3
|
Wang J, Deng B, Liu J, Liu Q, Guo Y, Yang Z, Fang C, Lu L, Chen Z, Xian S, Wang L, Huang Y. Xinyang Tablet inhibits MLK3-mediated pyroptosis to attenuate inflammation and cardiac dysfunction in pressure overload. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114078. [PMID: 33798659 DOI: 10.1016/j.jep.2021.114078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinyang tablet (XYT) has been traditionally used in the treatment of cardiovascular diseases (CVDs). Our previous study indicated that XYT exhibited protective effects in heart failure (HF). AIM OF THE STUDY The aim of the present study was to determine the protective effects of XYT in pressure overload induced HF and to elucidate its underlying mechanisms of action. MATERIALS AND METHODS We analyzed XYT content using high-performance liquid chromatography (HPLC.). Mice were subjected to transverse aortic constriction (TAC) to generate pressure overload-induced cardiac remodeling and were then orally administered XYT or URMC-099 for 1 week after the operation. HL1 mouse cardiomyoblasts were induced by lipopolysaccharides (LPS) to trigger pyroptosis and were then treated with XYT or URMC-099. We used echocardiography (ECG), hematoxylin and eosin (H&E) staining, Masson's trichrome staining and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay to evaluate the effects of XYT. Messenger ribonucleic acid (mRNA) levels of collagen metabolism biomarkers and inflammation-related factors were detected. We determined protein levels of inflammation- and pyroptosis-related signaling pathway members via Western blot (WB). Caspase-1 activity was measured in cell lysate using a Caspase-1 Activity Assay Kit. Subsequently, to define the candidate ingredients in XYT that regulate mixed-lineage kinase-3 (MLK3), we used molecular docking (MD) to predict and evaluate binding affinity with MLK3. Finally, we screened 24 active potential compounds that regulate MLK3 via MD. RESULTS ECG, H&E staining, Masson's trichrome staining and TUNEL assay results showed that XYT remarkably improved heart function, amelorated myocardial fibrosis and inhibited apoptosis in vivo. Moreover, it reduced expression of proteins or mRNAs related to collagen metabolism, including collagen type 1 (COL1), fibronectin (FN), alpha smooth-muscle actin (α-SMA), and matrix metalloproteinases-2 and -9 (MMP-2, MMP-9). XYT also inhibited inflammation and the induction of pyroptosis at an early stage, as well as attenuated inflammation and pyroptosis levels in vitro. CONCLUSION Our data indicated that XYT exerted protective effects against pressure overload induced myocardial fibrosis (MF), which might be associated with the induction of pyroptosis-mediated MLK3 signaling.
Collapse
Affiliation(s)
- Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Bo Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yining Guo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chongkai Fang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
4
|
Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J, Chen Z, Yan C, Yang Z, Xian S, Wang L. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis 2020; 11:574. [PMID: 32710001 PMCID: PMC7382480 DOI: 10.1038/s41419-020-02777-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Chronic heart failure (CHF) is the final outcome of many cardiovascular diseases, and is a severe health issue faced by the elderly population. Mixed lineage kinase 3 (MLK3), a member of MAP3K family, is associated with aging, inflammation, oxidative stress, and related diseases, such as CHF. MLK3 has also been reported to play an important role in protecting against cardiomyocyte injury; however, its function in myocardial fibrosis is unknown. To investigate the role of MLK3 in myocardial fibrosis, we inhibited the expression of MLK3, and examined cardiac function and remodeling in TAC mice. In addition, we assessed the expression of MLK3 protein in ventricular cells and its downstream associated protein. We found that MLK3 mainly regulates NF-κB/NLRP3 signaling pathway-mediated inflammation and that pyroptosis causes myocardial fibrosis in the early stages of CHF. Similarly, MLK3 mainly regulates the JNK/p53 signaling pathway-mediated oxidative stress and that ferroptosis causes myocardial fibrosis in the advanced stages of CHF. We also found that promoting the expression of miR-351 can inhibit the expression of MLK3, and significantly improve cardiac function in mice subjected to TAC. These results suggest the pyroptosis and ferroptosis induced by MLK3 signaling in cardiomyocytes are essential for adverse myocardial fibrosis, in response to pressure overload. Furthermore, miR-351, which has a protective effect on ventricular remodeling in heart failure caused by pressure overload, may be a key target for the regulation of MLK3.
Collapse
Affiliation(s)
- Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Weitao Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zheng Zhou
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lu Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Birong Liang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiaqi He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Cui Yan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China.
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China.
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China.
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|