1
|
Mohammadzadeh N, Chomont N, Estaquier J, Cohen EA, Power C. Is the Central Nervous System Reservoir a Hurdle for an HIV Cure? Viruses 2023; 15:2385. [PMID: 38140626 PMCID: PMC10747469 DOI: 10.3390/v15122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
There is currently no cure for HIV infection although adherence to effective antiretroviral therapy (ART) suppresses replication of the virus in blood, increases CD4+ T-cell counts, reverses immunodeficiency, and increases life expectancy. Despite these substantial advances, ART is a lifelong treatment for people with HIV (PWH) and upon cessation or interruption, the virus quickly rebounds in plasma and anatomic sites, including the central nervous system (CNS), resulting in disease progression. With recent advances in quantifying viral burden, detection of genetically intact viral genomes, and isolation of replication-competent virus from brain tissues of PWH receiving ART, it has become apparent that the CNS viral reservoir (largely comprised of macrophage type cells) poses a substantial challenge for HIV cure strategies. Other obstacles impacting the curing of HIV include ageing populations, substance use, comorbidities, limited antiretroviral drug efficacy in CNS cells, and ART-associated neurotoxicity. Herein, we review recent findings, including studies of the proviral integration sites, reservoir decay rates, and new treatment/prevention strategies in the context of the CNS, together with highlighting the next steps for investigations of the CNS as a viral reservoir.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Nicolas Chomont
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada;
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
| | - Jerome Estaquier
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Eric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- Institut de Recherches Cliniques de Montreal, Montreal, QC H2W 1R7, Canada
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
2
|
Breitinger U, Breitinger HG. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain. Mol Med 2023; 29:53. [PMID: 37069517 PMCID: PMC10111846 DOI: 10.1186/s10020-023-00647-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, 11835, Egypt
| | | |
Collapse
|
3
|
CCL2/CCR2 Contributes to the Altered Excitatory-inhibitory Synaptic Balance in the Nucleus Accumbens Shell Following Peripheral Nerve Injury-induced Neuropathic Pain. Neurosci Bull 2021; 37:921-933. [PMID: 34003466 DOI: 10.1007/s12264-021-00697-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
The medium spiny neurons (MSNs) in the nucleus accumbens (NAc) integrate excitatory and inhibitory synaptic inputs and gate motivational and emotional behavior output. Here we report that the relative intensity of excitatory and inhibitory synaptic inputs to MSNs of the NAc shell was decreased in mice with neuropathic pain induced by spinal nerve ligation (SNL). SNL increased the frequency, but not the amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs), and decreased both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in the MSNs. SNL also decreased the paired-pulse ratio (PPR) of evoked IPSCs but increased the PPR of evoked EPSCs. Moreover, acute bath application of C-C motif chemokine ligand 2 (CCL2) increased the frequency and amplitude of sIPSCs and sEPSCs in the MSNs, and especially strengthened the amplitude of N-methyl-D-aspartate receptor (NMDAR)-mediated miniature EPSCs. Further Ccl2 overexpression in the NAc in vivo decreased the peak amplitude of the sEPSC/sIPSC ratio. Finally, Ccr2 knock-down improved the impaired induction of NMDAR-dependent long-term depression (LTD) in the NAc after SNL. These results suggest that CCL2/CCR2 signaling plays a role in the integration of excitatory/inhibitory synaptic transmission and leads to an increase of the LTD induction threshold at the synapses of MSNs during neuropathic pain.
Collapse
|
4
|
Park HY, Go J, Ryu YK, Choi DH, Noh JR, An JP, Oh WK, Han PL, Lee CH, Kim KS. Humulus japonicus rescues autistic‑like behaviours in the BTBR T + Itpr3 tf/J mouse model of autism. Mol Med Rep 2021; 23:448. [PMID: 33880583 PMCID: PMC8060795 DOI: 10.3892/mmr.2021.12087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023] Open
Abstract
Humulus japonicus (HJ) is a traditional herbal medicine that exhibits anti-inflammatory, antimicrobial and anti-tumor effects that is used for the treatment of hypertension, pulmonary disease and leprosy. Recently, it has also been reported that HJ demonstrates neuroprotective properties in animal models of neurodegenerative diseases. The current study hypothesised that the administration of HJ would exhibit therapeutic effects in autism spectrum disorder (ASD), a neurodevelopmental disorder with lifelong consequences. The BTBR T+ Itpr3tf/J mouse model of ASD was used to investigate the anti-autistic like behavioural effects of HJ. Chronic oral administration of the ethanolic extract of HJ significantly increased social interaction, attenuated repetitive grooming behaviour and improved novel-object recognition in BTBR mice. Anti-inflammatory effects of HJ in the brain were analysed using immunohistochemistry and reverse-transcription quantitative PCR analysis. Microglia activation was markedly decreased in the striatum and hippocampus, and pro-inflammatory cytokines, including C-C Motif Chemokine Ligand 2, interleukin (IL)-1β and IL-6, were significantly reduced in the hippocampus following HJ treatment. Moreover, HJ treatment normalised the phosphorylation levels of: N-methyl-D-aspartate receptor subtype 2B and calcium/calmodulin-dependent protein kinase type II subunit α in the hippocampus of BTBR mice. The results of the present study demonstrated that the administration of HJ may have beneficial potential for ameliorating behavioural deficits and neuroinflammation in ASD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin-Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Hermes DJ, Yadav-Samudrala BJ, Xu C, Paniccia JE, Meeker RB, Armstrong ML, Reisdorph N, Cravatt BF, Mackie K, Lichtman AH, Ignatowska-Jankowska BM, Lysle DT, Fitting S. GPR18 drives FAAH inhibition-induced neuroprotection against HIV-1 Tat-induced neurodegeneration. Exp Neurol 2021; 341:113699. [PMID: 33736974 PMCID: PMC8984429 DOI: 10.1016/j.expneurol.2021.113699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 02/03/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is known to provoke microglial immune responses which likely play a paramount role in the development of chronic neuroinflammatory conditions and neuronal damage related to HIV-1 associated neurocognitive disorders (HAND). In particular, HIV-1 Tat protein is a proinflammatory neurotoxin which predisposes neurons to synaptodendritic injury. Drugs targeting the degradative enzymes of endogenous cannabinoids have shown promise in reducing inflammation with minimal side effects in rodent models. Considering that markers of neuroinflammation can predict the extent of neuronal injury in HAND patients, we evaluated the neurotoxic effect of HIV-1 Tat-exposed microglia following blockade of fatty acid amid hydrolyze (FAAH), a catabolic enzyme responsible for degradation of endocannabinoids, e.g. anandamide (AEA). In the present study, cultured murine microglia were incubated with Tat and/or a FAAH inhibitor (PF3845). After 24 h, cells were imaged for morphological analysis and microglial conditioned media (MCM) was collected. Frontal cortex neuron cultures (DIV 7–11) were then exposed to MCM, and neurotoxicity was assessed via live cell calcium imaging and staining of actin positive dendritic structures. Results demonstrate a strong attenuation of microglial responses to Tat by PF3845 pretreatment, which is indicated by 1) microglial changes in morphology to a less proinflammatory phenotype using fractal analysis, 2) a decrease in release of neurotoxic cytokines/chemokines (MCP-1/CCL2) and matrix metalloproteinases (MMPs; MMP-9) using ELISA/multiplex assays, and 3) enhanced production of endocannabinoids (AEA) using LC/MS/MS. Additionally, PF3845’s effects on Tat-induced microglial-mediated neurotoxicity, decreased dysregulation of neuronal intracellular calcium and prevented the loss of actin-positive staining and punctate structure in frontal cortex neuron cultures. Interestingly, these observed neuroprotective effects appeared to be independent of cannabinoid receptor activity (CB1R & CB2R). We found that a purported GPR18 antagonist, CID-85469571, blocked the neuroprotective effects of PF3845 in all experiments. Collectively, these experiments increase understanding of the role of FAAH inhibition and Tat in mediating microglial neurotoxicity in the HAND condition.
Collapse
Affiliation(s)
- Douglas J Hermes
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Changqing Xu
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jacqueline E Paniccia
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Rick B Meeker
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Michael L Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO, United States of America
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO, United States of America
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States of America
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | - Donald T Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| |
Collapse
|
6
|
Chen J, Tan L, Liao Y, Long J, Zhou Y, Wei J, Zhou Y. Chemokine CCL2 impairs spatial memory and cognition in rats via influencing inflammation, glutamate metabolism and apoptosis-associated genes expression- a potential mechanism for HIV-associated neurocognitive disorder. Life Sci 2020; 255:117828. [PMID: 32454160 DOI: 10.1016/j.lfs.2020.117828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 01/16/2023]
Abstract
AIMS To explore the role of chemokine CC motif ligand 2 (CCL2) in spatial memory and cognition impairment, and the underlying mechanisms focused on inflammatory, glutamate metabolistic and apoptotic- associated mRNA expression. MATERIALS AND METHODS Stereotaxic surgery was performed here to establish a rat model by bilateral intra-hippocampal injection of CCL2. Morris water maze (MWM) and Novel object recognition test (NORT) were used to assess the learning, memory and cognitive ability respectively. RT-PCR was used to detect the relative mRNA expression of inflammatory, glutamate metabolistic and apoptotic- associated indexes. Nissl and TUNEL staining were performed to observe the morphological changes of hippocampal CA1 zone and quantified the apoptosis of hippocampal neurons of CA1 zones respectively. KEY FINDINGS We found CCL2 injured cognitive function in rats. Six days after CCL2 injection, we revealed the following obvious mRNA expression changes: (1) increasing of the neuroinflammatory cytokines IL-1β, CXCL-10, IL-6; (2) decreasing of the glutamate transporters GLT-1 and GLAST and increasing of PAG; (3) increasing of the apoptotic genes caspase-8, caspase-3 and Bax, while decreasing the anti-apoptotic gene Bcl-2. Further, Nissl staining and TUNEL confirmed the injury of the structure of hippocampal CA1 zones and the apoptosis of hippocampal neurons. SIGNIFICANCE Our results indicated that CCL2 impaired spatial memory and cognition, the involving mechanisms may link to the up-regulation of mRNA expression of the three major pathological events: inflammation, excitotoxicity and neuronal apoptosis, which were involved in HIV-associated neurocognitive disorder (HAND). Taken together, these findings suggest a potential therapeutic strategy against CCL2.
Collapse
Affiliation(s)
- Jianmin Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Liqiu Tan
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yuanjun Liao
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Jiangyi Long
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yinjun Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Jinbin Wei
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.
| | - Yan Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.
| |
Collapse
|
7
|
Zhou YJ, Chen JM, Sapkota K, Long JY, Liao YJ, Jiang JJ, Liang BY, Wei JB, Zhou Y. Pananx notoginseng saponins attenuate CCL2-induced cognitive deficits in rats via anti-inflammation and anti-apoptosis effects that involve suppressing over-activation of NMDA receptors. Biomed Pharmacother 2020; 127:110139. [PMID: 32302948 DOI: 10.1016/j.biopha.2020.110139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are characterized by synaptic damage and neuronal loss in the brain, ultimately leading to progressive decline of cognitive abilities and memory. Chemokine CC motif ligand 2 (CCL2) is elevated in cerebrospinal fluid (CSF), and has been believed to contribute to HAND. Previous studies by our research team have shown that CCL2 enhances N-Methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) and causes nerve cell damage. However, there are few drugs currently available to treat nerve damage that is caused by CCL2. Panax notoginseng saponins (PNS) are isolated from Panax notoginseng and benefit the human body in various ways, including the neuroprotective effect. However, the protective effect of PNS on CCL2-induced neurotoxicity remains unknown. In this study, we found that PNS improved CCL2-induced learning and memory impairment, and inhibited CCL2-induced cell death. These effects may be due to inhibiting over-activation of NMDA receptors by alleviating the dysfunction of glutamate metabolism. Furthermore, PNS-modulated CCL2-inducd intracellular oxidative stress was found to attenuate cell inflammation. Additionally, PNS pretreatment evidently inhibited apoptotic pathways by reducing the Bax/BCL-2 ratio and caspase-3, 8, 9 expressions. In conclusion, this study demonstrates that PNS provides substantial neuroprotection against CCL2-induced neurotoxicity, and may be a novel therapeutic agent in CCL2-induced HAND or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Jun Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jian-Min Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, United States
| | - Jiang-Yi Long
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuan-Jun Liao
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jun-Jun Jiang
- Guangxi key laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bing-Yu Liang
- Guangxi key laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jin-Bin Wei
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yan Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
8
|
Long JY, Chen JM, Liao YJ, Zhou YJ, Liang BY, Zhou Y. Naringin provides neuroprotection in CCL2-induced cognition impairment by attenuating neuronal apoptosis in the hippocampus. Behav Brain Funct 2020; 16:4. [PMID: 32103758 PMCID: PMC7045422 DOI: 10.1186/s12993-020-00166-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/18/2020] [Indexed: 01/21/2023] Open
Abstract
Background Chemokine C–C motif ligand 2 (CCL2) is one of the most widely recognised proinflammatory chemokines in cognitive disorders. Currently, CCL2-targeting drugs are extremely limited. Thus, this study aimed to explore the neuroprotection afforded by naringin in CCL2-induced cognitive impairment in rats. Methods Before the CCL2 intra-hippocampal injection, rats were treated with naringin for 3 consecutive days via intraperitoneal injection. Two days post-surgery, the Morris water maze (MWM) and novel object recognition (NORT) tests were performed to detect spatial learning and memory and object cognition, respectively. Nissl staining and dUTP nick-end labelling (TUNEL) staining were performed to assess histopathological changes in the hippocampus. Commercial kits were used to measure the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the content of malondialdehyde (MDA). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine the relative mRNA expression of interleukin 1β, (IL-1β), interleukin 6 (IL-6), glutamate/aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), phosphate-activated glutaminase (PAG), cysteine aspartic acid-specific protease 8 (caspase-8), cysteine aspartic acid-specific protease 3 (caspase-3), cell lymphoma/leukaemia-2 (Bcl-2), and Bcl-2 associated X protein (Bax). Results In the MWM, the average escape latency and average swimming distance were significantly reduced and the crossing times were increased in the naringin-treated groups, compared with the CCL2 group. The NORT results revealed that, compared with the CCL2 rats, the discrimination index in the naringin-treated rats increased significantly. Nissl and TUNEL staining revealed that naringin protected the structure and survival of the neurons in the CA1 zone of the hippocampus. In the naringin-treated groups, the SOD and GSH-Px activities were increased, whereas the MDA levels were decreased. Furthermore, in the naringin-treated groups, the relative mRNA expression of IL-1β and IL-6 was significantly decreased; GLAST and GLT-1 mRNA expression levels were increased, whereas PAG was decreased. In the naringin-treated groups, the relative mRNA expression levels of caspase-8, caspase-3, and Bax were decreased, whereas that of Bcl-2 was increased. Conclusion Collectively, these data indicated that naringin alleviated the CCL2-induced cognitive impairment. The underlying mechanisms could be associated with the inhibition of neuroinflammation, oxidative stress, apoptosis, and the regulation of glutamate metabolism.
Collapse
Affiliation(s)
- Jiang-Yi Long
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Jian-Min Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Yuan-Jun Liao
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Yi-Jun Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Bing-Yu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guang, China
| | - Yan Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China.
| |
Collapse
|
9
|
Tanshinone IIA Alleviates CCL2-Induced Leaning memory and Cognition Impairment in Rats: A Potential Therapeutic Approach for HIV-Associated Neurocognitive Disorder. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2702175. [PMID: 32185196 PMCID: PMC7060416 DOI: 10.1155/2020/2702175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Chemokine CC motif ligand 2 (CCL2) is one of the most recognized proinflammatory chemokines, and the expression of CCL2 in the cerebrospinal fluid of patients infected with HIV-1 is significantly higher than that of healthy people. As such, it is seen as an important cause of HIV-associated neurocognitive disorder (HAND). Our previous investigation has confirmed the pathological role of CCL2 in mediating brain damage leading to cognitive dysfunction. Currently, however, research on therapeutic drugs for the central nervous system targeting CCL2 is very limited. Our present study used brain stereotactic technology to induce cognitive impairment in rats by injecting CCL2 (5 ng) into the bilateral hippocampus. To investigate the protective effect and mechanism of Tanshinone IIA (25, 50, 75 mg/kg/d) on CCL2-induced learning memory and cognitive impairment in rats, we performed the Morris water maze (MWM) and novel object recognition tests (NORT) on the rats. The results showed that Tanshinone IIA significantly alleviated CCL2-induced learning memory and cognitive dysfunction. Further studies on the hippocampal tissue of the rats revealed that Tanshinone IIA treatment significantly increased the activity of SOD and GSH-Px while the level of MDA decreased compared to the model group. Additionally, the relative expression of apoptosis-associated genes caspase-3, caspase-8, and caspase-9 and inflammation-associated genes IL-1β and IL-6 in Tanshinone IIA-treated rats was lower than that in model rats. Finally, we confirmed hippocampal neuron loss and apoptosis by Nissl staining and TdT-mediated dUTP Nick end labeling (TUNEL). Taken together, these data imply that Tanshinone IIA can ameliorate CCL2-induced learning memory and cognitive impairment by impacting oxidative stress, inflammation, and apoptosis. Tanshinone IIA may be a potential therapeutic agent for the treatment of HAND.
Collapse
|
10
|
Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, Mallon PWG, Marcello A, Van Lint C, Rohr O, Schwartz C. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front Cell Infect Microbiol 2019; 9:362. [PMID: 31709195 PMCID: PMC6821723 DOI: 10.3389/fcimb.2019.00362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.
Collapse
Affiliation(s)
- Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marco De Rovere
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Stéphane De Wit
- Division of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
11
|
Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, Mallon PWG, Marcello A, Van Lint C, Rohr O, Schwartz C. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front Cell Infect Microbiol 2019. [PMID: 31709195 DOI: 10.3389/fcimb.2019.00362/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.
Collapse
Affiliation(s)
- Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marco De Rovere
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Stéphane De Wit
- Division of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
12
|
Bray JG, Reyes KC, Roberts AJ, Gruol DL. Altered hippocampal synaptic function in transgenic mice with increased astrocyte expression of CCL2 after withdrawal from chronic alcohol. Neuropharmacology 2018; 135:113-125. [PMID: 29499275 DOI: 10.1016/j.neuropharm.2018.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/29/2022]
Abstract
CNS actions of the chemokine CCL2 are thought to play a role in a variety of conditions that can have detrimental consequences to CNS function, including alcohol use disorders. We used transgenic mice that express elevated levels of CCL2 in the CNS (CCL2-tg) and their non-transgenic (non-tg) littermate control mice to investigate long-term consequences of CCL2/alcohol/withdrawal interactions on hippocampal synaptic function, including excitatory synaptic transmission, somatic excitability, and synaptic plasticity. Two alcohol exposure paradigms were tested, a two-bottle choice alcohol (ethanol) drinking protocol (2BC drinking) and a chronic intermittent alcohol (ethanol) (CIE/2BC) protocol. Electrophysiological measurements of hippocampal function were made ex vivo, starting ∼0.6 months after termination of alcohol exposure. Both alcohol exposure/withdrawal paradigms resulted in CCL2-dependent interactions that altered the effects of alcohol on synaptic function. The synaptic alterations differed for the two alcohol exposure paradigms. The 2BC drinking/withdrawal treatment had no apparent long-term consequences on synaptic responses and long-term potentiation (LTP) in hippocampal slices from non-tg mice, whereas synaptic transmission was reduced but LTP was enhanced in hippocampal slices from CCL2-tg mice. In contrast, the CIE/2BC/withdrawal treatment enhanced synaptic transmission but reduced LTP in the non-tg hippocampus, whereas there were no apparent long-term consequences to synaptic transmission and LTP in hippocampus from CCL2-tg mice, although somatic excitability was enhanced. These results support the idea that alcohol-induced CCL2 production can modulate the effects of alcohol exposure/withdrawal on synaptic function and indicate that CCL2/alcohol interactions can vary depending on the alcohol exposure/withdrawal protocol used.
Collapse
Affiliation(s)
- Jennifer G Bray
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenneth C Reyes
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Donna L Gruol
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K. Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J Neuroinflammation 2017; 14:238. [PMID: 29202854 PMCID: PMC5715496 DOI: 10.1186/s12974-017-1015-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Background Viral encephalitis is a dangerous compromise between the need to robustly clear pathogen from the brain and the need to protect neurons from bystander injury. Theiler’s murine encephalomyelitis virus (TMEV) infection of C57Bl/6 mice is a model of viral encephalitis in which the compromise results in hippocampal damage and permanent neurological sequelae. We previously identified brain-infiltrating inflammatory monocytes as the primary driver of this hippocampal pathology, but the mechanisms involved in recruiting these cells to the brain were unclear. Methods Chemokine expression levels in the hippocampus were assessed by microarray, ELISA, RT-PCR, and immunofluorescence. Monocyte infiltration during acute TMEV infection was measured by flow cytometry. CCL2 levels were manipulated by immunodepletion and by specific removal from neurons in mice generated by crossing a line expressing the Cre recombinase behind the synapsin promoter to animals with floxed CCL2. Results Inoculation of the brain with TMEV induced hippocampal production of the proinflammatory chemokine CCL2 that peaked at 6 h postinfection, whereas inoculation with UV-inactivated TMEV did not elicit this response. Immunofluorescence revealed that hippocampal neurons expressed high levels of CCL2 at this timepoint. Genetic deletion of CCR2 and systemic immunodepletion of CCL2 abrogated or blunted the infiltration of inflammatory monocytes into the brain during acute infection. Specific genetic deletion of CCL2 from neurons reduced serum and hippocampal CCL2 levels and inhibited inflammatory monocyte infiltration into the brain. Conclusions We conclude that intracranial inoculation with infectious TMEV rapidly induces the expression of CCL2 in neurons, and this cellular source is necessary for CCR2-dependent infiltration of inflammatory monocytes into the brain during the most acute stage of encephalitis. These findings highlight a unique role for neuronal production of chemokines in the initiation of leukocytic infiltration into the infected central nervous system.
Collapse
Affiliation(s)
- Charles L Howe
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA. .,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, USA. .,Department of Neurology, Mayo Clinic, Rochester, USA. .,Department of Neuroscience, Mayo Clinic, Rochester, USA. .,Department of Immunology, Mayo Clinic, Rochester, USA. .,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, USA. .,Mayo Clinic, Guggenheim 1542C, 200 First St SW, Rochester, MN, 55905, USA.
| | - Reghann G LaFrance-Corey
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| | - Emma N Goddery
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Immunology, Mayo Clinic, Rochester, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, USA
| | - Renee K Johnson
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| | - Kanish Mirchia
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| |
Collapse
|
14
|
Bray JG, Roberts AJ, Gruol DL. Transgenic mice with increased astrocyte expression of CCL2 show altered behavioral effects of alcohol. Neuroscience 2017; 354:88-100. [PMID: 28431906 DOI: 10.1016/j.neuroscience.2017.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/10/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022]
Abstract
Emerging research provides strong evidence that activation of CNS glial cells occurs in neurological diseases and brain injury and results in elevated production of neuroimmune factors. These factors can contribute to pathophysiological processes that lead to altered CNS function. Recently, studies have also shown that both acute and chronic alcohol consumption can produce activation of CNS glial cells and the production of neuroimmune factors, particularly the chemokine ligand 2 (CCL2). The consequences of alcohol-induced increases in CCL2 levels in the CNS have yet to be fully elucidated. Our studies focus on the hypothesis that increased levels of CCL2 in the CNS produce neuroadaptive changes that modify the actions of alcohol on the CNS. We utilized behavioral testing in transgenic mice that express elevated levels of CCL2 to test this hypothesis. The increased level of CCL2 in the transgenic mice involves increased astrocyte expression. Transgenic mice and their non-transgenic littermate controls were subjected to one of two alcohol exposure paradigms, a two-bottle choice alcohol drinking procedure that does not produce alcohol dependence or a chronic intermittent alcohol procedure that produces alcohol dependence. Several behavioral tests were carried out including the Barnes maze, Y-maze, cued and contextual conditioned fear test, light-dark transfer, and forced swim test. Comparisons between alcohol naïve, non-dependent, and alcohol-dependent CCL2 transgenic and non-transgenic mice show that elevated levels of CCL2 in the CNS interact with alcohol in tests for alcohol drinking, spatial learning, and associative learning.
Collapse
Affiliation(s)
- Jennifer G Bray
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
HIV-1 Glycoprotein 120 Enhancement of N-Methyl-D-Aspartate NMDA Receptor-Mediated Excitatory Postsynaptic Currents: Implications for HIV-1-Associated Neural Injury. J Neuroimmune Pharmacol 2016; 12:314-326. [PMID: 28005232 DOI: 10.1007/s11481-016-9719-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023]
Abstract
It is widely accepted that human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein 120 (gp120) plays an important role in HIV-1-induced neural injury and pathogenesis of HIV-1-associated dementia (HAND). Multiple pathways have been proposed for gp120-induced neurotoxicity, amongst is the activation of N-Methyl-D-Aspartate receptors (NMDARs). It has been shown that gp120 causes neuronal injury or death and gp120 transgenic mice exhibit neurological similarity to that of HAND, all of which can be blocked or attenuated by NMDAR antagonists. Several lines of evidence indicate the subtype and location of activated NMDARs are key determinants of the nature of NMDAR physiology. To examine the subtype and the location of NMDARs affected by gp120, we studied gp120 on subtype NMDAR-mediated EPSCs in the CA1 region of rat hippocampal slices through "blind" whole-cell patch recordings. Our results showed bath application of gp120 increased both NR2A- and NR2B-mediated EPSCs possibly via a presynaptic mechanism, with much stronger effect on NR2B-mediated EPSCs. In contrast, gp120 failed on enhancing AMPA receptor-mediated EPSCs. Ca2+ imaging studies revealed that gp120 potentiated glutamate-induced increase of intracellular Ca2+ concentration in rat hippocampal neuronal cultures which were blocked by a NMDAR antagonist, but not by an AMPA receptor antagonist, indicating gp120 induces Ca2+ influx through NMDARs. Further investigations demonstrated that gp120 increased the EPSCs mediated by extrasynaptic NR2BRs. Taken together, these results demonstrate that gp120 interacts with both NR2A and NR2B subtypes of NMDARs with a predominant action on the extrasynaptic NR2B, implicating a role NR2B may play in HIV-1-associated neuropathology.
Collapse
|
16
|
Khodr CE, Chen L, Dave S, Al-Harthi L, Hu XT. Combined chronic blockade of hyper-active L-type calcium channels and NMDA receptors ameliorates HIV-1 associated hyper-excitability of mPFC pyramidal neurons. Neurobiol Dis 2016; 94:85-94. [PMID: 27326669 PMCID: PMC4983475 DOI: 10.1016/j.nbd.2016.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/04/2016] [Accepted: 06/16/2016] [Indexed: 01/09/2023] Open
Abstract
Human Immunodeficiency Virus type 1 (HIV-1) infection induces neurological and neuropsychological deficits, which are associated with dysregulation of the medial prefrontal cortex (mPFC) and other vulnerable brain regions. We evaluated the impact of HIV infection in the mPFC and the therapeutic potential of targeting over-active voltage-gated L-type Ca(2+) channels (L-channel) and NMDA receptors (NMDAR), as modeled in HIV-1 transgenic (Tg) rats. Whole-cell patch-clamp recording was used to assess the membrane properties and voltage-sensitive Ca(2+) potentials (Ca(2+) influx) in mPFC pyramidal neurons. Neurons from HIV-1 Tg rats displayed reduced rheobase, spike amplitude and inwardly-rectifying K(+) influx, increased numbers of action potentials, and a trend of aberrant firing compared to those from non-Tg control rats. Neuronal hyper-excitation was associated with abnormally-enhanced Ca(2+) influx (independent of NMDAR), which was eliminated by acute L-channel blockade. Combined chronic blockade of over-active L-channels and NMDARs with open-channel blockers abolished HIV effects on spiking, aberrant firing and Ca(2+) potential half-amplitude duration, though not the reduced inward rectification. In contrast, individual chronic blockade of over-active L-channels or NMDARs did not alleviate HIV-induced mPFC hyper-excitability. These studies demonstrate that HIV alters mPFC neuronal activity by dysregulating membrane excitability and Ca(2+) influx through the L-channels. This renders these neurons more susceptible and vulnerable to excitatory stimuli, and could contribute to HIV-associated neuropathogenesis. Combined targeting of over-active L-channels/NMDARs alleviates HIV-induced dysfunction of mPFC pyramidal neurons, emphasizing a potential novel therapeutic strategy that may effectively decrease HIV-induced Ca(2+) dysregulation in the mPFC.
Collapse
Affiliation(s)
- Christina E Khodr
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Lihua Chen
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Sonya Dave
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Lena Al-Harthi
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Xiu-Ti Hu
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
17
|
Impact of Increased Astrocyte Expression of IL-6, CCL2 or CXCL10 in Transgenic Mice on Hippocampal Synaptic Function. Brain Sci 2016; 6:brainsci6020019. [PMID: 27322336 PMCID: PMC4931496 DOI: 10.3390/brainsci6020019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
An important aspect of CNS disease and injury is the elevated expression of neuroimmune factors. These factors are thought to contribute to processes ranging from recovery and repair to pathology. The complexity of the CNS and the multitude of neuroimmune factors that are expressed in the CNS during disease and injury is a challenge to an understanding of the consequences of the elevated expression relative to CNS function. One approach to address this issue is the use of transgenic mice that express elevated levels of a specific neuroimmune factor in the CNS by a cell type that normally produces it. This approach can provide basic information about the actions of specific neuroimmune factors and can contribute to an understanding of more complex conditions when multiple neuroimmune factors are expressed. This review summarizes studies using transgenic mice that express elevated levels of IL-6, CCL2 or CXCL10 through increased astrocyte expression. The studies focus on the effects of these neuroimmune factors on synaptic function at the Schaffer collateral to CA1 pyramidal neuron synapse of the hippocampus, a brain region that plays a key role in cognitive function.
Collapse
|