1
|
Mandlem VKK, Rivera A, Khan Z, Quazi SH, Deba F. TLR4 induced TRPM2 mediated neuropathic pain. Front Pharmacol 2024; 15:1472771. [PMID: 39329114 PMCID: PMC11424904 DOI: 10.3389/fphar.2024.1472771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Ion channels play an important role in mediating pain through signal transduction, regulation, and control of responses, particularly in neuropathic pain. Transient receptor potential channel superfamily plays an important role in cation permeability and cellular signaling. Transient receptor potential channel Melastatin 2 (TRPM2) subfamily regulates Ca2+ concentration in response to various chemicals and signals from the surrounding environment. TRPM2 has a role in several physiological functions such as cellular osmosis, temperature sensing, cellular proliferation, as well as the manifestation of many disease processes such as pain process, cancer, apoptosis, endothelial dysfunction, angiogenesis, renal and lung fibrosis, and cerebral ischemic stroke. Toll-like Receptor 4 (TLR4) is a critical initiator of the immune response to inflammatory stimuli, particularly those triggered by Lipopolysaccharide (LPS). It activates downstream pathways leading to the production of oxidative molecules and inflammatory cytokines, which are modulated by basal and store-operated calcium ion signaling. The cytokine production and release cause an imbalance of antioxidant enzymes and redox potential in the Endoplasmic Reticulum and mitochondria due to oxidative stress, which results from TLR-4 activation and consequently induces the production of inflammatory cytokines in neuronal cells, exacerbating the pain process. Very few studies have reported the role of TRPM2 and its association with Toll-like receptors in the context of neuropathic pain. However, the molecular mechanism underlying the interaction between TRPM2 and TLR-4 and the quantum of impact in acute and chronic neuropathic pain remains unclear. Understanding the link between TLR-4 and TRPM2 will provide more insights into pain regulation mechanisms for the development of new therapeutic molecules to address neuropathic pain.
Collapse
Affiliation(s)
- Venkata Kiran Kumar Mandlem
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Ana Rivera
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Zaina Khan
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Departmental of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Sohel H Quazi
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Department of Biology, Division of Natural and Computation Sciences, Texas College, Tyler, TX, United States
| | - Farah Deba
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
2
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Nelke C, Müntefering T, Cengiz D, Theissen L, Dobelmann V, Schroeter CB, Block H, Preuße C, Michels APE, Lichtenberg S, Pawlitzki M, Pfeuffer S, Huntemann N, Zarbock A, Briese T, Kittl C, Dittmayer C, Budde T, Lundberg IE, Stenzel W, Meuth SG, Ruck T. K 2P2.1 is a regulator of inflammatory cell responses in idiopathic inflammatory myopathies. J Autoimmun 2024; 142:103136. [PMID: 37935063 DOI: 10.1016/j.jaut.2023.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
K2P2.1 (TREK1), a two-pore domain potassium channel, has emerged as regulator of leukocyte transmigration into the central nervous system. In the context of skeletal muscle, immune cell infiltration constitutes the pathogenic hallmark of idiopathic inflammatory myopathies (IIMs). However, the underlying mechanisms remain to be elucidated. In this study, we investigated the role of K2P2.1 in the autoimmune response of IIMs. We detected K2P2.1 expression in primary skeletal muscle and endothelial cells of murine and human origin. We observed an increased pro-inflammatory cell response, adhesion and transmigration by pharmacological blockade or genetic deletion of K2P2.1 in vitro and in in vivo myositis mouse models. Of note, our findings were not restricted to endothelial cells as skeletal muscle cells with impaired K2P2.1 function also demonstrated a strong pro-inflammatory response. Conversely, these features were abrogated by activation of K2P2.1 and improved the disease course of a myositis mouse model. In humans, K2P2.1 expression was diminished in IIM patients compared to non-diseased controls arguing for the translatability of our findings. In summary, K2P2.1 may regulate the inflammatory response of skeletal muscle. Further research is required to understand whether K2P2.1 could serve as novel therapeutic target.
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Thomas Müntefering
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Derya Cengiz
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Lukas Theissen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Helena Block
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Muenster, Muenster, Germany
| | - Corinna Preuße
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Alexander P E Michels
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Stefanie Lichtenberg
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | | | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Muenster, Muenster, Germany
| | - Thorben Briese
- Department of Trauma, Hand and Reconstructive Surgery, Westphalian Wilhelms University Muenster, Muenster, Germany
| | - Christoph Kittl
- Department of Trauma, Hand and Reconstructive Surgery, Westphalian Wilhelms University Muenster, Muenster, Germany
| | - Carsten Dittmayer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Thomas Budde
- Institute of Physiology I, University of Muenster, Germany
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Solna (MedS), K2, Karolinska Institutet, Stockholm, Sweden
| | - Werner Stenzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany.
| |
Collapse
|
4
|
Schroeter CB, Nelke C, Schewe M, Spohler L, Herrmann AM, Müntefering T, Huntemann N, Kuzikov M, Gribbon P, Albrecht S, Bock S, Hundehege P, Neelsen LC, Baukrowitz T, Seebohm G, Wünsch B, Bittner S, Ruck T, Budde T, Meuth SG. Validation of TREK1 ion channel activators as an immunomodulatory and neuroprotective strategy in neuroinflammation. Biol Chem 2023; 404:355-375. [PMID: 36774650 DOI: 10.1515/hsz-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/16/2023] [Indexed: 02/13/2023]
Abstract
Modulation of two-pore domain potassium (K2P) channels has emerged as a novel field of therapeutic strategies as they may regulate immune cell activation and metabolism, inflammatory signals, or barrier integrity. One of these ion channels is the TWIK-related potassium channel 1 (TREK1). In the current study, we report the identification and validation of new TREK1 activators. Firstly, we used a modified potassium ion channel assay to perform high-throughput-screening of new TREK1 activators. Dose-response studies helped to identify compounds with a high separation between effectiveness and toxicity. Inside-out patch-clamp measurements of Xenopus laevis oocytes expressing TREK1 were used for further validation of these activators regarding specificity and activity. These approaches yielded three substances, E1, B3 and A2 that robustly activate TREK1. Functionally, we demonstrated that these compounds reduce levels of adhesion molecules on primary human brain and muscle endothelial cells without affecting cell viability. Finally, we studied compound A2 via voltage-clamp recordings as this activator displayed the strongest effect on adhesion molecules. Interestingly, A2 lacked TREK1 activation in the tested neuronal cell type. Taken together, this study provides data on novel TREK1 activators that might be employed to pharmacologically modulate TREK1 activity.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Marcus Schewe
- Institute of Physiology, Christian-Albrechts University Kiel, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Lucas Spohler
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| | - Alexander M Herrmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Thomas Müntefering
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Sarah Albrecht
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| | - Stefanie Bock
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Petra Hundehege
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| | - Lea Christine Neelsen
- Institute of Physiology, Christian-Albrechts University Kiel, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University Kiel, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Guiscard Seebohm
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute for Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Thomas Budde
- Institute of Physiology I, University of Münster, Robert-Koch-Straße 27A, D-48149 Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, Liebner S, Melzer N, Meuth SG, Rosenow F, Rüber T, Willems LM, Plate KH. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol 2023; 33:e13147. [PMID: 36599709 PMCID: PMC10041171 DOI: 10.1111/bpa.13147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The blood-brain barrier (BBB) is a physiological barrier maintaining a specialized brain micromilieu that is necessary for proper neuronal function. Endothelial tight junctions and specific transcellular/efflux transport systems provide a protective barrier against toxins, pathogens, and immune cells. The barrier function is critically supported by other cell types of the neurovascular unit, including pericytes, astrocytes, microglia, and interneurons. The dysfunctionality of the BBB is a hallmark of neurological diseases, such as ischemia, brain tumors, neurodegenerative diseases, infections, and autoimmune neuroinflammatory disorders. Moreover, BBB dysfunction is critically involved in epilepsy, a brain disorder characterized by spontaneously occurring seizures because of abnormally synchronized neuronal activity. While resistance to antiseizure drugs that aim to reduce neuronal hyperexcitability remains a clinical challenge, drugs targeting the neurovasculature in epilepsy patients have not been explored. The use of novel imaging techniques permits early detection of BBB leakage in epilepsy; however, the detailed mechanistic understanding of causes and consequences of BBB compromise remains unknown. Here, we discuss the current knowledge of BBB involvement in temporal lobe epilepsy with the emphasis on the neurovasculature as a therapeutic target.
Collapse
Affiliation(s)
- Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Sebastian Bauer
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elif Fidan
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Institute of Neuroradiology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Nico Melzer
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felix Rosenow
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Theodor Rüber
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurent M Willems
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Wu Y, Kong L, Yang A, Xin K, Lu Y, Yan X, Liu W, Zhu Y, Guo Y, Jiang X, Zhou Y, Sun Q, Tang Y, Wu F. Gray matter volume reduction in orbitofrontal cortex correlated with plasma glial cell line-derived neurotrophic factor (GDNF) levels within major depressive disorder. Neuroimage Clin 2023; 37:103341. [PMID: 36739789 PMCID: PMC9932451 DOI: 10.1016/j.nicl.2023.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental disorder characterized by reduced gray matter volume (GMV). To date, the pathogenesis of MDD remains unclear, but neurotrophic factors play an essential role in the pathophysiological alterations of MDD during disease development. In particular, plasma glial cell line-derived neurotrophic factor (GDNF) has been suggested as a potential biomarker that may be associated with disease activity and neurological progression in MDD. Our study investigated whether plasma GDNF levels in MDD patients and healthy controls (HCs) are correlated with GMV alterations. METHODS We studied 54 MDD patients and 48 HCs. The effect of different diagnoses on whole-brain GMV was investigated using ANOVA (Analysis of Variance). The threshold of significance was p < 0.05, and Gaussian random-field (GRF) correction for error was used. All analyses were controlled for covariates such as ethnicity, handedness, age, and gender that could affect GMV. RESULT Compared with the HC group, the GMV in the MDD group was significantly reduced in the right inferior orbitofrontal cortex (OFC), and plasma GDNF levels were significantly higher in the MDD group than in the HC group. In the right inferior OFC, the GDNF levels were positively correlated with GMV reduction in the MDD group, whereas in the HC group, a negative correlation was observed between GDNF levels and GMV reduction. CONCLUSION Although increased production of GDNF in MDD may help repair neural damage in brain regions associated with brain disease, its repairing effects may be interfered with and hindered by underlying neuroinflammatory processes.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Anqi Yang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Kaiqi Xin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yihui Lu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Xintong Yan
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Wen Liu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yingrui Guo
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Brain Function Research Section, Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Qikun Sun
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Department of Geriatric Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Serna-Rodríguez MF, Bernal-Vega S, de la Barquera JAOS, Camacho-Morales A, Pérez-Maya AA. The role of damage associated molecular pattern molecules (DAMPs) and permeability of the blood-brain barrier in depression and neuroinflammation. J Neuroimmunol 2022; 371:577951. [PMID: 35994946 DOI: 10.1016/j.jneuroim.2022.577951] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Depression is a heterogeneous mental disorder characterized by feelings of sadness and loss of interest that render the subject unable to handle basic daily activities such as sleeping, eating, or working. Neurobiological traits leading to depression include genetic background, early life abuse, life stressors, and systemic and central inflammatory profiles. Several clinical and preclinical reports documented that depression shows an increase in pro-inflammatory markers such as interleukin (IL-)1β, IL-6, IL-12, tumor necrosis factor (TNF), and interferon (IFN)-γ; and a decrease in anti-inflammatory IL-4, IL-10, and transforming growth factor (TGF)-β species. Inflammatory activation may trigger and maintain depression. Dynamic crosstalk between the peripheral immune system and the central nervous system (CNS) such as activated endothelial cells, monocytes, monocyte-derived dendritic cells, macrophages, T cells, and microglia has been proposed as a leading cause of neuroinflammation. Notably, pro-inflammatory cytokines disrupt the hypothalamic-pituitary-adrenal (HPA) axis and serotonergic, noradrenergic, dopaminergic, and glutamatergic neurotransmission. While still under investigation, peripheral cytokines can engage brain pathways and affect the central synthesis of HPA hormones and neurotransmitters through several mechanisms such as activation of the vagus nerve, increasing the permeability of the blood-brain barrier (BBB), altered cytokines transport systems, and engaging toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). However, physiological mechanisms that favor time-dependent central inflammation before or during illness are not totally understood. This review will provide preclinical and clinical evidence of DAMPs and the BBB permeability as contributors to depression and neuroinflammation. We will also discuss pharmacologic approaches that could potentially modulate DAMPs and BBB permeability for future interventions against major depression.
Collapse
Affiliation(s)
- María Fernanda Serna-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico
| | - Sofía Bernal-Vega
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico
| | | | - Alberto Camacho-Morales
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico.
| | - Antonio Alí Pérez-Maya
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico.
| |
Collapse
|
8
|
Cellular senescence in neuroinflammatory disease: new therapies for old cells? Trends Mol Med 2022; 28:850-863. [DOI: 10.1016/j.molmed.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
9
|
Zheng X, Yang J, Zhu Z, Fang Y, Tian Y, Xie M, Wang W, Liu Y. The Two-Pore Domain Potassium Channel TREK-1 Promotes Blood-Brain Barrier Breakdown and Exacerbates Neuronal Death After Focal Cerebral Ischemia in Mice. Mol Neurobiol 2022; 59:2305-2327. [PMID: 35067892 DOI: 10.1007/s12035-021-02702-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
Earlier studies have shown the neuroprotective role of TWIK-related K+ channel 1 (TREK-1) in global cerebral and spinal cord ischemia, while its function in focal cerebral ischemia has long been debated. This study used TREK-1-deficient mice to directly investigate the role of TREK-1 after focal cerebral ischemia. First, immunofluorescence assays in the mouse cerebral cortex indicated that TREK-1 expression was mostly abundant in astrocytes, neurons, and oligodendrocyte precursor cells but was low in myelinating oligodendrocytes, microglia, or endothelial cells. TREK-1 deficiency did not affect brain weight and morphology or the number of neurons, astrocytes, or microglia but did increase glial fibrillary acidic protein (GFAP) expression in astrocytes of the cerebral cortex. The anatomy of the major cerebral vasculature, number and structure of brain micro blood vessels, and blood-brain barrier integrity were unaltered. Next, mice underwent 60 min of focal cerebral ischemia and 72 h of reperfusion induced by the intraluminal suture method. TREK-1-deficient mice showed less neuronal death, smaller infarction size, milder blood-brain barrier (BBB) breakdown, reduced immune cell invasion, and better neurological function. Finally, the specific pharmacological inhibition of TREK-1 also decreased infarction size and improved neurological function. These results demonstrated that TREK-1 might play a detrimental rather than beneficial role in focal cerebral ischemia, and inhibition of TREK-1 would be a strategy to treat ischemic stroke in the clinic.
Collapse
Affiliation(s)
- Xiaolong Zheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yeye Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Neurological Diseases of Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Mini-Review: Two Brothers in Crime - The Interplay of TRESK and TREK in Human Diseases. Neurosci Lett 2021; 769:136376. [PMID: 34852287 DOI: 10.1016/j.neulet.2021.136376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
TWIK-related spinal cord potassium (TRESK) and TWIK-related potassium (TREK) channels are both subfamilies of the two-pore domain potassium (K2P) channel group. Despite major structural, pharmacological, as well as biophysical differences, emerging data suggest that channels of these two subfamilies are functionally more closely related than previously assumed. Recent studies, for instance, indicate an assembling of TRESK and TREK subunits, leading to the formation of heterodimeric channels with different functional properties compared to homodimeric ones. Formation of tandems consisting of TRESK and TREK subunits might thus multiply the functional diversity of both TRESK and TREK activity. Based on the involvement of these channels in the pathophysiology of migraine, we here highlight the role as well as the impact of the interplay of TRESK and TREK subunits in the context of different disease settings. In this regard, we focus on their involvement in migraine and pain syndromes, as well as on their influence on (neuro-)inflammatory processes. Furthermore, we describe the potential implications for innovative therapeutic strategies that take advantage of TRESK and TREK modulation as well as obstacles encountered in the development of therapies related to the aforementioned diseases.
Collapse
|
11
|
Schmaul S, Hanuscheck N, Bittner S. Astrocytic potassium and calcium channels as integrators of the inflammatory and ischemic CNS microenvironment. Biol Chem 2021; 402:1519-1530. [PMID: 34455729 DOI: 10.1515/hsz-2021-0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022]
Abstract
Astrocytes are key regulators of their surroundings by receiving and integrating stimuli from their local microenvironment, thereby regulating glial and neuronal homeostasis. Cumulating evidence supports a plethora of heterogenic astrocyte subpopulations that differ morphologically and in their expression patterns of receptors, transporters and ion channels, as well as in their functional specialisation. Astrocytic heterogeneity is especially relevant under pathological conditions. In experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), morphologically distinct astrocytic subtypes were identified and could be linked to transcriptome changes during different disease stages and regions. To allow for continuous awareness of changing stimuli across age and diseases, astrocytes are equipped with a variety of receptors and ion channels allowing the precise perception of environmental cues. Recent studies implicate the diverse repertoire of astrocytic ion channels - including transient receptor potential channels, voltage-gated calcium channels, inwardly rectifying K+ channels, and two-pore domain potassium channels - in sensing the brain state in physiology, inflammation and ischemia. Here, we review current evidence regarding astrocytic potassium and calcium channels and their functional contribution in homeostasis, neuroinflammation and stroke.
Collapse
Affiliation(s)
- Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| |
Collapse
|
12
|
Wrigglesworth J, Ward P, Harding IH, Nilaweera D, Wu Z, Woods RL, Ryan J. Factors associated with brain ageing - a systematic review. BMC Neurol 2021; 21:312. [PMID: 34384369 PMCID: PMC8359541 DOI: 10.1186/s12883-021-02331-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Brain age is a biomarker that predicts chronological age using neuroimaging features. Deviations of this predicted age from chronological age is considered a sign of age-related brain changes, or commonly referred to as brain ageing. The aim of this systematic review is to identify and synthesize the evidence for an association between lifestyle, health factors and diseases in adult populations, with brain ageing. Methods This systematic review was undertaken in accordance with the PRISMA guidelines. A systematic search of Embase and Medline was conducted to identify relevant articles using search terms relating to the prediction of age from neuroimaging data or brain ageing. The tables of two recent review papers on brain ageing were also examined to identify additional articles. Studies were limited to adult humans (aged 18 years and above), from clinical or general populations. Exposures and study design of all types were also considered eligible. Results A systematic search identified 52 studies, which examined brain ageing in clinical and community dwelling adults (mean age between 21 to 78 years, ~ 37% were female). Most research came from studies of individuals diagnosed with schizophrenia or Alzheimer’s disease, or healthy populations that were assessed cognitively. From these studies, psychiatric and neurologic diseases were most commonly associated with accelerated brain ageing, though not all studies drew the same conclusions. Evidence for all other exposures is nascent, and relatively inconsistent. Heterogenous methodologies, or methods of outcome ascertainment, were partly accountable. Conclusion This systematic review summarised the current evidence for an association between genetic, lifestyle, health, or diseases and brain ageing. Overall there is good evidence to suggest schizophrenia and Alzheimer’s disease are associated with accelerated brain ageing. Evidence for all other exposures was mixed or limited. This was mostly due to a lack of independent replication, and inconsistency across studies that were primarily cross sectional in nature. Future research efforts should focus on replicating current findings, using prospective datasets. Trial registration A copy of the review protocol can be accessed through PROSPERO, registration number CRD42020142817. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02331-4.
Collapse
Affiliation(s)
- Jo Wrigglesworth
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Phillip Ward
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, 3168, Australia.,Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, 3800, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria , 3800, , Australia
| | - Ian H Harding
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, 3168, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Dinuli Nilaweera
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Zimu Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia.
| |
Collapse
|
13
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
14
|
Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015-2020. Drugs 2021; 81:1031-1063. [PMID: 34086251 PMCID: PMC8217012 DOI: 10.1007/s40265-021-01526-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.
Collapse
|
15
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
16
|
Brain imaging genomics: influences of genomic variability on the structure and function of the human brain. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Brain imaging genomics is an emerging discipline in which genomic and brain imaging data are integrated in order to elucidate the molecular mechanisms that underly brain phenotypes and diseases, including neuropsychiatric disorders. As with all genetic analyses of complex traits and diseases, brain imaging genomics has evolved from small, individual candidate gene investigations towards large, collaborative genome-wide association studies. Recent investigations, mostly population-based, have studied well-powered cohorts comprising tens of thousands of individuals and identified multiple robust associations of single-nucleotide polymorphisms and copy number variants with structural and functional brain phenotypes. Such systematic genomic screens of millions of genetic variants have generated initial insights into the genetic architecture of brain phenotypes and demonstrated that their etiology is polygenic in nature, involving multiple common variants with small effect sizes and rare variants with larger effect sizes. Ongoing international collaborative initiatives are now working to obtain a more complete picture of the underlying biology. As in other complex phenotypes, novel approaches – such as gene–gene interaction, gene–environment interaction, and epigenetic analyses – are being implemented in order to investigate their contribution to the observed phenotypic variability. An important consideration for future research will be the translation of brain imaging genomics findings into clinical practice.
Collapse
|
17
|
Jonsson BA, Bjornsdottir G, Thorgeirsson TE, Ellingsen LM, Walters GB, Gudbjartsson DF, Stefansson H, Stefansson K, Ulfarsson MO. Brain age prediction using deep learning uncovers associated sequence variants. Nat Commun 2019; 10:5409. [PMID: 31776335 PMCID: PMC6881321 DOI: 10.1038/s41467-019-13163-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023] Open
Abstract
Machine learning algorithms can be trained to estimate age from brain structural MRI. The difference between an individual’s predicted and chronological age, predicted age difference (PAD), is a phenotype of relevance to aging and brain disease. Here, we present a new deep learning approach to predict brain age from a T1-weighted MRI. The method was trained on a dataset of healthy Icelanders and tested on two datasets, IXI and UK Biobank, utilizing transfer learning to improve accuracy on new sites. A genome-wide association study (GWAS) of PAD in the UK Biobank data (discovery set: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N=12378$$\end{document}N=12378, replication set: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N=4456$$\end{document}N=4456) yielded two sequence variants, rs1452628-T (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta =-0.08$$\end{document}β=−0.08, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P=1.15\times{10}^{-9}$$\end{document}P=1.15×10−9) and rs2435204-G (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta =0.102$$\end{document}β=0.102, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P=9.73\times 1{0}^{-12}$$\end{document}P=9.73×10−12). The former is near KCNK2 and correlates with reduced sulcal width, whereas the latter correlates with reduced white matter surface area and tags a well-known inversion at 17q21.31 (H2). Machine learning algorithms can be trained to estimate age from brain structural MRI. Here, the authors introduce a new deep-learning-based age prediction approach, and then carry out a GWAS of the difference between predicted and chronological age, revealing two associated variants.
Collapse
Affiliation(s)
- B A Jonsson
- deCODE Genetics/Amgen, Inc., 101, Reykjavik, Iceland.,University of Iceland, 101, Reykjavik, Iceland
| | | | | | | | - G Bragi Walters
- deCODE Genetics/Amgen, Inc., 101, Reykjavik, Iceland.,University of Iceland, 101, Reykjavik, Iceland
| | - D F Gudbjartsson
- deCODE Genetics/Amgen, Inc., 101, Reykjavik, Iceland.,University of Iceland, 101, Reykjavik, Iceland
| | - H Stefansson
- deCODE Genetics/Amgen, Inc., 101, Reykjavik, Iceland
| | - K Stefansson
- deCODE Genetics/Amgen, Inc., 101, Reykjavik, Iceland. .,University of Iceland, 101, Reykjavik, Iceland.
| | - M O Ulfarsson
- deCODE Genetics/Amgen, Inc., 101, Reykjavik, Iceland. .,University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
18
|
Fang Y, Tian Y, Huang Q, Wan Y, Xu L, Wang W, Pan D, Zhu S, Xie M. Deficiency of TREK-1 potassium channel exacerbates blood-brain barrier damage and neuroinflammation after intracerebral hemorrhage in mice. J Neuroinflammation 2019; 16:96. [PMID: 31072336 PMCID: PMC6506965 DOI: 10.1186/s12974-019-1485-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a devastating medical emergency with high mortality and severe neurological deficit. ICH-related poor outcomes are due to a combination of pathological processes that could be complicated by secondary insults. TWIK-related K+ channel 1 (TREK-1) is a two-pore-domain potassium channel that is highly expressed in the mammalian nervous system. Previous studies have shown that TREK-1 channels play important roles in various central nervous system diseases. However, its role in the secondary injuries after intracerebral hemorrhage remains unknown. In this study, we explored the function of TREK-1 in secondary blood-brain barrier injuries and neuroinflammation after intracerebral hemorrhage in mice. METHODS Adult male TREK-1-/- mice and WT mice were subjected to a collagenase-induced ICH model. Immunostaining, western blot, and enzyme-linked immunosorbent assay were used to assess inflammatory infiltration and neuronal death. Blood-brain barrier compromise was assessed using electron microscopy and Evans Blue dye injection on days 1 and 3 after intracerebral hemorrhage. Magnetic resonance imaging and behavioral assessments were conducted to evaluate the neurologic damage and recovery after intracerebral hemorrhage. RESULTS Genetic deficiency of TREK-1 channel exacerbated blood-brain barrier impairment and promoted cerebral edema after intracerebral hemorrhage. Meanwhile, TREK-1 deficiency aggravated focal inflammatory featured by the increased recruitment of microglia and neutrophils, the enhanced secretion of proinflammatory factors interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and cell adhesion molecules (CAMs). Furthermore, TREK-1 deficiency promoted neuronal injury and neurological impairment. CONCLUSIONS These results establish the first in vivo evidence for the protective role of TREK-1 in blood-brain barrier injury and neuroinflammation after intracerebral hemorrhage. TREK-1 may thereby be harnessed to a potential therapeutical target for the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Yeye Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Qibao Huang
- College of medicine, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yue Wan
- Department of Neurology, The Third People's Hospital of Hubei Province, Wuhan, People's Republic of China, 430030
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Dengji Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030.
| |
Collapse
|
19
|
eQTL of KCNK2 regionally influences the brain sulcal widening: evidence from 15,597 UK Biobank participants with neuroimaging data. Brain Struct Funct 2018; 224:847-857. [PMID: 30519892 PMCID: PMC6420450 DOI: 10.1007/s00429-018-1808-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/01/2018] [Indexed: 11/25/2022]
Abstract
The grey and white matter volumes are known to reduce with age. This cortical shrinkage is visible on magnetic resonance images and is conveniently identified by the increased volume of cerebrospinal fluid in the sulci between two gyri. Here, we replicated this finding using the UK Biobank dataset and studied the genetic influence on these cortical features of aging. We divided all individuals genetically confirmed of British ancestry into two sub-cohorts (12,162 and 3435 subjects for discovery and replication samples, respectively). We found that the heritability of the sulcal opening ranges from 15 to 45% (SE = 4.8%). We identified 4 new loci that contribute to this opening, including one that also affects the sulci grey matter thickness. We identified the most significant variant (rs864736) on this locus as being an expression quantitative trait locus (eQTL) for the KCNK2 gene. This gene regulates the immune-cell into the central nervous system (CNS) and controls the CNS inflammation, which is implicated in cortical atrophy and cognitive decline. These results expand our knowledge of the genetic contribution to cortical shrinking and promote further investigation into these variants and genes in pathological context such as Alzheimer’s disease in which brain shrinkage is a key biomarker.
Collapse
|
20
|
Bittner S, Zipp F. Studying the blood-brain barrier will provide new insights into neurodegeneration - Commentary. Mult Scler 2018; 24:1026-1028. [PMID: 29504451 DOI: 10.1177/1352458518759430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Research Centre for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Research Centre for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
21
|
Role of TWIK-related potassium channel-1 in chronic rhinosinusitis. J Allergy Clin Immunol 2017; 141:1124-1127.e6. [PMID: 29103993 DOI: 10.1016/j.jaci.2017.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/30/2017] [Accepted: 10/09/2017] [Indexed: 11/20/2022]
|
22
|
Blum A, Pastukh N, Zaroura I, Rotem J, Kamal F. Impaired ability to grow colonies of endothelial stem cells could be the mechanism explaining the high cardiovascular morbidity and mortality of patients with depression. QJM 2017; 110:501-506. [PMID: 28340040 DOI: 10.1093/qjmed/hcx059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Subjects with depression are more prone to develop cardiovascular complications. Severity of depression is associated with higher rates of cardiovascular mortality and morbidity. Several mechanisms were suggested including accelerated atherosclerosis, alteration of the cardiac autonomic response with a decrease in heart rate variability. There is evidence that circulating endothelial progenitor cells (EPCs) are decreased in patients with major depression. Our hypothesis was that patients with depression would have an impaired ability to build colonies of EPCs. METHODS A prospective study enrolled twenty women with a diagnosis of major. All were not treated before for depression. Thirteen healthy age-matched women served as controls. All signed a consent form before recruitment to the study. Peripheral blood was drawn to build colonies of EPCs within 5 days. ELISA methods were used to measure levels of vascular cell adhesion molecule-1 (VCAM-1) and vascular endothelial growth factor (VEGF). RESULTS Twenty female patients with depression were recruited. The mean age was 43 ± 14 years (vs. controls 41 ± 11 years, P = 0.682), patients' average CFU-EPCs was 7 ± 8 colonies per well (controls 31 ± 11, P = 0.0001), VCAM-1 level was 121.7 ± 3.0 ng/ml (controls 119.3 ± 3.1 pg/ml, P = 0.037), VEGF level was 6.4 ± 0.2 pg/ml (controls 5.2 ± 0.5 pg/ml, P = 0.0001). An inverse correlation was found between VEGF level and EPCs' colonies (r = -0.547, P < 0.001) and between age and CFU-EPCs (r = -0.576, P = 0.008). CONCLUSIONS We found that patients with major depression had high levels of VCAM-1 and VEGF. They also had a significant inhibition of EPCs' colonies. An inverse correlation was found between levels of VEGF and the ability to grow colonies of EPCs in culture.
Collapse
Affiliation(s)
- A Blum
- Department of Medicine, Vascular Biology/Stem Cells Research Unit, Baruch Padeh Poria Medical Center
| | - N Pastukh
- Department of Medicine, Vascular Biology/Stem Cells Research Unit, Baruch Padeh Poria Medical Center
| | - I Zaroura
- Department of Medicine, Vascular Biology/Stem Cells Research Unit, Baruch Padeh Poria Medical Center
| | - J Rotem
- Department of Medicine, Vascular Biology/Stem Cells Research Unit, Baruch Padeh Poria Medical Center
| | - F Kamal
- Department of Psychiatry, EMMS Nazareth Hospital, Faculty of Medicine in the Galilee, Bar Ilan University, Tiberias, Israel
| |
Collapse
|
23
|
Carreon TA, Castellanos A, Gasull X, Bhattacharya SK. Interaction of cochlin and mechanosensitive channel TREK-1 in trabecular meshwork cells influences the regulation of intraocular pressure. Sci Rep 2017; 7:452. [PMID: 28352076 PMCID: PMC5428432 DOI: 10.1038/s41598-017-00430-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
In the eye, intraocular pressure (IOP) is tightly regulated and its persistent increase leads to ocular hypertension and glaucoma. We have previously shown that trabecular meshwork (TM) cells might detect aqueous humor fluid shear stress via interaction of the extracellular matrix (ECM) protein cochlin with the cell surface bound and stretch-activated channel TREK-1. We provide evidence here that interaction between both proteins are involved in IOP regulation. Silencing of TREK-1 in mice prevents the previously demonstrated cochlin-overexpression mediated increase in IOP. Biochemical and electrophysiological experiments demonstrate that high shear stress-induced multimeric cochlin produces a qualitatively different interaction with TREK-1 compared to monomeric cochlin. Physiological concentrations of multimeric but not monomeric cochlin reduce TREK-1 current. Results presented here indicate that the interaction of TREK-1 and cochlin play an important role for maintaining IOP homeostasis. [Corrected].
Collapse
Affiliation(s)
- Teresia A Carreon
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA.,Department of Biochemistry and Molecular Biology, University of Miami, Miami, USA
| | - Aida Castellanos
- Department of Biomedicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigaciones Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Xavier Gasull
- Department of Biomedicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigaciones Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. .,Department of Biochemistry and Molecular Biology, University of Miami, Miami, USA.
| |
Collapse
|
24
|
Fang Y, Huang X, Wan Y, Tian H, Tian Y, Wang W, Zhu S, Xie M. Deficiency of TREK-1 potassium channel exacerbates secondary injury following spinal cord injury in mice. J Neurochem 2017; 141:236-246. [PMID: 28192611 DOI: 10.1111/jnc.13980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/09/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yongkang Fang
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiaojiang Huang
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yue Wan
- Department of Neurology; The Third People's Hospital of Hubei Province; Wuhan China
| | - Hao Tian
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yeye Tian
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Wei Wang
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Key Laboratory of Neurological Diseases of Chinese Ministry of Education; The School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Suiqiang Zhu
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Minjie Xie
- Department of Neurology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Key Laboratory of Neurological Diseases of Chinese Ministry of Education; The School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
25
|
Ryoo K, Park JY. Two-pore Domain Potassium Channels in Astrocytes. Exp Neurobiol 2016; 25:222-232. [PMID: 27790056 PMCID: PMC5081468 DOI: 10.5607/en.2016.25.5.222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Two-pore domain potassium (K2P) channels have a distinct structure and channel properties, and are involved in a background K+ current. The 15 members of the K2P channels are identified and classified into six subfamilies on the basis of their sequence similarities. The activity of the channels is dynamically regulated by various physical, chemical, and biological effectors. The channels are expressed in a wide variety of tissues in mammals in an isoform specific manner, and play various roles in many physiological and pathophysiological conditions. To function as channels, the K2P channels form dimers, and some isoforms form heterodimers that provide diversity in channel properties. In the brain, TWIK1, TREK1, TREK2, TRAAK, TASK1, and TASK3 are predominantly expressed in various regions, including the cerebral cortex, dentate gyrus, CA1-CA3, and granular layer of the cerebellum. TWIK1, TREK1, and TASK1 are highly expressed in astrocytes, where they play specific cellular roles. Astrocytes keep leak K+ conductance, called the passive conductance, which mainly involves TWIK1-TREK1 heterodimeric channel. TWIK1 and TREK1 also mediate glutamate release from astrocytes in an exocytosis-independent manner. The expression of TREK1 and TREK2 in astrocytes increases under ischemic conditions, that enhance neuroprotection from ischemia. Accumulated evidence has indicated that astrocytes, together with neurons, are involved in brain function, with the K2P channels playing critical role in these astrocytes.
Collapse
Affiliation(s)
- Kanghyun Ryoo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea
| |
Collapse
|
26
|
Dobrowolski SF, Lyons-Weiler J, Spridik K, Vockley J, Skvorak K, Biery A. DNA methylation in the pathophysiology of hyperphenylalaninemia in the PAH(enu2) mouse model of phenylketonuria. Mol Genet Metab 2016; 119:1-7. [PMID: 26822703 PMCID: PMC8958364 DOI: 10.1016/j.ymgme.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/31/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
Abstract
Phenylalanine hydroxylase deficient phenylketonuria (PKU) is the paradigm for a treatable inborn error of metabolism where maintaining plasma phenylalanine (Phe) in the therapeutic range relates to improved clinical outcomes. While Phe is the presumed intoxicating analyte causal in neurologic damage, the mechanism(s) of Phe toxicity has remained elusive. Altered DNA methylation is a recognized response associated with exposure to numerous small molecule toxic agents. Paralleling this effect, we hypothesized that chronic Phe over-exposure in the brain would lead to aberrant DNA methylation with secondary influence upon gene regulation that would ultimately contribute to PKU neuropathology. The PAH(enu2) mouse models human PKU with intrinsic hyperphenylalaninemia, abnormal response to Phe challenge, and neurologic deficit. To examine this hypothesis, we assessed DNA methylation patterns in brain tissues using methylated DNA immunoprecipitation and paired end sequencing in adult PAH(enu2) animals maintained under either continuous dietary Phe restriction or chronic hyperphenylalaninemia. Heterozygous PAH(enu2/WT) litter mates served as controls for normal Phe exposure. Extensive repatterning of DNA methylation was observed in brain tissue of hyperphenylalaninemic animals while Phe restricted animals displayed an attenuated pattern of aberrant DNA methylation. Affected gene coding regions displayed aberrant hypermethylation and hypomethylation. Gene body methylation of noncoding RNA genes was observed and among these microRNA genes were prominent. Of particular note, observed only in hyperphenylalaninemic animals, was hypomethylation of miRNA genes within the imprinted Dlk1-Dio3 locus on chromosome 12. Aberrant methylation of microRNA genes influenced their expression which has secondary effects upon the expression of targeted protein coding genes. Differential hypermethylation of gene promoters was exclusive to hyperphenylalaninemic PAH(enu2) animals. Genes with synaptic involvement were targets of promoter hypermethylation that resulted in down-regulation of their expression. Gene dysregulation secondary to abnormal DNA methylation may be contributing to PKU neuropathology. These results suggest drugs that prevent or correct aberrant DNA methylation may offer a novel therapeutic option to management of neurological symptoms in PKU patients.
Collapse
Affiliation(s)
- S F Dobrowolski
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States.
| | - J Lyons-Weiler
- Genomics and Proteomics Core Laboratories, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, United States
| | - K Spridik
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - J Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - K Skvorak
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - A Biery
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| |
Collapse
|
27
|
Wu CK, Tseng PT, Chen YW, Tu KY, Lin PY. Significantly higher peripheral fibroblast growth factor-2 levels in patients with major depressive disorder: A preliminary meta-analysis under MOOSE guidelines. Medicine (Baltimore) 2016; 95:e4563. [PMID: 27537581 PMCID: PMC5370807 DOI: 10.1097/md.0000000000004563] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In vivo and in vitro studies demonstrate the important roles of fibroblast growth factor (FGF) and FGF receptors (FGFRs) in neural survival, neurogenesis, oxidative stress, and emotional behavior. However, evidence on the role of FGF and FGFR in the pathophysiology of major depressive disorder (MDD) remains limited and inconclusive. OBJECTIVES This preliminary meta-analysis aimed to examine changes in peripheral or central FGF and FGFR levels in patients with MDD. DATA SOURCES Electronic research through platform of PubMed and ClinicalTrials.gov. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS We used the inclusion criteria: articles discussing the comparisons of FGF levels, either in peripheral or central environment, in patients with MDD and in healthy controls (HC); articles on clinical trials in humans; and case-control trials. Case reports or series and nonclinical trials were excluded. STUDY APPRAISAL AND SYNTHESIS METHODS Using a thorough literature search, the FGF/FGFR levels in patients with MDD and HC were compared. Four studies on peripheral FGF-2 and 3 on central FGF-2 and FGFR1 levels were included. RESULTS The findings reveal significantly higher peripheral FGF-2 protein and central FGFR1 RNA levels in patients with MDD than in HC (P = 0.005 and 0.006, separately), but no significant association with clinical variables. There was also no significant difference in the central FGF-2 levels in patients with MDD and in HC (P = 0.180). LIMITATION The study has limitations of a small number of included studies, lack of meta-analysis of the FGF changes along with treatment, and lack of direct evidence on correlation of peripheral FGF-2 with central FGF-2 levels. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS This preliminary meta-analysis points out a new direction for future studies investigating the relationship among MDD, oxidative stress, and the FGF family.
Collapse
Affiliation(s)
- Ching-Kuan Wu
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home
| | - Ping-Tao Tseng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home
| | | | - Kun-Yu Tu
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Correspondence: Pao-Yen Lin, Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, 123, Dapi Road, Niaosong, Kaohsiung 833, Taiwan (e-mail: )
| |
Collapse
|
28
|
Vallée N, Lambrechts K, De Maistre S, Royal P, Mazella J, Borsotto M, Heurteaux C, Abraini J, Risso JJ, Blatteau JE. Fluoxetine Protection in Decompression Sickness in Mice is Enhanced by Blocking TREK-1 Potassium Channel with the "spadin" Antidepressant. Front Physiol 2016; 7:42. [PMID: 26909044 PMCID: PMC4755105 DOI: 10.3389/fphys.2016.00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023] Open
Abstract
In mice, disseminated coagulation, inflammation, and ischemia induce neurological damage that can lead to death. These symptoms result from circulating bubbles generated by a pathogenic decompression. Acute fluoxetine treatment or the presence of the TREK-1 potassium channel increases the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50 mg/kg) in wild-type (WT) and TREK-1 deficient mice (knockout homozygous KO and heterozygous HET). Then, we combined the same fluoxetine treatment with a 5-day treatment protocol with spadin, in order to specifically block TREK-1 activity (KO-like mice). KO and KO-like mice were regarded as antidepressed models. In total, 167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux) constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive) constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux) and 4% of mice treated with both spadin and fluoxetine (KO-likeflux) died from decompression sickness (DCS) symptoms. These values are much lower than those of WT control (62%) or KO-like mice (41%). After the decompression protocol, mice showed significant consumption of their circulating platelets and leukocytes. Spadin antidepressed mice were more likely to exhibit DCS. Nevertheless, mice which had both blocked TREK-1 channels and fluoxetine treatment were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but concomitant fluoxetine treatment not only decreased DCS severity but increased the survival rate.
Collapse
Affiliation(s)
- Nicolas Vallée
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle Toulon, France
| | - Kate Lambrechts
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique OpérationnelleToulon, France; UFR STAPS, Laboratoire Motricité Humaine Education Sport Santé, Université du Sud Toulon VarLa Garde, France
| | - Sébastien De Maistre
- Hôpital d'Instruction des Armées, Service de Médecine Hyperbare et Expertise Plongée Toulon, France
| | - Perrine Royal
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle Toulon, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 Valbonne, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 Valbonne, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 Valbonne, France
| | - Jacques Abraini
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique OpérationnelleToulon, France; Département d'Anesthésiologie, Université LavalQuébec, QC, Canada; Faculté de Médecine, Université de Caen NormandieCaen, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle Toulon, France
| | - Jean-Eric Blatteau
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle Toulon, France
| |
Collapse
|
29
|
Tseng PT, Cheng YS, Chen YW, Wu CK, Lin PY. Increased levels of vascular endothelial growth factor in patients with major depressive disorder: A meta-analysis. Eur Neuropsychopharmacol 2015; 25:1622-30. [PMID: 26123242 DOI: 10.1016/j.euroneuro.2015.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/17/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
Abstract
The regulation of neurotrophic factors plays an important role in the pathophysiology of major depressive disorder (MDD). Vascular endothelial growth factor (VEGF) has been shown to promote neurogenesis, neuroprotection, and influence synaptic transmission. Many studies have examined the VEGF levels in patients with depression, however the results have been inconsistent. In the current meta-analysis, we compared blood VEGF levels between MDD patients and control subjects (16 articles including 872 patients and 882 control subjects). The effect sizes of individual studies were synthesized using a random effect model. We found that the blood VEGF levels in the patients with MDD were significantly higher than those in the healthy controls (p<0.001), and the difference was negatively correlated with mean age (p=0.01). Other variables including proportion of female subjects, body mass index, severity of depression, duration of illness, and age at onset were not significantly correlated with the difference. Our results highlight that elevated blood VEGF levels may be a disease marker in patients with MDD. Further studies are needed to examine the relationship between VEGF levels in central and peripheral environments, and clarify the role of VEGF in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung', Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung', Taiwan
| | - Yen-Wen Chen
- Department of Neurology, E-Da Hospital, Kaohsiung, Taiwan
| | - Ching-Kuan Wu
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung', Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
30
|
Lin PY, Tseng PT. Decreased glial cell line-derived neurotrophic factor levels in patients with depression: a meta-analytic study. J Psychiatr Res 2015; 63:20-7. [PMID: 25726496 DOI: 10.1016/j.jpsychires.2015.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
Abstract
Glial cell-line derived neurotrophic factor (GDNF) has been shown to promote development, differentiation, and protection of CNS neurons and was thought to play an important role in various neuropsychiatric disorders. Several studies have examined the GDNF levels in patients with depression but shown inconsistent results. In this study, we compared blood GDNF levels between depressive patients and control subjects through meta-analytic method. The effect sizes (ESs) from all eligible studies were synthesized by using a random effect model. In this meta-analysis, we included 526 patients and 502 control subjects from 12 original articles. Compared to control subjects, blood GDNF levels are significantly decreased in patients with depression (ES = -0.62, p = 0.0011). However, significant heterogeneity was found among included studies. Through subgroup analysis, we found that GDNF was still decreased in studies with major depressive disorder (ES = -0.73, p = 0.0001); in studies with non-old-age depression (ES = -1.25, p = 0.0001), but not with old-age depression; and in studies using serum samples (ES = -0.86, p < 0.0001), but not in studies using plasma sample. Meta-regression did not show moderating effects of mean age of subjects, gender distribution, and age of onset of depression. Our findings support blood GDNF levels as a biomarker of depression as a whole, but the results were modulated by psychiatric diagnosis, age of included subjects, and sampling sources. With these results, future studies are required to examine whether effective antidepressant treatment is associated with an increase in serum GDNF levels.
Collapse
Affiliation(s)
- Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Ping-Tao Tseng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Taiwan
| |
Collapse
|
31
|
Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev 2015; 95:179-217. [PMID: 25540142 DOI: 10.1152/physrev.00016.2014] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
K(+) channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K(+) channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K(+) homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K(+)-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge.
Collapse
Affiliation(s)
- Francisco V Sepúlveda
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - L Pablo Cid
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - Jacques Teulon
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - María Isabel Niemeyer
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| |
Collapse
|
32
|
Feliciangeli S, Chatelain FC, Bichet D, Lesage F. The family of K2P channels: salient structural and functional properties. J Physiol 2015; 593:2587-603. [PMID: 25530075 DOI: 10.1113/jphysiol.2014.287268] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Potassium channels participate in many biological functions, from ion homeostasis to generation and modulation of the electrical membrane potential. They are involved in a large variety of diseases. In the human genome, 15 genes code for K(+) channels with two pore domains (K2P ). These channels form dimers of pore-forming subunits that produce background conductances finely regulated by a range of natural and chemical effectors, including signalling lipids, temperature, pressure, pH, antidepressants and volatile anaesthetics. Since the cloning of TWIK1, the prototypical member of this family, a lot of work has been carried out on their structure and biology. These studies are still in progress, but data gathered so far show that K2P channels are central players in many processes, including ion homeostasis, hormone secretion, cell development and excitability. A growing number of studies underline their implication in physiopathological mechanisms, such as vascular and pulmonary hypertension, cardiac arrhythmias, nociception, neuroprotection and depression. This review gives a synthetic view of the most noticeable features of these channels.
Collapse
Affiliation(s)
- Sylvain Feliciangeli
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Frank C Chatelain
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Delphine Bichet
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Florian Lesage
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| |
Collapse
|
33
|
Ehling P, Cerina M, Budde T, Meuth SG, Bittner S. The CNS under pathophysiologic attack--examining the role of K₂p channels. Pflugers Arch 2014; 467:959-72. [PMID: 25482672 DOI: 10.1007/s00424-014-1664-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/17/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Members of the two-pore domain K(+) channel (K2P) family are increasingly recognized as being potential targets for therapeutic drugs and could play a role in the diagnosis and treatment of neurologic disorders. Their broad and diverse expression pattern in pleiotropic cell types, importance in cellular function, unique biophysical properties, and sensitivity toward pathophysiologic parameters represent the basis for their involvement in disorders of the central nervous system (CNS). This review will focus on multiple sclerosis (MS) and stroke, as there is growing evidence for the involvement of K2P channels in these two major CNS disorders. In MS, TASK1-3 channels are expressed on T lymphocytes and are part of a signaling network regulating Ca(2+)- dependent pathways that are mandatory for T cell activation, differentiation, and effector functions. In addition, TASK1 channels are involved in neurodegeneration, resulting in autoimmune attack of CNS cells. On the blood-brain barrier, TREK1 channels regulate immune cell trafficking under autoinflammatory conditions. Cerebral ischemia shares some pathophysiologic similarities with MS, including hypoxia and extracellular acidosis. On a cellular level, K2P channels can have both proapoptotic and antiapoptotic effects, either promoting neurodegeneration or protecting neurons from ischemic cell death. TASK1 and TREK1 channels have a neuroprotective effect on stroke development, whereas TASK2 channels have a detrimental effect on neuronal survival under ischemic conditions. Future research in preclinical models is needed to provide a more detailed understanding of the contribution of K2P channel family members to neurologic disorders, before translation to the clinic is an option.
Collapse
Affiliation(s)
- Petra Ehling
- Department of Neurology, University of Münster, Münster, Germany,
| | | | | | | | | |
Collapse
|
34
|
O'Kelly I. Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K₂p) channels. Pflugers Arch 2014; 467:1133-42. [PMID: 25413469 PMCID: PMC4428836 DOI: 10.1007/s00424-014-1641-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022]
Abstract
Two-pore domain potassium (K2P) channels are implicated in an array of physiological and pathophysiological roles. As a result of their biophysical properties, these channels produce a background leak K+ current which has a direct effect on cellular membrane potential and activity. The regulation of potassium leak from cells through K2P channels is of critical importance to cell function, development and survival. Controlling the cell surface expression of these channels is one mode to regulate their function and is achieved through a balance between regulated channel delivery to and retrieval from the cell surface. Here, we explore the modes of retrieval of K2P channels from the plasma membrane and observe that K2P channels are endocytosed in both a clathrin-mediated and clathrin-independent manner. K2P channels use a variety of pathways and show altered internalisation and sorting in response to external cues. These pathways working in concert, equip the cell with a range of approaches to maintain steady state levels of channels and to respond rapidly should changes in channel density be required.
Collapse
Affiliation(s)
- Ita O'Kelly
- Human Development and Health, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK, I.M.O'
| |
Collapse
|
35
|
DosSantos MF, Holanda-Afonso RC, Lima RL, DaSilva AF, Moura-Neto V. The role of the blood-brain barrier in the development and treatment of migraine and other pain disorders. Front Cell Neurosci 2014; 8:302. [PMID: 25339863 PMCID: PMC4189386 DOI: 10.3389/fncel.2014.00302] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022] Open
Abstract
The function of the blood-brain barrier (BBB) related to chronic pain has been explored for its classical role in regulating the transcellular and paracellular transport, thus controlling the flow of drugs that act at the central nervous system, such as opioid analgesics (e.g., morphine) and non-steroidal anti-inflammatory drugs. Nonetheless, recent studies have raised the possibility that changes in the BBB permeability might be associated with chronic pain. For instance, changes in the relative amounts of occludin isoforms, resulting in significant increases in the BBB permeability, have been demonstrated after inflammatory hyperalgesia. Furthermore, inflammatory pain produces structural changes in the P-glycoprotein, the major efflux transporter at the BBB. One possible explanation for these findings is the action of substances typically released at the site of peripheral injuries that could lead to changes in the brain endothelial permeability, including substance P, calcitonin gene-related peptide, and interleukin-1 beta. Interestingly, inflammatory pain also results in microglial activation, which potentiates the BBB damage. In fact, astrocytes and microglia play a critical role in maintaining the BBB integrity and the activation of those cells is considered a key mechanism underlying chronic pain. Despite the recent advances in the understanding of BBB function in pain development as well as its interference in the efficacy of analgesic drugs, there remain unknowns regarding the molecular mechanisms involved in this process. In this review, we explore the connection between the BBB as well as the blood-spinal cord barrier and blood-nerve barrier, and pain, focusing on cellular and molecular mechanisms of BBB permeabilization induced by inflammatory or neuropathic pain and migraine.
Collapse
Affiliation(s)
- Marcos F. DosSantos
- Universidade Federal do Rio de Janeiro – Campus MacaéRio de Janeiro, Brazil
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Rosenilde C. Holanda-Afonso
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Rodrigo L. Lima
- Departamento de Ortodontia e Odontopediatria, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Estadual do Cérebro Paulo NiemeyerRio de Janeiro, Brazil
| |
Collapse
|