1
|
Shen Y, Fang C, Huang X, Zhang J, Zhu J, Zhu K, You Y, Yang D. Chitosan-zein-icariin complexes modulate double emulsion phase transitions to potentiate absorption efficiency. Int J Biol Macromol 2025; 287:138516. [PMID: 39647726 DOI: 10.1016/j.ijbiomac.2024.138516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
This study developed a chitosan-zein-icariin ternary complex through reversed-phase precipitation to stabilize double emulsions using one-step emulsification method. Results indicated that icariin and chitosan-zein formed spherical microstructures via the rearrangement of hydrogen bonding networks and hydrophobic interactions. All complexes exhibited pale-yellow color and demonstrated single and uniform size distribution. The thermal stability and interfacial contact angle of the complexes significantly decreased with the incorporation of icariin. The prepared double emulsion microstructures displayed multi-chambered configurations due to polarity differences, solidifying during cold storage as a result of phase shifts in coconut oil, which led to an increased storage modulus. While the double emulsion microstructure showed enhanced storage stability, droplet size increased markedly when subjected to NaCl and temperature variations. Following in-vitro digestion, the double emulsion microstructure disintegrated; average particle size decreased, resulting in the release of icariin from the ternary complex during intestinal phases, thereby enhancing bioaccessibility. Furthermore, it was observed that icariin within the ternary complex influenced absorption efficacy based on its concentration levels, as evidenced by Caco-2 cell studies, though this effect was greater than that observed for the zein-icariin binary complex. The results of this study provide a theoretical foundation for efficient delivery systems involving hydrophobic multivariate complexes.
Collapse
Affiliation(s)
- Yifeng Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaopeng Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Jingyi Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Junlong Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Kun Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Yaodong You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| |
Collapse
|
2
|
Alouk I, Lv W, Chen W, Miao S, Chen C, Wang Y, Xu D. Encapsulation of Monascus pigments in gel in oil in water (G/O/W) double emulsion system based on sodium caseinate and guar gum. Int J Biol Macromol 2024; 285:138232. [PMID: 39626818 DOI: 10.1016/j.ijbiomac.2024.138232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
In this study, a gel in oil in water (G/O/W) double emulsion system was developed with the objective of effectively encapsulating Monascus pigments and enhancing its stability. To this end, various formulations were prepared using guar gum co-dissolved with Monascus pigments in the internal phase and sodium caseinate as an outer phase surfactant. Different parameters were examined, including emulsion stability, encapsulation efficiency, rheological and tribological properties, as well as the light and thermal stability of the encapsulated Monascus pigments. The results demonstrated that Monascus pigments were effectively encapsulated in the G/O/W, with an encapsulation efficiency exceeding 90 %. The formulated system exhibited a relatively small particle size, which decreased with increasing guar gum and the external emulsifier contents. This resulted in an increase in viscosity accompanied by the formation of a gel-like structure and improved tribological properties, thereby enhancing the system's stability. The system with 1-1.25 % guar gum and 2.5 % sodium caseinate exhibited the highest stability for Monascus pigments, making them more resistant to heat and light. These findings have the potential to expand applications of Monascus pigments by providing a stable and effective encapsulation and delivery system that can also be utilized in the development of healthier food products.
Collapse
Affiliation(s)
- Ikram Alouk
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenwen Lv
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
| | - Chao Chen
- Tianmeijian Biotechnology (Beijing) Co. Ltd, Beijing 100101, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
3
|
Wang Z, Ye R, Xu Z, Zhang S, Liu C, Zhu K, Wang P, Huang J. Protective Effect of IgY Embedded in W/O/W Emulsion on LPS Enteritis-Induced Colonic Injury in Mice. Nutrients 2024; 16:3361. [PMID: 39408328 PMCID: PMC11479051 DOI: 10.3390/nu16193361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Chicken yolk immunoglobulin (IgY), an immunologically active component, is used as an alternative to antibiotics for the treatment of enteritis. In this study, IgY was embedded in a W/O/W emulsion to overcome the digestive barrier and to investigate the protective effect of IgY against LPS-induced enteritis in mice. Four different hydrophilic emulsifiers (T80, PC, SC, and WPI) were selected to prepare separate W/O/W emulsions for encapsulating IgY. The results showed that the IgY-embedded double emulsion in the WPI group was the most effective. IgY embedded in the W/O/W emulsion could reduce the damage of LPS to the mouse intestine and prevent LPS-induced intestinal mucosal damage in mice. It increased the number of cup cells, promoted the expression of Muc2, and increased the mRNA expression levels of KLF3, TFF3, Itln1, and Ang4 (p < 0.05). It also enhanced the antioxidant capacity of the colon tissue, reduced the level of inflammatory factors in the colon tissue, and protected the integrity of the colon tissue. Stable embedding of IgY could be achieved using the W/O/W emulsion. In addition, the IgY-embedded W/O/W emulsion can be used as a dietary supplement to protect against LPS-induced enteritis in mice.
Collapse
Affiliation(s)
- Zhaohui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| | - Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China;
| | - Zijian Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| | - Shidi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| | - Chuanming Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| |
Collapse
|
4
|
Hou H, Zhang Y, Liu Y, Zeng Q, Li Q, Fang X, Guo T, Yuan H, Zeng S, Meng T. Pickering emulsion co-delivery system: Stimuli-responsive biomineralized particles act as particulate emulsifiers and bioactive carriers. Colloids Surf B Biointerfaces 2024; 241:114029. [PMID: 38878663 DOI: 10.1016/j.colsurfb.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/29/2024]
Abstract
Pickering emulsions provide a promising platform for the efficient delivery of bioactive. However, co-delivery of fragile bioactives with different physicochemical properties for comprehensive effects still faces practical challenges due to the limited protection for bioactives and the lack of stimuli-responsive property for on-demand release. Herein, a stimuli-responsive co-delivery system is developed based on biomineralized particles stabilized Pickering emulsions. In this tailor co-delivery system, hydrophilic bioactive (pepsin) with the fragile structure is encapsulated and immobilized by biomineralization, the obtained biomineralized particles (PPS@CaCO3) are further utilized as emulsifiers to form O/W Pickering emulsions, in which the hydrophobic oxidizable bioactive (curcumin) is stably trapped into the dispersed phase. The results show that two bioactives are successfully co-encapsulated in Pickering emulsions, and benefiting from the protection capacities of biomineralization and Pickering emulsions, the activity of pepsin and curcumin shows a 7.33-fold and 144.83-fold enhancement compared to the free state, respectively. Moreover, In vitro study demonstrates that Pickering emulsions enable to co-release of two bioactives with high activity retention by the acid-induced hydrolyzation of biomineralized particles. This work provides a powerful stimuli-responsive platform for the co-delivery of multiple bioactive compounds, enabling high activity of bioactives for the comprehensive health effects.
Collapse
Affiliation(s)
- Haoyue Hou
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuli Zhang
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Liu
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qi Zeng
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qinyuan Li
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xingyuan Fang
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Guo
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hao Yuan
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sa Zeng
- Guangzhou Ridgepole Biological Technology Co. Ltd., Guangzhou 510800, China
| | - Tao Meng
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
5
|
Li Y, Li J, Cai Z, Sun Y, Jiang H, Guan X, Ngai T. One-Step Formation of Pickering Double Emulsion Costabilized by Hydrophobic Silica Nanoparticles and Sodium Alginate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13903-13911. [PMID: 38920295 PMCID: PMC11238577 DOI: 10.1021/acs.langmuir.4c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Pickering double emulsions exhibit higher stability and biocompatibility compared with surfactant-stabilized double emulsions. However, tailored synthesis of particle stabilizers with appropriate wettability is time consuming and complicated and usually limits their large-scale adoption. Using binary stabilizers may be a simple and scalable strategy for Pickering double emulsion formation. Herein, commercially available hydrophobic silica nanoparticles (SNPs) and sodium alginate (SA) as binary stabilizers are used to prepare O/W/O Pickering double emulsions in one-step emulsification. The influence of system composition on double emulsion preparation is identified by optical microscopy, confocal laser scanning microscopy, and interfacial tension and water contact angle analyses. The formation of the O/W/O Pickering double emulsion depends critically on the aqueous phase viscosity and occurrence of emulsion inversion. Both hydrophobic SNPs and SA adsorb at the droplet surface to provide a steric barrier, while SA also reduces interfacial tension and increases aqueous phase viscosity, giving double emulsion long-term stability. Their microstructure and stability are controlled by adjusting the SA concentration, water-oil volume ratio, concentration and wettability of the particle stabilizer, and oil type. As a demonstration, the middle layer of the as-prepared O/W/O Pickering double emulsions can be cross-linked in situ with calcium ions to produce calcium alginate porous microspheres. We believe that our strategy for double emulsion formation holds great potential for practical applications in food, cosmetics, or pharmaceuticals.
Collapse
Affiliation(s)
- Yunxing Li
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Jiaming Li
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Zhiqing Cai
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Yajuan Sun
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Hang Jiang
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Xin Guan
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N. T., Hong Kong, P.R. China
| | - To Ngai
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N. T., Hong Kong, P.R. China
| |
Collapse
|
6
|
Zhang Q, Wang YQ, Li L, Song HL, Wu HT, Zhu BW. Fabrication and characterization of salidroside W/O/W emulsion with sodium alginate. Food Chem X 2024; 22:101260. [PMID: 38450386 PMCID: PMC10915508 DOI: 10.1016/j.fochx.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Salidroside (Sal), the main bioactive substance in Rhodiola rosea, is a promising functional food component with a wide range of pharmacological effects, but its biological activity is challenging to sustain due to its short half-life, low oral bioavailability, and susceptibility to environmental factors. The aim of this study was to investigate the effect of sodium alginate (SA) concentration on the construction of W/O/W emulsion in the protection of Sal. With the escalation of SA concentrations, the range of droplet size distribution was smaller and the droplets were more uniform. When the concentration of SA was 2 %, the average droplet size reached 9.1 ± 0.1 μm, and the encapsulation efficiency of Sal was 77.8 ± 1.8 %. Moreover, the double emulsion with 2 % SA was the most stable for 28 days at 4 °C since the oil droplets were embedded in the network structure of SA.
Collapse
Affiliation(s)
- Qian Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yu-Qiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lin Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hao-Lin Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bei-Wei Zhu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
7
|
Jiang Q, Sun Y, Zhang H. O1/W/O2 double emulsion gels based on nanoemulsions and Pickering particles for co-encapsulating quercetin and cyanidin: A functional fat substitute. Food Res Int 2024; 184:114269. [PMID: 38609247 DOI: 10.1016/j.foodres.2024.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
An O1/W/O2 double emulsion gel, as a functional fat substitute and based on nanoemulsions and hydrophobic Pickering particles, is prepared by two-step emulsification to co-encapsulate hydrophilic cyanidin and hydrophobic quercetin. Nanoemulsions loading quercetin are fabricated by Tween-80 and combining high-speed and high-pressure emulsification. Phytosterol nanoparticles stabilize the W-O2 interface of the secondary emulsion to load cyanidin in the W phase. The concentration of Tween-80 is optimized as 0.3% by the droplet size and viscosity of nanoemulsions. The structural stability of double emulsion gels will be weakened along with the increase of nanoemulsions, showing lower modulus and encapsulation efficiency (EE) and bigger droplets. In double emulsion gels, the EE of quercetin and cyanidin reaches 93% and 85.6%, respectively. Analysis of molecular interaction indicates that Tween-80 would decrease the in-situ hydrophobicity of phytosterol nanoparticles by hydrogen bonding adsorption, thereby weakening the emulsification. The pH-chromic 3D printing of double emulsion gels is designed according to the pH sensitivity of cyanidin. Texture profile analysis is performed to test the textural properties of 3D-printed objects. The simulated digestion is conducted on double emulsion gels. The double emulsion gel with fewer nanoemulsions is beneficial for protecting quercetin and improving the delivery due to the higher structural stability, while that with more nanoemulsions is conducive to the digestion of cyanidin and camellia oil due to weakened semi-solid properties. This double emulsion gel further simulates fat tissues by co-encapsulating hydrophilic and hydrophobic substances, promoting the application of fat substitutes in the food industry.
Collapse
Affiliation(s)
- Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yifeng Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
8
|
La Cava E, Di Clemente NA, Gerbino E, Sgroppo S, Gomez-Zavaglia A. Encapsulation of lactic acid bacteria in W 1/O/W 2 emulsions stabilized by mucilage:pectin complexes. Food Res Int 2024; 180:114076. [PMID: 38395576 DOI: 10.1016/j.foodres.2024.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Opuntia silvestri mucilage obtained from dried stems was explored as an emulsifier to prepare double emulsions aiming to encapsulate Lactiplantibacillus plantarum CIDCA 83114. W1/O/W2 emulsions were prepared using a two-step emulsification method. The aqueous phase (W1) consisted of L. plantarum CIDCA 83114, and the oil phase (O) of sunflower oil. The second emulsion was prepared by mixing the internal W1/O emulsion with the W2 phase, consisting of 4 % polysaccharides, formulated with different mucilage:(citric)pectin ratios. Their stability was assessed after preparation (day 0) and during storage at 4 °C (28 days). Determinations included creaming index, color, particle size, viscosity, turbidity, and bacterial viability, along with exposure to simulated gastrointestinal conditions. Significant differences were evaluated by analysis of variance (ANOVA) and Duncan's test (P < 0.05). After 28 days storage, bacterial viability in the W1/O/W2 emulsions was above 6 log CFU/mL for all the pectin:mucilage ratios. Emulsions containing mucilage and pectins showed lower creaming indices after 15 days, remaining stable until the end of the storage period. Formulations including 1:1 pectin:mucilage ratio exhibited the highest bacterial viability under simulated gastrointestinal conditions and were more homogeneous in terms of droplet size distributions at day 0, hinting at a synergistic effect between mucilage components (e.g., proteins, Ca2+) and pectin in stabilizing the emulsions. These results showed that Opuntia silvestri mucilage enhanced the stability of emulsions during refrigerated storage, highlighting its potential for encapsulating lactic acid bacteria. This presents an economical and natural alternative to traditional encapsulating materials.
Collapse
Affiliation(s)
- Enzo La Cava
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA) UNNE-CONICET, Avenida Libertad 5470, 3400 Corrientes, Argentina
| | - Natalia A Di Clemente
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata) RA1900, La Plata, Argentina
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata) RA1900, La Plata, Argentina
| | - Sonia Sgroppo
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA) UNNE-CONICET, Avenida Libertad 5470, 3400 Corrientes, Argentina
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata) RA1900, La Plata, Argentina.
| |
Collapse
|
9
|
Niu F, Zhao M, Tu W, Li Z, Gao Y, Du Y, Pan W. Fabrication and stability of W/O/W emulsions stabilized by gum arabic and polyglycerol polyricinoleate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:797-808. [PMID: 37683081 DOI: 10.1002/jsfa.12972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND In order to study the effect of adsorption of surfactant at the two interfacial layers on emulsion stability, the kinetically stable water-in-oil-in-water (W/O/W) emulsion carriers were prepared using polyglycerol polyricinoleate (PGPR) and gum arabic (GA) as emulsifiers. The relationship between the adsorption of the surfactant and the stability mechanism of the emulsions was elucidated. RESULTS When the contents of PGPR and GA were low, the interfaces between oil and the inner and outer water phases, respectively, could not be completely covered. However, when the concentration of PGPR was higher than 60 g kg-1 , the excess PGPR was adsorbed on the interface between the oil phase and the outer water phase. When the concentration of GA reached 80 g kg-1 , more GA was adsorbed to the oil-in-water interface. Moreover, the presence of PGPR on the interface could reduce the adsorption capacity of GA. Two types of kinetically stable emulsions were obtained by optimizing the interface composition (60 g kg-1 GA/80 g kg-1 PGPR and 60 g kg-1 PGPR/80 g kg-1 GA). The kinetically stable W/O/W emulsions prepared in this study were successfully used to encapsulate a hydrophilic vitamin (vitamin B12) with an encapsulation efficiency (EE) of 80% and release efficiency (RE) of 95%. The interfacial adsorption GA can accelerate the hydrolysis of fat. CONCLUSION Overall, this study provides a new strategy for the preparation of W/O/W emulsions, which might be beneficial for application in food, cosmetic, chemical, and pharmaceutical industries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Mengdi Zhao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weiwei Tu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Zhe Li
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yi Gao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixuan Du
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
10
|
Molet-Rodríguez A, Ramezani M, Salvia-Trujillo L, Martín-Belloso O. Impact of the lipid phase composition and state on the in vitro digestibility and chlorophyllin bioaccessibility of W 1/O/W 2 emulsions into whole milk. Food Res Int 2023; 173:113455. [PMID: 37803781 DOI: 10.1016/j.foodres.2023.113455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Water-in-oil-in-water (W1/O/W2) emulsions offer the potential to deliver hydrophilic bioactive compounds into foods, yet their application remains limited due to their instability. Thus, the impact of lipid phase composition and state on the colloidal stability, in vitro lipid digestibility and chlorophyllin (CHL) bioaccessibility of W1/O/W2 emulsions before and after incorporation into whole milk was studied. Medium-chain triglyceride oil (MCT) was used as a liquid lipid phase and MCT with glyceryl stearate (GS) or pure hydrogenated palm oil (HPO) as gelled lipid phases. The lipid phase composition was crucial to forming W1/O/W2 emulsions. MCT or MCT+GS allowed the successful formation of W1/O/W2 emulsions, being more stable upon gastric conditions those formulated with MCT+GS than pure MCT. In contrast, the use of HPO led to phase separation, which was maintained after the gastric conditions. Regarding their lipid digestibility, W1/O/W2 emulsions formulated with MCT or MCT+GS were fully digested, whereas only 40% of the lipid was digested using HPO. In accordance, the CHL bioaccessibility was higher using MCT or MCT+GS than HPO. When co-digested with whole milk, the colloidal stability and lipid digestibility of the W1/O/W2 emulsions with MCT or MCT+GS were not altered, whereas the W1/O/W2 emulsion-HPO showed enhanced colloidal stability and lipid digestibility (57.71 ± 3.06%), due to the surface-active properties of milk protein. The present study provides useful information to develop stable functional foods enriched with hydrophilic bioactive compounds by using W1/O/W2 emulsions.
Collapse
Affiliation(s)
- Anna Molet-Rodríguez
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Mohsen Ramezani
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Laura Salvia-Trujillo
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| |
Collapse
|
11
|
Abbasi S, Rafati A, Hosseini SMH, Roohinejad S, Hashemi S, Hashemi Gahruie H, Rashidinejad A. The internal aqueous phase gelation improves the viability of probiotic cells in a double water/oil/water emulsion system. Food Sci Nutr 2023; 11:5978-5988. [PMID: 37823133 PMCID: PMC10563674 DOI: 10.1002/fsn3.3532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 10/13/2023] Open
Abstract
This research studied the viability of probiotic bacterium Lactobacillus plantarum (L. plantarum) encapsulated in the internal aqueous phase (W 1) of a water-in-oil-in-water (W 1/O/W 2) emulsion system, with the help of gelation and different gelling agents. Additionally, the physicochemical, rheological, and microstructural properties of the fabricated emulsion systems were assessed over time under the effect of W 1 gelation. The average droplet size and zeta potential of the control system and the systems fabricated using gelatin, alginate, tragacanth gum, and carrageenan were 14.7, 12.0, 5.1, 6.4, and 7.3 μm and - 21.1, -34.1, -46.2, -38.3, and -34.7 mV, respectively. The results showed a significant increase in the physical stability of the system and encapsulation efficiency of L. plantarum after the W 1 gelation. The internal phase gelation significantly increased the viability of bacteria against heat and acidic pH, with tragacanth gum being the best gelling agent for increasing the viability of L. plantarum (28.05% and 16.74%, respectively). Apparent viscosity and rheological properties of emulsions were significantly increased after the W 1 gelation, particularly in those jellified with alginate. Overall, L. plantarum encapsulation in W 1/O/W 2 emulsion, followed by the W 1 gelation using tragacanth gum as the gelling agent, could increase both stability and viability of this probiotic bacteria.
Collapse
Affiliation(s)
- Shahrokh Abbasi
- Food Science and Technology DepartmentIslamic Azad UniversitySarvestanIran
| | - Alireza Rafati
- Food Science and Technology DepartmentIslamic Azad UniversitySarvestanIran
| | | | - Shahin Roohinejad
- Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Seyedeh‐Sara Hashemi
- Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Hadi Hashemi Gahruie
- Department of Food Science and Technology, School of AgricultureShiraz UniversityShirazIran
| | | |
Collapse
|
12
|
Sobti B, Kamal-Eldin A, Rasul S, Alnuaimi MSK, Alnuaimi KJJ, Alhassani AAK, Almheiri MMA, Nazir A. Encapsulation Properties of Mentha piperita Leaf Extracts Prepared Using an Ultrasound-Assisted Double Emulsion Method. Foods 2023; 12:1838. [PMID: 37174375 PMCID: PMC10178374 DOI: 10.3390/foods12091838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Double emulsions (W1/O/W2) have long been used in the food and pharmaceutical industries to encapsulate hydrophobic and hydrophilic drugs and bioactive compounds. This study investigated the effect of different types of emulsifiers (plant- vs. animal-based proteins) on the encapsulation properties of Mentha piperita leaf extract (MLE) prepared using the double emulsion method. Using response surface methodology, the effect of ultrasound-assisted extraction conditions (amplitude 20-50%; time 10-30 min; ethanol concentration 70-90%) on the total phenolic content (TPC) and antioxidant activity (percent inhibition) of the MLE was studied. MLE under optimized conditions (ethanol concentration 76%; amplitude 39%; time 30 min) had a TPC of 62.83 mg GA equivalents/g and an antioxidant activity of 23.49%. The optimized MLE was encapsulated using soy, pea, and whey protein isolates in two emulsifying conditions: 4065× g/min and 4065× g/30 s. The droplet size, optical images, rheology, and encapsulation efficiency (EE%) of the different encapsulated MLEs were compared. The W1/O/W2 produced at 4065× g/min exhibited a smaller droplet size and higher EE% and viscosity than that prepared at 4065× g/30 s. The higher EE% of soy and pea protein isolates indicated their potential as an effective alternative for bioactive compound encapsulation.
Collapse
Affiliation(s)
- Bhawna Sobti
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Zhuang H, Li X, Wu S, Wang B, Yan H. Fabrication of grape seed proanthocyanidin-loaded W/O/W emulsion gels stabilized by polyglycerol polyricinoleate and whey protein isolate with konjac glucomannan: Structure, stability, and in vitro digestion. Food Chem 2023; 418:135975. [PMID: 36965393 DOI: 10.1016/j.foodchem.2023.135975] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
In this work, the effects of konjac glucomannan (KGM) concentrations on microstructure, gel properties, stability and digestibility of water-in-oil-in-water emulsion gels stabilized by polyglycerol polyricinoleate and whey protein isolate were investigated. Visual appearance indicated that a non-layered double emulsion gel was formed when KGM increased to 0.75%. Emulsion gels with 1.5% KGM showed the highest encapsulation, freeze-thaw and photochemical stability due to the formation of the smallest droplets, which were supported by microscopic observations. Moreover, the addition of KGM improved water holding capacity, rheological and texture properties of emulsion gels. Particularly, at 1.5% or 1.75% KGM, color and potential of hydrogen showed the most stable level after 14 days of storage. During in vitro digestion, KGM delayed the hydrolysis of protein and oil droplets, and then improved the bioavailability of grape seed proanthocyanidin. These results promoted the application of KGM in emulsion gels and the encapsulation of nutraceuticals.
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xueqian Li
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Bing Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
15
|
He J, Wu X, Xie Y, Gao Y, McClements DJ, Zhang L, Zou L, Liu W. Capsaicin encapsulated in W/O/W double emulsions fabricated via ethanol-induced pectin gelling: Improvement of bioaccessibility and reduction of irritation. Int J Biol Macromol 2023; 235:123899. [PMID: 36870641 DOI: 10.1016/j.ijbiomac.2023.123899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Capsaicin is a water-insoluble bioactive component with several beneficial physiological functions. However, the widespread application of this hydrophobic phytochemical is limited by its low water-solubility, intense irritation, and poor bioaccessibility. These challenges can be overcome by entrapping capsaicin within the internal water phase of water-in-oil-in-water (W/O/W) double emulsions via using ethanol to induce pectin gelling. In this study, ethanol was used both to dissolve capsaicin and to promote pectin gelation, thereby forming capsaicin-loaded pectin hydrogels that were used as the internal water phase of the double emulsions. Pectin addition improved the physical stability of the emulsions and led to a high encapsulation efficiency of capsaicin (>70 % after 7d storage). After simulated oral and gastric digestion, capsaicin-loaded double emulsions maintained their compartmentalized structure, avoiding capsaicin leakage in the month and stomach. The double emulsions were digested in the small intestine, thereby releasing the capsaicin. Capsaicin bioaccessibility was significantly enhanced after encapsulation, which was attributed to mixed micelle formation by the digested lipid phase. Furthermore, encapsulation of capsaicin within the double emulsions reduced the irritation in the gastrointestinal tissues of mice. This kind of double emulsion may have great potential for the development of more palatable capsaicin-loaded functional food products.
Collapse
Affiliation(s)
- Jingxing He
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Xiaolin Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Youfa Xie
- Jiangzhong Pharmaceutical Co. LTD, Nanchang 330041, Jiangxi, China
| | - Yi Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
16
|
Khan MA, Bao H, Cheng H, Feng S, Wang Y, Liang L. Fabrication of whey-protein-stabilized G/O/W emulsion for the encapsulation and retention of -ascorbic acid and α-tocopherol. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
17
|
Lee J, Wi G, Choi MJ. The rheological properties and stability of gelled emulsions applying to κ-carrageenan and methyl cellulose as an animal fat replacement. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Zhang C, Gao Y, Wu Y, Zheng Z, Xie Y, Li Y, Li B, Pei Y, Liu S. Construction of stable O/W/O multiple emulsions using beeswax to control the melting point of the continuous oil phase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Li L, Zhang M, Feng X, Yang H, Shao M, Huang Y, Li Y, Teng F. Internal/external aqueous-phase gelation treatment of soybean lipophilic protein W/O/W emulsions: Improvement in microstructure, interfacial properties, physicochemical stability, and digestion characteristics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Zhang J, Zhu J, Cheng Y, Huang Q. Recent Advances in Pickering Double Emulsions and Potential Applications in Functional Foods: A Perspective Paper. Foods 2023; 12:992. [PMID: 36900509 PMCID: PMC10001147 DOI: 10.3390/foods12050992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Double emulsions are complex emulsion systems with a wide range of applications across different fields, such as pharmaceutics, food and beverage, materials sciences, personal care, and dietary supplements. Conventionally, surfactants are required for the stabilization of double emulsions. However, due to the emerging need for more robust emulsion systems and the growing trends for biocompatible and biodegradable materials, Pickering double emulsions have attracted increasing interest. In comparison to double emulsions stabilized solely by surfactants, Pickering double emulsions possess enhanced stability due to the irreversible adsorption of colloidal particles at the oil/water interface, while adopting desired environmental-friendly properties. Such advantages have made Pickering double emulsions rigid templates for the preparation of various hierarchical structures and as potential encapsulation systems for the delivery of bioactive compounds. This article aims to provide an evaluation of the recent advances in Pickering double emulsions, with a special focus on the colloidal particles employed and the corresponding stabilization strategies. Emphasis is then devoted to the applications of Pickering double emulsions, from encapsulation and co-encapsulation of a wide range of active compounds to templates for the fabrication of hierarchical structures. The tailorable properties and the proposed applications of such hierarchical structures are also discussed. It is hoped that this perspective paper will serve as a useful reference on Pickering double emulsions and will provide insights toward future studies in the fabrication and applications of Pickering double emulsions.
Collapse
Affiliation(s)
| | | | | | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
21
|
Meat systems produced with Monascus pigment water-in-oil-in-water multiple emulsion as pork fat replacers. Food Chem 2023; 402:134080. [DOI: 10.1016/j.foodchem.2022.134080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
|
22
|
Determination of the Dominating Coalescence Pathways in Double Emulsion Formulations by Use of Microfluidic Emulsions. Processes (Basel) 2023. [DOI: 10.3390/pr11010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In water-in-oil-in-water (W1/O/W2) double emulsions several irreversible instability phenomena lead to changes. Besides diffusive processes, coalescence of droplets is the main cause of structural changes. In double emulsions, inner droplets can coalesce with each other (W1–W1 coalescence), inner droplets can be released via coalescence (W1–W2 coalescence) and oil droplets can coalesce with each other (O–O coalescence). Which of the coalescence pathways contributes most to the failure of the double emulsion structure cannot be determined by common measurement techniques. With monodisperse double emulsions produced with microfluidic techniques, each coalescence path can be observed and quantified simultaneously. By comparing the occurrence of all possible coalescence events, different hydrophilic surfactants in combination with PGPR are evaluated and discussed with regard to their applicability in double emulsion formulations. When variating the hydrophilic surfactant, the stability against all three coalescence mechanisms changes. This shows that measuring only one of the coalescence mechanisms is not sufficient to describe the stability of a double emulsion. While some surfactants are able to stabilize against all three possible coalescence mechanisms, some display mainly one of the coalescence mechanisms or in some cases all three mechanisms are observed simultaneously.
Collapse
|
23
|
Single and double Pickering emulsions stabilized by sodium caseinate: Effect of crosslinking density. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
ØYE G, SIMON S, RUSTAD T, PASO K. Trends in Food Emulsion Technology: Pickering, Nano and Double Emulsions. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Leister N, Götz V, Jan Bachmann S, Nachtigall S, Hosseinpour S, Peukert W, Karbstein H. A comprehensive methodology to study double emulsion stability. J Colloid Interface Sci 2023; 630:534-548. [DOI: 10.1016/j.jcis.2022.10.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
26
|
Chen JF, Luo ZJ, Wang JM, Ruan QJ, Guo J, Yang XQ. Fabrication of stable Pickering double emulsion with edible chitosan/soy β-conglycinin complex particles via one-step emulsification strategy. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Wang W, Sun R, Xia Q. Influence of gelation of internal aqueous phase on in vitro controlled release of W1/O/W2 double emulsions-filled alginate hydrogel beads. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Hu S, Ding Z, Zhang G, Wang X, Zhao Y, Fan Z, Liu M, Han J, Wang Z. Fabrication and spray-drying microencapsulation of vitamin C-loaded W1/O/W2 emulsions: Influence of gel polymers in the internal water phase on encapsulation efficiency, reconstituted stability, and controlled release properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Impact of polyelectrolyte complex layer on the stability of palm oil multiple emulsions encapsulating a water-soluble compound during heating, cooling, and storage processes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Gao Y, Li X, Xie Y, Huang X, Cheng C, Julian McClements D, Zhang L, Chen X, Zou L, Wei L. Encapsulation of bitter peptides in diphasic gel double emulsions: bitterness masking, sustained release and digestion stability. Food Res Int 2022; 162:112205. [DOI: 10.1016/j.foodres.2022.112205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
31
|
Su Y, Lu C, Chang C, Li J, Sun Y, Zhang W, Gong L, Gu L, Yang Y. Preparation and characterization of W 1 /O/W 2 emulsions stabilized by glycated and heat-modified egg white proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5795-5807. [PMID: 35411595 DOI: 10.1002/jsfa.11929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Water-in-oil-in-water (W1 /O/W2 ) emulsions stabilized by protein-carbohydrate complexes were prepared from an inner water phase (W1 ), an oil phase (O) and an outer water phase (W2 ). The complexes consisted of heat-induced aggregates (HIAs) of isomalto-oligosaccharide/egg white protein Maillard conjugates. The effects of polyglycerol ester of polyricinoleic acid (PGPR) concentration, HIA concentration, W1 -to-O volume ratio and W1 /O-to-W2 volume ratio on the properties of the W1 /O/W2 emulsions were systematically investigated. RESULTS At sufficiently high PGPR concentrations (>2%), the emulsions possess a high negative charge (≈-44 mV). The encapsulation efficiency of the emulsions, which was determined by incorporating a hydrophilic yellow dye in the inner water phase prior to homogenization, was relatively high (up to 93%) and did not change significantly during 14-day storage at 4 °C. All emulsions were fluids that exhibited shear thinning behavior. CONCLUSION Overall, this study shows that nature-derived emulsifiers can be used to create W1 /O/W2 emulsions suitable for application in the food industry. In addition, we provided a viable strategy to encapsulate water-soluble nutrients. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lin Gong
- Hunan Engineering and Technology Research Center for Food Flavors and Flavorings, Jinshi, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
32
|
Liu M, Chen Q, Li J, Liu Y, Yang X, Zhu F, He Z. Improvement of millimeter-scale double droplets stability through synergistic noncovalent interactions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Asyrul-Izhar AB, Bakar J, Sazili AQ, Meng GY, Ismail-Fitry MR. Incorporation of Different Physical Forms of Fat Replacers in the Production of Low-Fat/ Reduced-Fat Meat Products: Which is More Practical? FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Abu Bakar Asyrul-Izhar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Goh Yong Meng
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | |
Collapse
|
34
|
Li W, Chen Z, Wang W, Lan Y, Huang Q, Cao Y, Xiao J. Modulation of the spatial distribution of crystallizable emulsifiers in Pickering double emulsions. J Colloid Interface Sci 2022; 619:28-41. [DOI: 10.1016/j.jcis.2022.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
|
35
|
Tenorio-Garcia E, Araiza-Calahorra A, Simone E, Sarkar A. Recent advances in design and stability of double emulsions: Trends in Pickering stabilization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Zhu Q, Wei W, Zhang L, Meng J, Sui W, Wu T, Li J, Wang P, Zhang M. Fabrication and characterization of gel-in-oil-water (G/O/W) double emulsion stabilized by flaxseed gum/whey protein isolate complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Premjit Y, Pandey S, Mitra J. Recent Trends in Folic Acid (Vitamin B9) Encapsulation, Controlled Release, and Mathematical Modelling. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2077361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yashaswini Premjit
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sachchidanand Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jayeeta Mitra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
38
|
Klojdová I, Stathopoulos C. The Potential Application of Pickering Multiple Emulsions in Food. Foods 2022; 11:foods11111558. [PMID: 35681307 PMCID: PMC9180460 DOI: 10.3390/foods11111558] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Emulsions stabilized by adsorbed particles—Pickering particles (PPs) instead of surfactants and emulsifiers are called Pickering emulsions. Here, we review the possible uses of Pickering multiple emulsions (PMEs) in the food industry. Food-grade PMEs are very complex systems with high potential for application in food technology. They can be prepared by traditional two-step emulsification processes but also using complex techniques, e.g., microfluidic devices. Compared to those stabilized with an emulsifier, PMEs provide more benefits such as lower susceptibility to coalescence, possible encapsulation of functional compounds in PMEs or even PPs with controlled release, etc. Additionally, the PPs can be made from food-grade by-products. Naturally, w/o/w emulsions in the Pickering form can also provide benefits such as fat reduction by partial replacement of fat phase with internal water phase and encapsulation of sensitive compounds in the internal water phase. A possible advanced type of PMEs may be stabilized by Janus particles, which can change their physicochemical properties and control properties of the whole emulsion systems. These emulsions have big potential as biosensors. In this paper, recent advances in the application of PPs in food emulsions are highlighted with emphasis on the potential application in food-grade PMEs.
Collapse
|
39
|
The influence of heat and mechanical stress on encapsulation efficiency and droplet size of w/o/w multiple emulsions. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Influence of β-cyclodextrin concentration on the physicochemical properties and skin permeation behavior of vitamin C-loaded Pickering water-in-oil-in-water (W1/O/W2) double emulsions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Liu K, Chen YY, Pan LH, Li QM, Luo JP, Zha XQ. Co-encapsulation systems for delivery of bioactive ingredients. Food Res Int 2022; 155:111073. [DOI: 10.1016/j.foodres.2022.111073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/26/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
42
|
Do HV, Nguyen SK, Dao DN, Nguyen V. Influence of dextrose equivalent and storage temperature on food-grade rice bran oil-in-water Pickering emulsion stabilized by rice maltodextrins and sodium caseinate. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2063881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ha V. Do
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Sinh K. Nguyen
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Duy N. Dao
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Viet Nguyen
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| |
Collapse
|
43
|
Lian X, Song C, Wang Y. Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2019-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Barbosa BST, Garcia-Rojas EE. Double emulsions as delivery systems for iron: Stability kinetics and improved bioaccessibility in infants and adults. Curr Res Food Sci 2022; 5:718-725. [PMID: 35497774 PMCID: PMC9046948 DOI: 10.1016/j.crfs.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Iron deficiency is one of the main causes of anemia in the world, especially in children and women, so food fortification through microencapsulation is a viable alternative to combat this deficiency. The present work aimed to encapsulate iron in a water-in-oil-in-water double emulsion (W1/O/W2), which was formed with whey protein isolate and polyglycerol polyricinoleate as the emulsifying agents, tara gum as a thickening agent, and sucrose as an osmotic active substance. The double emulsion formed with 12% whey protein isolate, 0.8% tara gum, and 2% sucrose presented high encapsulation efficiency (96.95 ± 1.00%) and good stability (up to 7 days). Additionally, after the in vitro gastrointestinal simulations, the bioaccessibility was high for adults (49.54 ± 5.50%) and infants (39.71 ± 2.33%). Finally, the study show that double emulsions can form stable systems with high iron bioaccessibility even in infant gastric systems, which indicates the possibility of using double emulsions to fortify food with iron. Stable double emulsions were obtained using WPI and PGPR as emulsifiers. Tara gum ensured an increase in the general stability of the emulsion. High bioaccessibility of iron were obtained for adults and infants. Emulsions are presented as a potential alternative to be used in iron-fortified food.
Collapse
Affiliation(s)
- Bruno Sérgio Toledo Barbosa
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural de Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, RJ, 23890-000, Brazil
| | - Edwin Elard Garcia-Rojas
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural de Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, RJ, 23890-000, Brazil
- Laboratório de Engenharia e Tecnologia Agroindustrial (LETA), Universidade Federal Fluminense (UFF), Av. Dos Trabalhadores, 420, 27255-125, Volta Redonda, RJ, Brazil
- Corresponding author. Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural de Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, RJ, 23890-000, Brazil.
| |
Collapse
|
45
|
Chen M, Li W, Wang W, Cao Y, Lan Y, Huang Q, Xiao J. Effects of gelation on the stability, tribological properties and time-delayed release profile of double emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Wang W, Sun R, Dong Z, Ji S, Xia Q. Preparation of a stable gel-in-crystallized oil-in-gel type structured W 1/O/W 2 double emulsions: effect of internal aqueous phase gelation on the system stability. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2049292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Zhe Dong
- Department of Chemical and Pharmaceutical Engineering, Southeast University ChengXian College, Nanjing, China
| | - Suping Ji
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| |
Collapse
|
47
|
Dini I. Contribution of Nanoscience Research in Antioxidants Delivery Used in Nutricosmetic Sector. Antioxidants (Basel) 2022; 11:563. [PMID: 35326212 PMCID: PMC8944742 DOI: 10.3390/antiox11030563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Nanoscience applications in the food and cosmetic industry offer many potential benefits for consumers and society. Nanotechnologies permit the manipulation of matter at the nanoscale level, resulting in new properties and characteristics useful in food and cosmetic production, processing, packaging, and storage. Nanotechnology protects sensitive bioactive compounds, improves their bioavailability and water solubility, guarantees their release at a site of action, avoids contact with other constituents, and masks unpleasant taste. Biopolymeric nanoparticles, nanofibers, nanoemulsions, nanocapsules, and colloids are delivery systems used to produce food supplements and cosmetics. There are no barriers to nanoscience applications in food supplements and cosmetic industries, although the toxicity of nano-sized delivery systems is not clear. The physicochemical and toxicological characterization of nanoscale delivery systems used by the nutricosmeceutic industry is reviewed in this work.
Collapse
Affiliation(s)
- Irene Dini
- Pharmacy Department, "Federico II" University, Via D. Montesano, 49, 80131 Naples, Italy
| |
Collapse
|
48
|
Influence of polymeric complexes on the stability and releasing behavior of phenol-loaded nano-emulsions: Modeling and optimization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Chen W, Yu B, Wei Z, Mao S, Li T. The creation of raspberry-like droplets and their coalescence dynamics: An ideal model for certain biological processes. J Colloid Interface Sci 2022; 615:752-758. [PMID: 35176541 DOI: 10.1016/j.jcis.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Abstract
HYPOTHESIS Although a raspberry-like configuration has been long observed in biological processes (e.g., the intimate association between Cajal bodies and B-snurposomes), studies on this morphology are very limited. Raspberry-like droplets created with multiple immiscible liquids are expected to provides an ideal model for such structures in biological systems, including their possible formation mechanism, phase behaviors, and coalescence dynamics. EXPERIMENTS & SIMULATIONS Using three liquid phases, one surfactant and some colloidal particles, raspberry-like droplets containing one large central droplet and multiple protrusions embedded on its surface were successfully created. Confocal microscopy studies were carried out to track their formation and coalescence dynamics. A 2D phase-field model was applied to test the influence of the protrusions in the system. FINDINGS The formation of this raspberry-like morphology involves a partial inversion process, which was predicted by Friberg et al. with numerical simulations but has never been demonstrated experimentally. A two-step coalescence was revealed, where the protrusions merge first and create a capillary bridge, which drives the droplets to coalesce. Increasing the viscosity of the continuous phase can help to prevent the destabilization. These fundamental features of raspberry-like droplets represent an important step toward producing multi-liquid materials with unique functionality, and can potentially illuminate some biological systems and processes.
Collapse
Affiliation(s)
- Wei Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Binbin Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Zhiyou Wei
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| | - Tao Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
50
|
Oil Droplet Coalescence in W/O/W Double Emulsions Examined in Models from Micrometer- to Millimeter-Sized Droplets. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Water-in-oil-in-water (W1/O/W2) double emulsions must resist W1–W1, O–O and W1–W2 coalescence to be suitable for applications. This work isolates the stability of the oil droplets in a double emulsion, focusing on the impact of the concentration of the hydrophilic surfactant. The stability against coalescence was measured on droplets ranging in size from millimeters to micrometers, evaluating three different measurement methods. The time between the contact and coalescence of millimeter-sized droplets at a planar interface was compared to the number of coalescence events in a microfluidic emulsion and to the change in the droplet size distributions of micrometer-sized single and double emulsions. For the examined formulations, the same stability trends were found in all three droplet sizes. When the concentration of the hydrophilic surfactant is reduced drastically, lipophilic surfactants can help to increase the oil droplets’ stability against coalescence. This article also provides recommendations as to which purpose each of the model experiments is suited and discusses advantages and limitations compared to previous research carried out directly on double emulsions.
Collapse
|