functional outcomes, but the effects of MSCs on white matter injury (WMI) are insufficiently understood. In this study we used longitudinal T2-weighted (T2W) and diffusion tensor magnetic resonance imaging (MRI) to characterize chronic injury after tMCAO induced in postnatal day 10 (P10) rats and examined the effects of delayed MSC administration on WMI, axonal coverage, and long-term somatosensory function. We show unilateral injury- and region-dependent changes in diffusion fraction anisotropy 1 and 2 weeks after tMCAO that correspond to accumulation of degraded myelin basic protein, astrocytosis, and decreased axonal coverage. With the use of stringent T2W-based injury criteria at 72 hr after tMCAO to randomize neonatal rats to receive intranasal MSCs or vehicle, we show that a single MSC administration attenuates WMI and enhances somatosensory function 28 days after stroke. A positive correlation was found between MSC-enhanced white matter integrity and functional performance in injured neonatal rats. Collectively, these data indicate that the damage induced by tMCAO progresses over time and is halted by administration of MSCs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cindy T van Velthoven
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Mark Dzietko
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Michael F Wendland
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Nikita Derugin
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Joel Faustino
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donna M Ferriero
- Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Zinaida S Vexler
- Department of Neurology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
23
|
Lindsay SL, Barnett SC. Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair? Neurochem Int 2016; 106:101-107. [PMID: 27498150 PMCID: PMC5455984 DOI: 10.1016/j.neuint.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
In recent years there has been a great deal of research within the stem cell field which has led to the definition and classification of a range of stem cells from a plethora of tissues and organs. Stem cells, by classification, are considered to be pluri- or multipotent and have both self-renewal and multi-differentiation capabilities. Presently there is a great deal of interest in stem cells isolated from both embryonic and adult tissues in the hope they hold the therapeutic key to restoring or treating damaged cells in a number of central nervous system (CNS) disorders. In this review we will discuss the role of mesenchymal stromal cells (MSCs) isolated from human olfactory mucosa, with particular emphasis on their potential role as a candidate for transplant mediated repair in the CNS. Since nestin expression defines the entire population of olfactory mucosal derived MSCs, we will compare these cells to a population of neural crest derived nestin positive population of bone marrow-MSCs. Human olfactory mucosa is a new source of mesenchymal stromal cells (MSCs). Some bone marrow MSCs are nestin-positive, neural crest derived and regulate hematopoietic stem cell activation. Human olfactory mucosa contains a population of nestin-positive MSCs that secrete CXCL12 and may have promote CNS repair.
Collapse
Affiliation(s)
- Susan L Lindsay
- Institute of Infection, Inflammation and Immunity, Glial Cell Biology Group, Sir Graeme Davies Building, Room B329, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Inflammation and Immunity, Glial Cell Biology Group, Sir Graeme Davies Building, Room B329, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| |
Collapse
|
24
|
Increased Understanding of Stem Cell Behavior in Neurodegenerative and Neuromuscular Disorders by Use of Noninvasive Cell Imaging. Stem Cells Int 2016; 2016:6235687. [PMID: 26997958 PMCID: PMC4779824 DOI: 10.1155/2016/6235687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Numerous neurodegenerative and neuromuscular disorders are associated with cell-specific depletion in the human body. This imbalance in tissue homeostasis is in healthy individuals repaired by the presence of endogenous stem cells that can replace the lost cell type. However, in most disorders, a genetic origin or limited presence or exhaustion of stem cells impairs correct cell replacement. During the last 30 years, methods to readily isolate and expand stem cells have been developed and this resulted in a major change in the regenerative medicine field as it generates sufficient amount of cells for human transplantation applications. Furthermore, stem cells have been shown to release cytokines with beneficial effects for several diseases. At present however, clinical stem cell transplantations studies are struggling to demonstrate clinical efficacy despite promising preclinical results. Therefore, to allow stem cell therapy to achieve its full potential, more insight in their in vivo behavior has to be achieved. Different methods to noninvasively monitor these cells have been developed and are discussed. In some cases, stem cell monitoring even reached the clinical setting. We anticipate that by further exploring these imaging possibilities and unraveling their in vivo behavior further improvement in stem cell transplantations will be achieved.
Collapse
|
25
|
Merino-González C, Zuñiga FA, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, Salomón C, Aguayo C. Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Angiogenesis: Potencial Clinical Application. Front Physiol 2016; 7:24. [PMID: 26903875 PMCID: PMC4746282 DOI: 10.3389/fphys.2016.00024] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/18/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent stem cells that are able to differentiate into multiple specialized cell types including osteocytes, adipocytes, and chondrocytes. MSCs exert different functions in the body and have recently been predicted to have a major clinical/therapeutic potential. However, the mechanisms of self-renewal and tissue regeneration are not completely understood. It has been shown that the biological effect depends mainly on its paracrine action. Furthermore, it has been reported that the secretion of soluble factors and the release of extracellular vesicles, such as exosomes, could mediate the cellular communication to induce cell-differentiation/self-renewal. This review provides an overview of MSC-derived exosomes in promoting angiogenicity and of the clinical relevance in a therapeutic approach.
Collapse
Affiliation(s)
- Consuelo Merino-González
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción Concepción, Chile
| | - Felipe A Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción Concepción, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile
| | - Valeska Ormazabal
- Department of Physiopathology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Camila Reyes
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción Concepción, Chile
| | | | - Carlos Salomón
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland Brisbane, QLD, Australia
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile
| |
Collapse
|
26
|
Ruzicka J, Kulijewicz-Nawrot M, Rodrigez-Arellano JJ, Jendelova P, Sykova E. Mesenchymal Stem Cells Preserve Working Memory in the 3xTg-AD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2016; 17:ijms17020152. [PMID: 26821012 PMCID: PMC4783886 DOI: 10.3390/ijms17020152] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 12/26/2022] Open
Abstract
The transplantation of stem cells may have a therapeutic effect on the pathogenesis and progression of neurodegenerative disorders. In the present study, we transplanted human mesenchymal stem cells (MSCs) into the lateral ventricle of a triple transgenic mouse model of Alzheimer´s disease (3xTg-AD) at the age of eight months. We evaluated spatial reference and working memory after MSC treatment and the possible underlying mechanisms, such as the influence of transplanted MSCs on neurogenesis in the subventricular zone (SVZ) and the expression levels of a 56 kDa oligomer of amyloid β (Aβ*56), glutamine synthetase (GS) and glutamate transporters (Glutamate aspartate transporter (GLAST) and Glutamate transporter-1 (GLT-1)) in the entorhinal and prefrontal cortices and the hippocampus. At 14 months of age we observed the preservation of working memory in MSC-treated 3xTg-AD mice, suggesting that such preservation might be due to the protective effect of MSCs on GS levels and the considerable downregulation of Aβ*56 levels in the entorhinal cortex. These changes were observed six months after transplantation, accompanied by clusters of proliferating cells in the SVZ. Since the grafted cells did not survive for the whole experimental period, it is likely that the observed effects could have been transiently more pronounced at earlier time points than at six months after cell application.
Collapse
Affiliation(s)
- Jiri Ruzicka
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czech Republic.
| | - Magdalena Kulijewicz-Nawrot
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
| | - Jose Julio Rodrigez-Arellano
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Functional Neuroanatomy Laboratory, Department of Neuroscience, Faculty of Medicine, the University of the Basque Country, 48940 Leioa, Spain.
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czech Republic.
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czech Republic.
| |
Collapse
|
27
|
Laroni A, Rosbo NKD, Uccelli A. Mesenchymal stem cells for the treatment of neurological diseases: Immunoregulation beyond neuroprotection. Immunol Lett 2015; 168:183-90. [DOI: 10.1016/j.imlet.2015.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 02/08/2023]
|
28
|
Mao Z, Zhang S, Chen H. Stem cell therapy for amyotrophic lateral sclerosis. CELL REGENERATION 2015; 4:11. [PMID: 26594318 PMCID: PMC4653876 DOI: 10.1186/s13619-015-0026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/21/2015] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of motor neurons. Currently, no effective therapy is available to treat ALS, except for Riluzole, which has only limited clinical benefits. Stem-cell-based therapy has been intensively and extensively studied as a potential novel treatment strategy for ALS and has been shown to be effective, at least to some extent. In this article, we will review the current state of research on the use of stem cell therapy in the treatment of ALS and discuss the most promising stem cells for the treatment of ALS.
Collapse
Affiliation(s)
- Zhijuan Mao
- Department of Neurology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suming Zhang
- Department of Neurology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Srivastava AK, Bulte CA, Shats I, Walczak P, Bulte JWM. Co-transplantation of syngeneic mesenchymal stem cells improves survival of allogeneic glial-restricted precursors in mouse brain. Exp Neurol 2015; 275 Pt 1:154-61. [PMID: 26515691 DOI: 10.1016/j.expneurol.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 12/21/2022]
Abstract
Loss of functional cells from immunorejection during the early post-transplantation period is an important factor that reduces the efficacy of stem cell-based therapies. Recent studies have shown that transplanted mesenchymal stem cells (MSCs) can exert therapeutic effects by secreting anti-inflammatory and pro-survival trophic factors. We investigated whether co-transplantation of MSCs could improve the survival of other transplanted therapeutic cells. Allogeneic glial-restricted precursors (GRPs) were isolated from the brain of a firefly luciferase transgenic FVB mouse (at E13.5 stage) and intracerebrally transplanted, either alone, or together with syngeneic MSCs in immunocompetent BALB/c mice (n=20) or immunodeficient Rag2(-/-) mice as survival control (n=8). No immunosuppressive drug was given to any animal. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that co-transplantation of MSCs significantly improved (p<0.05) engrafted GRP survival. No significant change in signal intensities was observed in immunodeficient Rag2(-/-) mice, with transplanted cells surviving in both the GRP only and the GRP+MSC group. In contrast, on day 21 post-transplantation, we observed a 94.2% decrease in BLI signal intensity in immunocompetent mice transplanted with GRPs alone versus 68.1% in immunocompetent mice co-transplanted with MSCs and GRPs (p<0.05). Immunohistochemical analysis demonstrated a lower number of infiltrating CD45, CD11b(+) and CD8(+) cells, reduced astrogliosis, and a higher number of FoxP3(+) cells at the site of transplantation for the immunocompetent mice receiving MSCs. The present study demonstrates that co-transplantation of MSCs can be used to create a microenvironment that is more conducive to the survival of allogeneic GRPs.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Camille A Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Irina Shats
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Robinson AM, Miller S, Payne N, Boyd R, Sakkal S, Nurgali K. Neuroprotective Potential of Mesenchymal Stem Cell-Based Therapy in Acute Stages of TNBS-Induced Colitis in Guinea-Pigs. PLoS One 2015; 10:e0139023. [PMID: 26397368 PMCID: PMC4580595 DOI: 10.1371/journal.pone.0139023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/07/2015] [Indexed: 12/13/2022] Open
Abstract
Background & Aims The therapeutic benefits of mesenchymal stem cells (MSCs), such as homing ability, multipotent differentiation capacity and secretion of soluble bioactive factors which exert neuroprotective, anti-inflammatory and immunomodulatory properties, have been attributed to attenuation of autoimmune, inflammatory and neurodegenerative disorders. In this study, we aimed to determine the earliest time point at which locally administered MSC-based therapies avert enteric neuronal loss and damage associated with intestinal inflammation in the guinea-pig model of colitis. Methods At 3 hours after induction of colitis by 2,4,6-trinitrobenzene-sulfonate (TNBS), guinea-pigs received either human bone marrow-derived MSCs, conditioned medium (CM), or unconditioned medium by enema into the colon. Colon tissues were collected 6, 24 and 72 hours after administration of TNBS. Effects on body weight, gross morphological damage, immune cell infiltration and myenteric neurons were evaluated. RT-PCR, flow cytometry and antibody array kit were used to identify neurotrophic and neuroprotective factors released by MSCs. Results MSC and CM treatments prevented body weight loss, reduced infiltration of leukocytes into the colon wall and the myenteric plexus, facilitated repair of damaged tissue and nerve fibers, averted myenteric neuronal loss, as well as changes in neuronal subpopulations. The neuroprotective effects of MSC and CM treatments were observed as early as 24 hours after induction of inflammation even though the inflammatory reaction at the level of the myenteric ganglia had not completely subsided. Substantial number of neurotrophic and neuroprotective factors released by MSCs was identified in their secretome. Conclusion MSC-based therapies applied at the acute stages of TNBS-induced colitis start exerting their neuroprotective effects towards enteric neurons by 24 hours post treatment. The neuroprotective efficacy of MSC-based therapies can be exerted independently to their anti-inflammatory effects.
Collapse
Affiliation(s)
- Ainsley M. Robinson
- Centre for Chronic Diseases, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Sarah Miller
- Centre for Chronic Diseases, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Natalie Payne
- Department of Anatomy and Neuroscience, Monash University, Melbourne, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Richard Boyd
- Department of Anatomy and Neuroscience, Monash University, Melbourne, Australia
| | - Samy Sakkal
- Centre for Chronic Diseases, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Diseases, College of Health and Biomedicine, Victoria University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
31
|
K S, P R, T W, G N D, C P, P VR. In Vivo Bioluminescence Imaging - A Suitable Method to Track Mesenchymal Stromal Cells in a Skeletal Muscle Trauma. Open Orthop J 2015; 9:262-9. [PMID: 26312108 PMCID: PMC4541295 DOI: 10.2174/1874325001509010262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/26/2015] [Accepted: 05/18/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Cell-based therapies have emerged during the last decade in various clinical fields. Especially mesenchymal stromal cells (MSCs) have been used in pre-clinical and clinical applications in cardiovascular, neurodegenerative and musculoskeletal disorders. In order to validate survival and viability as well as possible engraftment of MSCs into the host tissue a live cell imaging technique is needed that allows non-invasive, temporal imaging of cellular kinetics as well as evaluation of cell viability after transplantation. In this study we used luciferase-based bioluminescence imaging (BLI) to investigate the survival of autologous MSCs transplanted into a severely crushed soleus muscle of the rats. Furthermore we compared local as well as intra-arterial (i.a.) administration of cells and analyzed if luciferase transduced MSCs depict the same characteristics in vitro as non-transduced MSCs. We could show that transduction of MSCs does not alter their in vitro characteristics, thus, transduced MSCs display the same differentiation, proliferation and migration capacity as non-transduced cells. Using BLI we could track MSCs transplanted into a crushed soleus muscle until day 7 irrespective of local or i.a. APPLICATION Hence, our study proves that luciferase-based BLI is a suitable method for in vivo tracking of MSCs in skeletal muscle trauma in rats.
Collapse
Affiliation(s)
- Strohschein K
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Radojewski P
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Winkler T
- Department of Orthopaedics, Trauma and Reconstruction Surgery, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Duda G N
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Perka C
- Department of Orthopaedics, Trauma and Reconstruction Surgery, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - von Roth P
- Department of Orthopaedics, Trauma and Reconstruction Surgery, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
32
|
Neuroprotection in acute brain injury: an up-to-date review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:186. [PMID: 25896893 PMCID: PMC4404577 DOI: 10.1186/s13054-015-0887-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroprotective strategies that limit secondary tissue loss and/or improve functional outcomes have been identified in multiple animal models of ischemic, hemorrhagic, traumatic and nontraumatic cerebral lesions. However, use of these potential interventions in human randomized controlled studies has generally given disappointing results. In this paper, we summarize the current status in terms of neuroprotective strategies, both in the immediate and later stages of acute brain injury in adults. We also review potential new strategies and highlight areas for future research.
Collapse
|
33
|
Zhang B, Wu X, Zhang X, Sun Y, Yan Y, Shi H, Zhu Y, Wu L, Pan Z, Zhu W, Qian H, Xu W. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl Med 2015; 4:513-22. [PMID: 25824139 DOI: 10.5966/sctm.2014-0267] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/02/2015] [Indexed: 12/15/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hucMSCs) and their exosomes have been considered as potential therapeutic tools for tissue regeneration; however, the underlying mechanisms are still not well understood. In this study, we isolated and characterized the exosomes from hucMSCs (hucMSC-Ex) and demonstrated that hucMSC-Ex promoted the proliferation, migration, and tube formation of endothelial cells in a dose-dependent manner. Furthermore, we demonstrated that hucMSC-Ex promoted wound healing and angiogenesis in vivo by using a rat skin burn model. We discovered that hucMSC-Ex promoted β-catenin nuclear translocation and induced the increased expression of proliferating cell nuclear antigen, cyclin D3, N-cadherin, and β-catenin and the decreased expression of E-cadherin. The activation of Wnt/β-catenin is critical in the induction of angiogenesis by hucMSC-Ex, which could be reversed by β-catenin inhibitor ICG-001. Wnt4 was delivered by hucMSC-Ex, and the knockdown of Wnt4 in hucMSC-Ex abrogated β-catenin nuclear translocation in endothelial cells. The in vivo proangiogenic effects were also inhibited by interference of Wnt4 expression in hucMSC-Ex. Taken together, these results suggest that hucMSC-Ex-mediated Wnt4 induces β-catenin activation in endothelial cells and exerts proangiogenic effects, which could be an important mechanism for cutaneous wound healing.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Xiaodan Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Xu Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Yaoxiang Sun
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Yongmin Yan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Hui Shi
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Yanhua Zhu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Lijun Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Zhaoji Pan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Wei Zhu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, Jiangsu University, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
34
|
Michailidou I, de Vries HE, Hol EM, van Strien ME. Activation of endogenous neural stem cells for multiple sclerosis therapy. Front Neurosci 2015; 8:454. [PMID: 25653584 PMCID: PMC4299409 DOI: 10.3389/fnins.2014.00454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability. A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs). Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions.
Collapse
Affiliation(s)
- Iliana Michailidou
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, Netherlands
| | - Elly M Hol
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands ; Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Miriam E van Strien
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
35
|
Mesentier-Louro LA, Zaverucha-do-Valle C, da Silva-Junior AJ, Nascimento-dos-Santos G, Gubert F, de Figueirêdo ABP, Torres AL, Paredes BD, Teixeira C, Tovar-Moll F, Mendez-Otero R, Santiago MF. Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One 2014; 9:e110722. [PMID: 25347773 PMCID: PMC4210195 DOI: 10.1371/journal.pone.0110722] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 09/24/2014] [Indexed: 02/07/2023] Open
Abstract
Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3–5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1β expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime.
Collapse
Affiliation(s)
- Louise Alessandra Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Camila Zaverucha-do-Valle
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Almir Jordão da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Gabriel Nascimento-dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Ana Beatriz Padilha de Figueirêdo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Ana Luiza Torres
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Bruno D. Paredes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Camila Teixeira
- National Center of Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- National Center of Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Marcelo F. Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
36
|
Pacini S. Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs). Front Cell Dev Biol 2014; 2:50. [PMID: 25364757 PMCID: PMC4206995 DOI: 10.3389/fcell.2014.00050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have enormous intrinsic clinical value due to their multi-lineage differentiation capacity, support of hemopoiesis, immunoregulation and growth factors/cytokines secretion. MSCs have thus been the object of extensive research for decades. After completion of many pre-clinical and clinical trials, MSC-based therapy is now facing a challenging phase. Several clinical trials have reported moderate, non-durable benefits, which caused initial enthusiasm to wane, and indicated an urgent need to optimize the efficacy of therapeutic, platform-enhancing MSC-based treatment. Recent investigations suggest the presence of multiple in vivo MSC ancestors in a wide range of tissues, which contribute to the heterogeneity of the starting material for the expansion of MSCs. This variability in the MSC culture-initiating cell population, together with the different types of enrichment/isolation and cultivation protocols applied, are hampering progress in the definition of MSC-based therapies. International regulatory statements require a precise risk/benefit analysis, ensuring the safety and efficacy of treatments. GMP validation allows for quality certification, but the prediction of a clinical outcome after MSC-based therapy is correlated not only to the possible morbidity derived by cell production process, but also to the biology of the MSCs themselves, which is highly sensible to unpredictable fluctuation of isolating and culture conditions. Risk exposure and efficacy of MSC-based therapies should be evaluated by pre-clinical studies, but the batch-to-batch variability of the final medicinal product could significantly limit the predictability of these studies. The future success of MSC-based therapies could lie not only in rational optimization of therapeutic strategies, but also in a stochastic approach during the assessment of benefit and risk factors.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| |
Collapse
|
37
|
Giunti D, Parodi B, Cordano C, Uccelli A, Kerlero de Rosbo N. Can we switch microglia's phenotype to foster neuroprotection? Focus on multiple sclerosis. Immunology 2014; 141:328-39. [PMID: 24116890 DOI: 10.1111/imm.12177] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/30/2013] [Indexed: 12/17/2022] Open
Abstract
Microglia cells, the resident innate immune cells in the brain, are highly active, extending and retracting highly motile processes through which they continuously survey their microenvironment for 'danger signals' and interact dynamically with surrounding cells. Upon sensing changes in their central nervous system microenvironment, microglia become activated, undergoing morphological and functional changes. Microglia activation is not an 'all-or-none' process, but rather a continuum depending on encountered stimuli, which is expressed through a spectrum of molecular and functional phenotypes ranging from so-called 'classically activated', with a highly pro-inflammatory profile, to 'alternatively activated' associated with a beneficial, less inflammatory, neuroprotective profile. Microglia activation has been demonstrated in most neurological diseases of diverse aetiology and has been implicated as a contributor to neurodegeneration. The possibility to promote microglia's neuroprotective phenotype has therefore become a therapeutic goal. We have focused our discussion on the role of microglia in multiple sclerosis, a prototype of inflammatory, demyelinating, neurodegenerative disease, and on the effect of currently approved or on-trial anti-inflammatory therapeutic strategies that might mediate neuroprotection at least in part through their effect on microglia by modifying their behaviour via a switch of their functional phenotype from a detrimental to a protective one. In addition to pharmaceutical approaches, such as treatment with glatiramer acetate, interferon-β, fingolimod or dimethyl fumarate, we address the alternative therapeutic approach of treatment with mesenchymal stem cells and their potential role in neuroprotection through their 'calming' effect on microglia.
Collapse
Affiliation(s)
- Debora Giunti
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | | | | | | | | |
Collapse
|
38
|
Thomsen GM, Gowing G, Svendsen S, Svendsen CN. The past, present and future of stem cell clinical trials for ALS. Exp Neurol 2014; 262 Pt B:127-37. [PMID: 24613827 DOI: 10.1016/j.expneurol.2014.02.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that is characterized by progressive degeneration of motor neurons in the cortex, brainstem and spinal cord. This leads to paralysis, respiratory insufficiency and death within an average of 3 to 5 years from disease onset. While the genetics of ALS are becoming more understood in familial cases, the mechanisms underlying disease pathology remain unclear and there are no effective treatment options. Without understanding what causes ALS it is difficult to design treatments. However, in recent years stem cell transplantation has emerged as a potential new therapy for ALS patients. While motor neuron replacement remains a focus of some studies trying to treat ALS with stem cells, there is more rationale for using stem cells as support cells for dying motor neurons as they are already connected to the muscle. This could be through reducing inflammation, releasing growth factors, and other potential less understood mechanisms. Prior to moving into patients, stringent pre-clinical studies are required that have at least some rationale and efficacy in animal models and good safety profiles. However, given our poor understanding of what causes ALS and whether stem cells may ameliorate symptoms, there should be a push to determine cell safety in pre-clinical models and then a quick translation to the clinic where patient trials will show if there is any efficacy. Here, we provide a critical review of current clinical trials using either mesenchymal or neural stem cells to treat ALS patients. Pre-clinical data leading to these trials, as well as those in development are also evaluated in terms of mechanisms of action, validity of conclusions and rationale for advancing stem cell treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Gretchen M Thomsen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Genevieve Gowing
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Soshana Svendsen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
39
|
Paldino E, Cenciarelli C, Giampaolo A, Milazzo L, Pescatori M, Hassan HJ, Casalbore P. Induction of dopaminergic neurons from human Wharton's jelly mesenchymal stem cell by forskolin. J Cell Physiol 2013; 229:232-44. [PMID: 23893793 DOI: 10.1002/jcp.24442] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the Wharton's jelly mesenchymal stem cells differentiation ability toward neuronal fate. Human Wharton's jelly mesenchymal stem cells (hWJMSC) have been isolated from human umbilical cord of full-term births and characterized by flow cytometry analysis for their stem mesenchymal properties through specific surface markers expression (CD73, CD90, and CD105). hWJMSC mesodermal lineage differentiation ability and karyotype analysis were assessed. The trans-differentiation of hWJMSC into neural lineage was investigated in presence of forskolin, an agent known to increase the intracellular levels of cAMP. A molecular profile of differentiated hWJMSC was performed by microarray technology which revealed 1,532 statistically significant modulated genes respect to control cells. Most of these genes are mainly involved in functional neuronal signaling pathways and part of them are specifically required for the neuronal dopaminergic induction. The acquisition of the dopaminergic phenotype was evaluated via immunocytochemistry and Western blot analysis revealed the significant induction of Nurr1, NeuroD1, and TH proteins expression in forskolin-induced hWJMSC. Moreover, the treatment with forskolin promoted, in hWJMSC, a strong upregulation of the neurotrophin Trk receptors related to the high release of brain-derived neurotrophic factor. Taken together these findings show that hWJMSC may be represent an optimal therapeutic strategy for neurological diseases.
Collapse
Affiliation(s)
- Emanuela Paldino
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp Neurol 2013; 248:369-80. [PMID: 23856436 DOI: 10.1016/j.expneurol.2013.06.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/28/2013] [Indexed: 12/14/2022]
Abstract
Neurotrophins and the transplantation of bone marrow-derived stromal cells (MSCs) are both candidate therapies targeting spinal cord injury (SCI). While some studies have suggested the ability of MSCs to transdifferentiate into neural cells, other SCI studies have proposed anti-inflammatory and other mechanisms underlying established beneficial effects. We grafted rat MSCs genetically modified to express MNTS1, a multineurotrophin that binds TrkA, TrkB and TrkC, and p75(NTR) receptors or MSC-MNTS1/p75(-) that binds mainly to the Trk receptors. Seven days after contusive SCI, PBS-only, GFP-MSC, MSC-MNTS1/GFP or MSC-MNTS1/p75(-)/GFP were delivered into the injury epicenter. All transplanted groups showed reduced inflammation and cystic cavity size compared to control SCI rats. Interestingly, transplantation of the MSC-MNTS1 and MSC-MNTS1/p75(-), but not the naïve MSCs, enhanced axonal growth and significantly prevented cutaneous hypersensitivity after SCI. Moreover, transplantation of MSC-MNTS1/p75(-) promoted angiogenesis and modified glial scar formation. These findings suggest that MSCs transduced with a multineurotrophin are effective in promoting cell growth and improving sensory function after SCI. These novel data also provide insight into the neurotrophin-receptor dependent mechanisms through which cellular transplantation leads to functional improvement after experimental SCI.
Collapse
|
41
|
Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S. The stem cell secretome and its role in brain repair. Biochimie 2013; 95:2271-85. [PMID: 23827856 PMCID: PMC4061727 DOI: 10.1016/j.biochi.2013.06.020] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/19/2013] [Indexed: 12/16/2022]
Abstract
Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS.
Collapse
Affiliation(s)
- Denise Drago
- CNS Repair Unit, Institute of Experimental Neurology, Division of Neurosciences, San Raffaele Scientific Institute, 20132 Milan, Italy; Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|