1
|
Huang T, Fakurazi S, Cheah PS, Ling KH. Chromosomal and cellular therapeutic approaches for Down syndrome: A research update. Biochem Biophys Res Commun 2024; 735:150664. [PMID: 39260337 DOI: 10.1016/j.bbrc.2024.150664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
In individuals with Down syndrome (DS), an additional HSA21 chromosome copy leads to the overexpression of a myriad of HSA21 genes, disrupting the transcription of the entire genome. This dysregulation in transcription and post-transcriptional modifications contributes to abnormal phenotypes across nearly all tissues and organs in DS individuals. The array of severe clinical symptoms associated with trisomy 21 poses a considerable challenge in the quest for a cure for DS. Fortunately, a wealth of research suggests that chromosome therapy, hinging on cutting-edge genome editing technologies, can potentially eliminate the extra copy of the human chromosome 21. Genome editing tools have demonstrated their efficacy in restoring trisomy to a normal diploid state in vitro DS cell models. Furthermore, we delve into the noteworthy findings in cellular therapy for DS, with recent studies showcasing the increasing feasibility of strategies involving stem cells and CAR T-cells to address corresponding clinical phenotypes.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Han T, Xu Y, Sun L, Hashimoto M, Wei J. Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases. Neural Regen Res 2024; 19:1241-1248. [PMID: 37905870 PMCID: PMC11467914 DOI: 10.4103/1673-5374.385845] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging; they have a great impact on the aging process and are the main risk factors for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases. This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and Parkinson's disease. This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lin Sun
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, China
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
3
|
Soni N, Kar I, Narendrasinh JD, Shah SK, Konathala L, Mohamed N, Kachhadia MP, Chaudhary MH, Dave VA, Kumar L, Ahmadi L, Golla V. Role and application of CRISPR-Cas9 in the management of Alzheimer's disease. Ann Med Surg (Lond) 2024; 86:1517-1521. [PMID: 38463115 PMCID: PMC10923336 DOI: 10.1097/ms9.0000000000001692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/28/2023] [Indexed: 03/12/2024] Open
Abstract
Alzheimer's disease (AD) is a serious health issue that has a significant social and economic impact worldwide. One of the key aetiological signs of the disease is a gradual reduction in cognitive function and irreversible neuronal death. According to a 2019 global report, more than 5.8 million people in the United States (USA) alone have received an AD diagnosis, with 45% of those people falling into the 75-84 years age range. According to the predictions, there will be 15 million affected people in the USA by 2050 due to the disease's steadily rising patient population. Cognitive function and memory formation steadily decline as a result of an irreversible neuron loss in AD, a chronic neurodegenerative illness. Amyloid-beta and phosphorylated Tau are produced and accumulate in large amounts, and glial cells are overactive. Additionally, weakened neurotrophin signalling and decreased synapse function are crucial aspects of AD. Memory loss, apathy, depression, and irritability are among the primary symptoms. The aetiology, pathophysiology, and causes of both cognitive decline and synaptic dysfunction are poorly understood despite extensive investigation. CRISPR/Cas9 is a promising gene-editing technique since it can fix certain gene sequences and has a lot of potential for treating AD and other human disorders. Regardless of hereditary considerations, an altered Aβ metabolism is frequently seen in familial and sporadic AD. Therefore, since mutations in the PSEN-1, PSEN-2 and APP genes are a contributing factor to familial AD, CRISPR/Cas9 technology could address excessive Aβ production or mutations in these genes. Overall, the potential of CRISPR-Cas9 technology outweighs it as currently the greatest gene-editing tool available for researching neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Nilay Soni
- Department of General Medicine, M. P. Shah medical college, Jamnagar
| | - Indrani Kar
- Department of General Medicine, Lady Hardinge Medical College, University of Delhi
| | | | - Sanjay Kumar Shah
- Department of General Medicine, Janaki Medical College, Janakpur, Nepal
| | - Lohini Konathala
- Dr NTR University of Health Sciecnes, Vijayawada, Andhra Pradesh, India
| | - Nadine Mohamed
- Department of General Medicine, Southern Illinois University, Memorial of Carbondale Hospital, IL
| | | | | | - Vyapti A. Dave
- Department of General Medicine, Gujarat Medical Education and Research Society, GMERS Valsad, Gujarat
| | - Lakshya Kumar
- Department of General Medicine, Pandit Deendayal Upadhyay Medical College, Rajkot
| | - Leeda Ahmadi
- Department of General Medicine, Lady Hardinge medical College, New Delhi
| | - Varshitha Golla
- Department of General Medicine, International School of Medicine (ISM), Bishkek, Kyrgyzstan
| |
Collapse
|
4
|
Boespflug-Tanguy O, Sevin C, Piguet F. Gene therapy for neurodegenerative disorders in children: dreams and realities. Arch Pediatr 2023; 30:8S32-8S40. [PMID: 38043981 DOI: 10.1016/s0929-693x(23)00225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy encompasses the administration of biological medicinal products containing recombinant nucleic acids, mainly DNA, with the aim of treating or curing diseases. This represents a unique therapeutic strategy to reach the brain, in order to prevent or halt a neurodegenerative process. During the past decade, active multidisciplinary research has started to solve many issues for gene therapy in neurodegenerative disorders in terms of vectors, modes of administration, and expression of the therapeutic DNA. The engineering of hematopoietic stem cells (HSC) with lentivirus vectors for ex vivo gene therapy has demonstrated efficiency in reaching the brain through their transformation into microglial/macrophages cells with a long-term gene expression of the therapeutic vector as an alternative to autologous HSC transplants. Two drugs based on this strategy have been approved to date. The first is for metachromatic leukodystrophy (MLD), a severe lysosomal storage disease, and provides high levels of the deficient enzyme; the second one is for cerebral forms of X-linked adrenoleukodystrophy (X-ALD), and works by halting the neuroinflammation process. However, due to the long-lasting effect of the procedure, the therapy is applicable only to pre- or pauci/oligo-symptomatic patients. In vivo gene therapy via direct injection into the brain or the cerebrospinal fluid, but also by intravenous injection, represents a more efficient approach; however, many challenges remain to be solved despite the approval of two drugs: one for the early infantile form of spinal muscular atrophy (SMA), in which the gene product injected intravenously is able to prevent spinal motoneuron neurodegeneration. The second one, for aromatic L-amino acid decarboxylase (AADC) deficiency, provides the defective enzyme to the basal ganglia via intraparenchymal injection. The production of vectors able to reach the brain target cells with a sufficiently high expression remains a major bottleneck. In parallel, efforts must continue in order to better define (i) the natural history and clinical outcomes of many neurodegenerative disorders with childhood onset, and (ii) the mechanisms involved in the neurodegenerative process. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Odile Boespflug-Tanguy
- APHP, Service de Neuropediatrie, Hôpital Robert Debré, Paris, France; Université Paris Cité, INSERM UMR 1141, Hôpital Robert Debré, Paris France.
| | - Caroline Sevin
- APHP, Service de Neuropediatrie, Hôpital du Kremlin Bicêtre, Paris, France; GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Francoise Piguet
- GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| |
Collapse
|
5
|
Tunde Aborode A, Jesutofunmi Idowu N, Tundealao S, Jaiyeola J, Constance Chinyere E, Charles Ogunleye S, Olorunshola M, Adedayo Emmanuel O. Integrative Precision Medicine for Dementia and Alzheimer's Diseases in Africa. AGING BRAIN 2023; 4:100095. [PMID: 38098965 PMCID: PMC10719563 DOI: 10.1016/j.nbas.2023.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
| | | | - Samuel Tundealao
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseph Jaiyeola
- Department of Demography, College for Health, Community and Policy, University of Texas at San Antonio
| | | | - Seto Charles Ogunleye
- Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, 39760, MS, USA
| | - Mercy Olorunshola
- Department of Biological Sciences, State University of New York at Binghamton, NewYork, USA
| | - Ogunware Adedayo Emmanuel
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, USA
| |
Collapse
|
6
|
De Plano LM, Calabrese G, Conoci S, Guglielmino SPP, Oddo S, Caccamo A. Applications of CRISPR-Cas9 in Alzheimer's Disease and Related Disorders. Int J Mol Sci 2022; 23:ijms23158714. [PMID: 35955847 PMCID: PMC9368966 DOI: 10.3390/ijms23158714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease represent some of the most prevalent neurodegenerative disorders afflicting millions of people worldwide. Unfortunately, there is a lack of efficacious treatments to cure or stop the progression of these disorders. While the causes of such a lack of therapies can be attributed to various reasons, the disappointing results of recent clinical trials suggest the need for novel and innovative approaches. Since its discovery, there has been a growing excitement around the potential for CRISPR-Cas9 mediated gene editing to identify novel mechanistic insights into disease pathogenesis and to mediate accurate gene therapy. To this end, the literature is rich with experiments aimed at generating novel models of these disorders and offering proof-of-concept studies in preclinical animal models validating the great potential and versatility of this gene-editing system. In this review, we provide an overview of how the CRISPR-Cas9 systems have been used in these neurodegenerative disorders.
Collapse
Affiliation(s)
- Laura M. De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Salvatore P. P. Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Antonella Caccamo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
7
|
Cheng A, Harikrishna JA, Redwood CS, Lit LC, Nath SK, Chua KH. Genetics Matters: Voyaging from the Past into the Future of Humanity and Sustainability. Int J Mol Sci 2022; 23:ijms23073976. [PMID: 35409335 PMCID: PMC8999725 DOI: 10.3390/ijms23073976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
The understanding of how genetic information may be inherited through generations was established by Gregor Mendel in the 1860s when he developed the fundamental principles of inheritance. The science of genetics, however, began to flourish only during the mid-1940s when DNA was identified as the carrier of genetic information. The world has since then witnessed rapid development of genetic technologies, with the latest being genome-editing tools, which have revolutionized fields from medicine to agriculture. This review walks through the historical timeline of genetics research and deliberates how this discipline might furnish a sustainable future for humanity.
Collapse
Affiliation(s)
- Acga Cheng
- Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (J.A.H.)
| | - Jennifer Ann Harikrishna
- Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Charles S. Redwood
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Swapan K. Nath
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Correspondence: (S.K.N.); (K.H.C.)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.K.N.); (K.H.C.)
| |
Collapse
|
8
|
Stepanichev MY. Using Genome Editing for Alzheimer’s Disease Therapy: from Experiment to Clinic. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Zhang S, Chen L, Zhang Y, Fang D. Alleviation of neurological disease by RNA editing. Methods 2021; 194:94-99. [PMID: 33933604 DOI: 10.1016/j.ymeth.2021.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The development of CRISPR/Cas genome editing tools has revolutionized the life sciences by providing transformative applications in many biological fields, including the field of neurological disorders. Compared with previous CRISPR-Cas systems targeting DNA, a new field of RNA editing using CRISPR-Cas13 systems is gaining immense popularity. CRISPR-Cas13 is a robust, precise, versatile and safe RNA guided RNA-targeting system, which uniquely targets single-strand RNA. Recently, RNA-targeted gene editing tools have been refined by the introduction of an AAV (adeno-associated virus)-based CRISPR-Cas13 system for in vivo therapeutic cell fate conversion, which has been used to treat animal models of Parkinson's disease. This flavor of gene editing showed promising effects on glia-to-neuron conversion in both intact and damaged mature retinas in a mouse model. Herein, we summarize the CRISPR-Cas13 system and its potential for applications in neurological diseases, focusing on the method of applying the AAV-mediated CRISPR-Cas13 system to the conversion of glia-to-neuron.
Collapse
Affiliation(s)
- Shaochong Zhang
- Shenzhen Eye Hospital affiliated to Jinan University, Shenzhen, PR China
| | - Lu Chen
- Shenzhen Eye Hospital affiliated to Jinan University, Shenzhen, PR China
| | - Yining Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, PR China
| | - Dong Fang
- Shenzhen Eye Hospital affiliated to Jinan University, Shenzhen, PR China.
| |
Collapse
|
10
|
Cheung NYC, Fung JLF, Ng YNC, Wong WHS, Chung CCY, Mak CCY, Chung BHY. Perception of personalized medicine, pharmacogenomics, and genetic testing among undergraduates in Hong Kong. Hum Genomics 2021; 15:54. [PMID: 34407885 PMCID: PMC8371796 DOI: 10.1186/s40246-021-00353-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The global development and advancement of genomic medicine in the recent decade has accelerated the implementation of personalized medicine (PM) and pharmacogenomics (PGx) into clinical practice, while catalyzing the emergence of genetic testing (GT) with relevant ethical, legal, and social implications (ELSI). RESULTS The perception of university undergraduates with regards to PM and PGx was investigated, and 80% of undergraduates valued PM as a promising healthcare model with 66% indicating awareness of personal genome testing companies. When asked about the curriculum design towards PM and PGx, compared to undergraduates in non-medically related curriculum, those studying in medically related curriculum had an adjusted 7.2 odds of perceiving that their curriculum was well-designed for learning PGx (95% CI 3.6-14.6) and a 3.7 odds of perceiving that PGx was important in their study (95% CI 2.0-6.8). Despite this, only 16% of medically related curriculum undergraduates would consider embarking on future education on PM. When asked about their perceptions on GT, 60% rated their genetic knowledge as "School Biology" level or below while 76% would consider undergoing a genetic test. As for ELSI, 75% of undergraduates perceived that they were aware of ethical issues of GT in general, particularly on "Patient Privacy" (80%) and "Data Confidentiality" (68%). Undergraduates were also asked about their perceived reaction upon receiving an unfavorable result from GT, and over half of the participants perceived that they would feel "helpless or pessimistic" (56%), "inadequate or different" (59%), and "disadvantaged at job seeking" (59%), while older undergraduates had an adjusted 2.0 odds of holding the latter opinion (95% CI 1.1-3.5), compared to younger undergraduates. CONCLUSION Hong Kong undergraduates showed a high awareness of PM but insufficient genetic knowledge and low interest in pursuing a career towards PM. They were generally aware of ethical issues of GT and especially concerned about patient privacy and data confidentiality. There was a predominance of pessimistic views towards unfavorable testing results. This study calls for the attention to evaluate education and talent development on genomics, and update existing legal frameworks on genetic testing in Hong Kong.
Collapse
Affiliation(s)
- Nicholas Yan Chai Cheung
- Bachelor of Medicine and Bachelor of Surgery Program, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Jasmine Lee Fong Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Yvette Nga Chung Ng
- Bachelor of Medicine and Bachelor of Surgery Program, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Wilfred Hing Sang Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Claudia Ching Yan Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
| | - Christopher Chun Yu Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
| | - Brian Hon Yin Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, SAR, China.
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, China.
| |
Collapse
|
11
|
Salman MM, Al-Obaidi Z, Kitchen P, Loreto A, Bill RM, Wade-Martins R. Advances in Applying Computer-Aided Drug Design for Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4688. [PMID: 33925236 PMCID: PMC8124449 DOI: 10.3390/ijms22094688] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are incurable and affect millions of people worldwide. The development of treatments for this unmet clinical need is a major global research challenge. Computer-aided drug design (CADD) methods minimize the huge number of ligands that could be screened in biological assays, reducing the cost, time, and effort required to develop new drugs. In this review, we provide an introduction to CADD and examine the progress in applying CADD and other molecular docking studies to NDs. We provide an updated overview of potential therapeutic targets for various NDs and discuss some of the advantages and disadvantages of these tools.
Collapse
Affiliation(s)
- Mootaz M. Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Zaid Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf 54001, Iraq;
- Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala 56001, Iraq
| | - Philip Kitchen
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (P.K.); (R.M.B.)
| | - Andrea Loreto
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Roslyn M. Bill
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (P.K.); (R.M.B.)
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
12
|
Gumusgoz E, Guisso DR, Kasiri S, Wu J, Dear M, Verhalen B, Nitschke S, Mitra S, Nitschke F, Minassian BA. Targeting Gys1 with AAV-SaCas9 Decreases Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics 2021; 18:1414-1425. [PMID: 33830476 PMCID: PMC8423949 DOI: 10.1007/s13311-021-01040-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Many adult and most childhood neurological diseases have a genetic basis. CRISPR/Cas9 biotechnology holds great promise in neurological therapy, pending the clearance of major delivery, efficiency, and specificity hurdles. We applied CRISPR/Cas9 genome editing in its simplest modality, namely inducing gene sequence disruption, to one adult and one pediatric disease. Adult polyglucosan body disease is a neurodegenerative disease resembling amyotrophic lateral sclerosis. Lafora disease is a severe late childhood onset progressive myoclonus epilepsy. The pathogenic insult in both is formation in the brain of glycogen with overlong branches, which precipitates and accumulates into polyglucosan bodies that drive neuroinflammation and neurodegeneration. We packaged Staphylococcus aureus Cas9 and a guide RNA targeting the glycogen synthase gene, Gys1, responsible for brain glycogen branch elongation in AAV9 virus, which we delivered by neonatal intracerebroventricular injection to one mouse model of adult polyglucosan body disease and two mouse models of Lafora disease. This resulted, in all three models, in editing of approximately 17% of Gys1 alleles and a similar extent of reduction of Gys1 mRNA across the brain. The latter led to approximately 50% reductions of GYS1 protein, abnormal glycogen accumulation, and polyglucosan bodies, as well as ameliorations of neuroinflammatory markers in all three models. Our work represents proof of principle for virally delivered CRISPR/Cas9 neurotherapeutics in an adult-onset (adult polyglucosan body) and a childhood-onset (Lafora) neurological diseases.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dikran R Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Brandy Verhalen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Present address: Corteva Agriscience, IA, 50131, Johnston, USA
| | - Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
13
|
Kasteel EEJ, Westerink RHS. Refining in vitro and in silico neurotoxicity approaches by accounting for interspecies and interindividual differences in toxicodynamics. Expert Opin Drug Metab Toxicol 2021; 17:1007-1017. [PMID: 33586568 DOI: 10.1080/17425255.2021.1885647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The process of chemical risk assessment traditionally relies on animal experiments and associated default uncertainty factors to account for interspecies and interindividual differences. To work toward a more precise and personalized risk assessment, these uncertainty factors should be refined and replaced by chemical-specific adjustment factors (CSAFs). AREAS COVERED This concise review discusses alternative (in vitro/in silico) approaches that can be used to assess interspecies and interindividual differences in toxicodynamics, ranging from targeted to more integrated approaches. Although data are available on interspecies differences, the increasing use of human-induced pluripotent stem cell (hiPSC)-derived neurons may provide opportunities to also assess interindividual variability in neurotoxicity. More integrated approaches, like adverse outcome pathways (AOPs) can provide a more quantitative understanding of the toxicodynamics of a chemical. EXPERT OPINION To improve chemical risk assessment, refinement of uncertainty factors is crucial. In vitro and in silico models can facilitate the development of CSAFs, but still these models cannot always capture the complexity of the in vivo situation, thereby potentially hampering regulatory acceptance. The combined use of more integrated approaches, like AOPs and physiologically based kinetic models, can aid in structuring data and increasing suitability of alternative approaches for regulatory purposes.
Collapse
Affiliation(s)
- Emma E J Kasteel
- Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Remco H S Westerink
- Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Xicoy H, Vila M, Laguna A. Systems Medicine in Parkinson׳s Disease: Joining Efforts to Change History. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
15
|
Stepanichev M. Gene Editing and Alzheimer's Disease: Is There Light at the End of the Tunnel? Front Genome Ed 2020; 2:4. [PMID: 34713213 PMCID: PMC8525398 DOI: 10.3389/fgeed.2020.00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease continues to be a fatal, incurable neurodegenerative disease, despite many years of efforts to find approaches to its treatment. Here we review recent studies on Alzheimer's disease as a target for gene therapy and specifically, gene editing technology. We also review the opportunities and limitations of modern methods of gene therapy based on the CRISPR editing system. The opportunities of using this approach for modeling, including cellular and animal models, studying on pathogenesis and disease correction mechanisms, as well as limitations for its therapeutic use are discussed.
Collapse
Affiliation(s)
- Mikhail Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Sahoo N, Cuello V, Udawant S, Litif C, Mustard JA, Keniry M. CRISPR-Cas9 Genome Editing in Human Cell Lines with Donor Vector Made by Gibson Assembly. Methods Mol Biol 2020; 2115:365-383. [PMID: 32006411 PMCID: PMC7391466 DOI: 10.1007/978-1-0716-0290-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
CRISPR Cas9 genome editing allows researchers to modify genes in a multitude of ways including to obtain deletions, epitope-tagged loci, and knock-in mutations. Within 6 years of its initial application, CRISPR-Cas9 genome editing has been widely employed, but disadvantages to this method, such as low modification efficiencies and off-target effects, need careful consideration. Obtaining custom donor vectors can also be expensive and time-consuming. This chapter details strategies to overcome barriers to CRISPR-Cas9 genome editing as well as recent developments in employing this technique.
Collapse
Affiliation(s)
- Nirakar Sahoo
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Victoria Cuello
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Shreya Udawant
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Carl Litif
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Julie A Mustard
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Megan Keniry
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA.
| |
Collapse
|
17
|
Ramaswamy SB, Bhagavan SM, Kaur H, Giler GE, Kempuraj D, Thangavel R, Ahmed ME, Selvakumar GP, Raikwar SP, Zaheer S, Iyer SS, Govindarajan R, Zaheer A. Glia Maturation Factor in the Pathogenesis of Alzheimer's disease. OPEN ACCESS JOURNAL OF NEUROLOGY & NEUROSURGERY 2019; 12:79-82. [PMID: 32775957 PMCID: PMC7413177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative and neuroinflammatory disease characterized by the presence of extracellular amyloid plaques (APs) and intracellular neurofibrillary tangles (NFTs) in the brain. There is no disease modifying therapeutic options currently available for this disease. Hippocampus, entorhinal cortex (Broadmann area 28), perirhinal cortex (Broadmann area 35) and insular cortices are areas within the brain that are first ones to be severely affected in AD. Neuroinflammation is an important factor that induces neurodegeneration in AD. Glia maturation factor (GMF), a proinflammatory factor plays a crucial role in AD through activation of microglia and astrocytes to release proinflammatory mediators in the brain. Through immunohistochemical studies, we have previously shown that GMF is highly expressed in the vicinity of APs and NFTs in AD brains. Glial fibrillary acidic protein (GFAP), reactive astrocytes, ionized calcium binding adaptor molecule-1 (Iba-1) labelled activated microglia and GMF immunoreactive glial cells are increased in the entorhinal cortical layers especially at the sites of APs and Tau containing NFTs indicating a role for GMF. Overexpression of GMF in glial cells leads to neuroinflammation and neurodegeneration. Inhibition of GMF expression reduces neurodegeneration. Therefore, we suggest that GMF is a novel therapeutic target not only for AD but also for various other neurodegenerative diseases.
Collapse
Affiliation(s)
- Swathi Beladakere Ramaswamy
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Sachin M Bhagavan
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Harleen Kaur
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Gema E Giler
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Sudhanshu P. Raikwar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar S Iyer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Raghav Govindarajan
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| |
Collapse
|
18
|
Pahan K. A Broad Application of CRISPR Cas9 in Infectious, Inflammatory and Neurodegenerative Diseases. J Neuroimmune Pharmacol 2019; 14:534-536. [PMID: 31782056 DOI: 10.1007/s11481-019-09889-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Being the most important immune-responsive cell type of the CNS, microglia always glorify the so-called crossroad of Neurology, Immunology and Pharmacology. As microglial activation is a hallmark of different neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), HIV-associated neurocognitive disorders (HAND), Amyotrophic lateral sclerosis (ALS), etc., selective targeting of microglial cell signaling may be a valid option to control these neurodegenerative disorders with lesser side effects. This is particularly important as no effective therapies are available against these diseases and available neuroimmune modulators are known to target multiple cell types in a non-cell-specific manner. How we can achieve such specificity? A newly-developed cutting-edge molecular biology tool is rocking biomedical research in recent years so much so that it has already come under major lawsuits between the University of California Berkeley and the MIT-Harvard Broad Institute regarding its ownership rights, probably halting the Nobel committee to announce the most coveted prize to its owners. It is none other than Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). In nutshell, the Cas9 enzyme has been paired with the bacterial immune system, CRISPR, to ultimately turn CRISPR/Cas9 as an effective genome editor. Therefore, this special issue has been devoted to highlight some of the recent discoveries on CRISPR/Cas9 in neurodegenerative disorders and explain these discoveries in the light of neuroimmune pharmacology.
Collapse
Affiliation(s)
- Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave, Chicago, IL 60612, USA.
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite Cohn 310, Chicago, IL, 60612, USA.
| |
Collapse
|