1
|
Pham K, Lazenby M, Yamada K, Lattin CR, Wada H. Zebra finches (Taeniopygia castanotis) display varying degrees of stress resilience in response to constant light. Gen Comp Endocrinol 2024; 361:114644. [PMID: 39592083 DOI: 10.1016/j.ygcen.2024.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
The ability for traits to recover after exposure to stress varies depending on the magnitude, duration, or type of stressor. One such stressor is circadian rhythm disruption stemming from exposure to light at night. Circadian rhythm disruption may lead to long-term physiological consequences; however, the capacity in which individuals recover and display stress resilience is not known. Here, we exposed zebra finches (Taeniopygia castanotis) to constant light (24L:0D) or a regular light/dark cycle (14L:10D) for 23 days, followed by a recovery period for 12 days. We measured body mass, corticosterone, and glucose levels at multiple timepoints, and relative protein expression of glucocorticoid receptors at euthanasia. Body mass significantly increased over time in light-exposed birds compared to controls, but a 12-day recovery period reversed this increase. Baseline levels of circulating glucose decreased in light-exposed birds compared to controls, but returned to pretreatment levels after the 12-day recovery period. In contrast, the glucose stress response did not show a similar recovery trend, suggesting longer recovery is needed or that this is a persistent effect in light-exposed birds. Surprisingly, we did not detect any differences in baseline corticosterone or reactivity of the hypothalamic-pituitiary-adrenal (HPA) axis between groups throughout the experiment. Moreover, we did not detect differences between relative protein expression of glucocorticoid receptors or a relationship with HPA axis reactivity. Yet, we found a positive relationship between glucocorticoid receptors and the glucose stress response, but only in the light group. Our results indicate that physiological and morphological traits differ in their ability to recover in response to constant light and warrants further investigation on the mechanisms driving stress resilience under a disrupted circadian rhythm.
Collapse
Affiliation(s)
- Kevin Pham
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Madeline Lazenby
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - KayLene Yamada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Coutts VM, Pham K, Gilbert G, Wada H. Breeding zebra finches prioritize reproductive bout over self-maintenance under food restriction. Biol Open 2024; 13:bio060417. [PMID: 39400300 PMCID: PMC11556311 DOI: 10.1242/bio.060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Reproduction requires high amounts of energy, and challenging environments during breeding can force parents to prioritize their current reproductive bout over self-maintenance or vice versa. However, little is known about how common stressors, such as food restriction, can influence these trade-offs during breeding, and the physiological mechanisms for these trade-off decisions. In this study, adult zebra finches (Taeniopygia castanotis) were subjected to a control diet (ad libitum) or a 40% food restriction while raising nestlings and fledglings, and we measured body mass, furculum fat, plasma corticosterone (CORT) and blood glucose levels of the parents at the time of pairing, when their offspring fledged, and when their offspring reached nutritional independence. We also measured body mass and growth rate in the offspring from hatching until the end of the treatment period. Food-restricted parents had lower body mass when their offspring fledged and reached nutritional independence and higher baseline CORT when their offspring fledged compared to controls. Offspring did not differ in body mass or growth rate between treatment groups. However, there was no effect of food restriction on parents' furculum fat, baseline glucose, the adrenocortical response, or the glucose response. Furthermore, path analysis results suggest that alterations in baseline glucose is the primary driver of changes in body mass in parents and offspring brood mass. Taken together, these results suggest that food restriction during chick rearing in a short-lived passerine drives parents to prioritize their current reproductive bout over self-maintenance, and glucose could potentially be a mechanism for diverting energy toward parental effort.
Collapse
Affiliation(s)
- Victoria M. Coutts
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kevin Pham
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Gabriella Gilbert
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Yang X, Lin H, Wang M, Huang X, Li K, Xia W, Zhang Y, Wang S, Chen W, Zheng C. Identification of key genes and pathways in duck fatty liver syndrome using gene set enrichment analysis. Poult Sci 2024; 103:104015. [PMID: 39003797 PMCID: PMC11298935 DOI: 10.1016/j.psj.2024.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
High-laying ducks are often fed high-energy, nutritious feeds to maintain high productivity, which predisposes them to lipid metabolism disorders and the development of fatty liver syndrome (FLS), which seriously affects production performance and has a substantial economic impact on the poultry industry. Therefore, it is necessary to elucidate the mechanisms underlying the development of fatty liver syndrome. In this study, seven Shan Partridge ducks, each with fatty liver syndrome and normal laying ducks, were selected, and Hematoxylin Eosin staining (HE staining), Masson staining, and transcriptome sequencing were performed on liver tissue. In addition to exploring key genes and pathways using conventional analysis methods, we constructed the first Kyoto Encyclopedia of Genes and Genomes (KEGG) database-based predefined gene set containing 12,764 pathways and 16,836 genes and further performed gene set enrichment analysis (GSEA) on the liver transcriptome data. Finally, key nodes and biological processes were identified via the protein-protein interaction (PPI) network. The results showed that the liver in the FL group exhibited steatosis and fibrosis, and a total of 3,663 genes with upregulated expression versus 2,296 downregulated genes were screened by conventional analysis. GSEA analysis and PPI network analysis revealed that the liver in the FL group exhibited disruption of the mitochondrial electron transport chain, leading to decreased oxidative phosphorylation and the secretion of excessive proinflammatory factors amid the continuous accumulation of lipids. Under continuous chronic inflammation, cell cycle arrest triggers apoptosis, while fibrosis becomes more severe, and procarcinogenic genes are activated, leading to the continuous development and deterioration of the liver. In conclusion, the predefined gene set constructed in this study can be used for GSEA, and the identified hub genes provide useful reference data and a solid foundation for the study of the genetic regulatory mechanism of fatty liver syndrome in ducks.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Hao Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China; College of Animal Science, Anhui Science and Technology University, Anhui 233100, P.R. China
| | - Mengpan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China; College of Animal Science & Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300391, P.R. China
| | - Xuebing Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Kaichao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Weiguang Xia
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Yanan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Shuang Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Chuntian Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China.
| |
Collapse
|
4
|
Neuwirth LS, Gökhan N, Kaye S, Meehan EF. Taurine Supplementation for 48-Months Improved Glucose Tolerance and Changed ATP-Related Enzymes in Avians. Pharmacology 2023; 108:599-606. [PMID: 37703842 DOI: 10.1159/000533538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/04/2023] [Indexed: 09/15/2023]
Abstract
Avians differ from mammals, especially in brain architecture and metabolism. Taurine, an amino acid basic to metabolism and bioenergetics, has been shown to have remarkable effects on metabolic syndrome and ameliorating oxidative stress reactions across species. However, less is known regarding these metabolic relationships in the avian model. The present study serves as a preliminary report that examined how taurine might affect avian metabolism in an aged model system. Two groups of pigeons (Columba livia) of mixed sex, a control group and a group that received 48 months of taurine supplementation (0.05% w/v) in their drinking water, were compared by using blood panels drawn from their basilic vein by a licensed veterinarian. From the blood panel data, taurine treatment generated higher levels of three ATP-related enzymes: glutamate dehydrogenase (GLDH), lactate dehydrogenase (LDH), and creatine kinase (CK). In this preliminary study, the role that taurine treatment might play in the adult aged pigeon's metabolism on conserved traits such as augmenting insulin production as well as non-conserved traits maintaining high levels of ATP-related enzymes was examined. It was found that taurine treatment influenced the avian glucose metabolism similar to mammals but differentially effected avian ATP-related enzymes in a unique way (i.e., ∼×2 increase in CK and LDH with a nearly ×4 increase in GLDH). Notably, long-term supplementation with taurine had no negative effect on parameters of lipid and protein metabolism nor liver enzymes. The preliminary study suggests that avians may serve as a unique model system for investigating taurine metabolism across aging with long-term health implications (e.g., hyperinsulinemia). However, the suitability of using the model would require researchers to tightly control for age, sex, dietary intake, and exercise conditions as laboratory-housed avian present with very different metabolic panels than free-flight avians, and their metabolic profile may not correlate one-to-one with mammalian data.
Collapse
Affiliation(s)
- Lorenz S Neuwirth
- SUNY Old Westbury, Old Westbury, Long Island City, New York, USA
- SUNY Neuroscience Research Institute, Old Westbury, Long Island City, New York, USA
| | - Nurper Gökhan
- (CUNY) Department of Social Sciences, LaGuardia Community College, Long Island City, New York, USA
| | - Sarrah Kaye
- The Staten Island Zoological Society, Staten Island, New York, New York, USA
| | - Edward F Meehan
- The College of Staten Island (CUNY) Department of Psychology, Staten Island, New York, New York, USA
- The Center for Developmental Neuroscience, Staten Island, New York, New York, USA
| |
Collapse
|
5
|
Ryan TA, Taff CC, Zimmer C, Vitousek MN. Cold temperatures induce priming of the glucose stress response in tree swallows. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111419. [PMID: 36965830 DOI: 10.1016/j.cbpa.2023.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Capricious environments often present wild animals with challenges that coincide or occur in sequence. Conceptual models of the stress response predict that one threat may prime or dampen the response to another. Although evidence has supported this for glucocorticoid responses, much less is known about the effects of previous challenges on energy mobilization. Food limitation may have a particularly important effect, by altering the ability to mobilize energy when faced with a subsequent challenge. We tested the prediction that challenging weather conditions, which reduce food availability, alter the energetic response to a subsequent acute challenge (capture and restraint). Using a three-year dataset from female tree swallows measured during three substages of breeding, we used a model comparison approach to test if weather (temperature, wind speed, and precipitation) over 3- or 72-hour timescales predicted baseline and post-restraint glucose levels, and if so which environmental factors were the strongest predictors. Contrary to our predictions, weather conditions did not affect baseline glucose; however, birds that had experienced lower temperatures over the preceding 72 h tended to have higher stress-induced glucose when faced with an acute stressor. We also saw some support for an effect of rainfall on stress-induced glucose: around the time that eggs hatched, birds that had experienced more rainfall over the preceding 72 h mounted lower responses. Overall, we find support in a wild animal for the idea that the glucose stress response may be primed by exposure to prior challenges.
Collapse
Affiliation(s)
- Thomas A Ryan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Cornell Lab of Ornithology, Ithaca, NY, USA.
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Cedric Zimmer
- Laboratory of Experimental and Comparative Ethology, University Sorbonne Paris Nord, Villetaneuse, France
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Cornell Lab of Ornithology, Ithaca, NY, USA
| |
Collapse
|
6
|
Paloma Álvarez-Rendón J, Manuel Murillo-Maldonado J, Rafael Riesgo-Escovar J. The insulin signaling pathway a century after its discovery: Sexual dimorphism in insulin signaling. Gen Comp Endocrinol 2023; 330:114146. [PMID: 36270337 DOI: 10.1016/j.ygcen.2022.114146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Since practically a century ago, the insulin pathway was discovered in both vertebrates and invertebrates, implying an evolutionarily ancient origin. After a century of research, it is now clear that the insulin signal transduction pathway is a critical, flexible and pleiotropic pathway, evolving into multiple anabolic functions besides glucose homeostasis. It regulates paramount aspects of organismal well-being like growth, longevity, intermediate metabolism, and reproduction. Part of this diversification has been attained by duplications and divergence of both ligands and receptors riding on a common general signal transduction system. One of the aspects that is strikingly different is its usage in reproduction, particularly in male versus female development and fertility within the same species. This review highlights sexual divergence in metabolism and reproductive tract differences, the occurrence of sexually "exaggerated" traits, and sex size differences that are due to the sexes' differential activity/response to the insulin signaling pathway.
Collapse
Affiliation(s)
- Jéssica Paloma Álvarez-Rendón
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Juan Manuel Murillo-Maldonado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Juan Rafael Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
7
|
Xu MM, Gu LH, Lv WY, Duan SC, Li LW, Du Y, Lu LZ, Zeng T, Hou ZC, Ma ZS, Chen W, Adeola AC, Han JL, Xu TS, Dong Y, Zhang YP, Peng MS. Chromosome-level genome assembly of the Muscovy duck provides insight into fatty liver susceptibility. Genomics 2022; 114:110518. [PMID: 36347326 DOI: 10.1016/j.ygeno.2022.110518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
The Muscovy duck (Cairina moschata) is an economically important poultry species, which is susceptible to fatty liver. Thus, the Muscovy duck may serve as an excellent candidate animal model of non-alcoholic fatty liver disease. However, the mechanisms underlying fatty liver development in this species are poorly understood. In this study, we report a chromosome-level genome assembly of the Muscovy duck, with a contig N50 of 11.8 Mb and scaffold N50 of 83.16 Mb. The susceptibility of Muscovy duck to fatty liver was mainly attributed to weak lipid catabolism capabilities (fatty acid β-oxidation and lipolysis). Furthermore, conserved noncoding elements (CNEs) showing accelerated evolution contributed to fatty liver formation by down-regulating the expression of genes involved in hepatic lipid catabolism. We propose that the susceptibility of Muscovy duck to fatty liver is an evolutionary by-product. In conclusion, this study revealed the potential mechanisms underlying the susceptibility of Muscovy duck to fatty liver.
Collapse
Affiliation(s)
- Ming-Min Xu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Li-Hong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Wan-Yue Lv
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | | | - Lian-Wei Li
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuan Du
- Nowbio Biotechnology Company, Kunming 650201, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhanshan Sam Ma
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Tie-Shan Xu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
8
|
Blood Metabolites and Profiling Stored Adipose Tissue Reveal the Differential Migratory Strategies of Eurasian Reed and Sedge Warblers. BIRDS 2022. [DOI: 10.3390/birds3040024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The overall speed of bird migration is limited by the amount of fuel stores acquired during the initial phases of migration. The ability to mobilize fat is crucial for migratory birds that can exhibit different migratory strategies. Birds mobilize triglycerides during nocturnal flight thus increasing circulating fatty acids and glycerol to meet the metabolic demands of flight. Eurasian Reed (Acrocephalus scirpaceus) and Sedge (Acrocephalus schoenobaenus) Warblers were captured at Portuguese stopover sites during spring and autumn migration. These species were selected based on their different migration strategies and dietary preferences during migration. Blood metabolites and fat composition were analyzed to determine their nutritional states. Sedge Warblers had higher blood triglyceride and glycerol levels during post-flight fasting than in non-fasting periods. Furthermore, Sedge Warblers had higher triglyceride and glycerol levels than Eurasian Reed Warblers in both post-flight fasting and non-fasting condition. The differences found may reflect distinct approaches in re-feeding activity (e.g., feeding intensely) associated with the number of stopovers during migratory cycle. Dietary preferences affect the fat composition available for oxidation during long-term exercise in migratory flight. Nuclear magnetic resonance analysis of subcutaneous fat composition revealed that Sedge Warblers presented higher levels of polyunsaturated fatty acid levels than Eurasian Reed Warblers. The distinct lipidic profiles observed and differences in feeding ecology may explain the different migration strategies of these species. Overall and despite their ecological similarity, our study species showed pronounced differences in blood metabolites levels and subcutaneous fatty acids composition, likely attributed to the migratory strategy and foraging preferences during their migratory cycle.
Collapse
|
9
|
Tomášek O, Bobek L, Kauzálová T, Kauzál O, Adámková M, Horák K, Kumar SA, Manialeu JP, Munclinger P, Nana ED, Nguelefack TB, Sedláček O, Albrecht T. Latitudinal but not elevational variation in blood glucose level is linked to life history across passerine birds. Ecol Lett 2022; 25:2203-2216. [PMID: 36082485 DOI: 10.1111/ele.14097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Macrophysiological research is vital to our understanding of mechanisms underpinning global life history variation and adaptation to diverse environments. Here, we examined latitudinal and elevational variation in a key substrate of energy metabolism and an emerging physiological component of pace-of-life syndromes, blood glucose concentration. Our data, collected from 61 European temperate and 99 Afrotropical passerine species, revealed that baseline blood glucose increases with both latitude and elevation, whereas blood glucose stress response shows divergent directions, being stronger at low latitudes and high elevations. Low baseline glucose in tropical birds, compared to their temperate counterparts, was mainly explained by their low fecundity, consistent with the slow pace-of-life syndrome in the tropics. In contrast, elevational variation in this trait was decoupled from fecundity, implying a unique montane pace-of-life syndrome combining slow-paced life histories with fast-paced physiology. The observed patterns suggest that pace-of-life syndromes do not evolve along the single fast-slow axis.
Collapse
Affiliation(s)
- Oldřich Tomášek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Zoology, Charles University, Prague, Czechia
| | - Lukáš Bobek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Tereza Kauzálová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Ecology, Charles University, Prague, Czechia
| | - Marie Adámková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, Czechia
| | - Kryštof Horák
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Sampath Anandan Kumar
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, Czechia
| | - Judith Pouadjeu Manialeu
- Faculty of Science, Laboratory of Animal Physiology and Phytopharmacology, University of Dschang, Dschang, Cameroon
| | - Pavel Munclinger
- Faculty of Science, Department of Zoology, Charles University, Prague, Czechia
| | - Eric Djomo Nana
- Agricultural Research Institute for Development (IRAD), Yaoundé, Cameroon
| | - Télesphore Benoît Nguelefack
- Faculty of Science, Laboratory of Animal Physiology and Phytopharmacology, University of Dschang, Dschang, Cameroon
| | - Ondřej Sedláček
- Faculty of Science, Department of Ecology, Charles University, Prague, Czechia
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Zoology, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Montoya B, Briga M, Jimeno B, Verhulst S. Glucose tolerance predicts survival in old zebra finches. J Exp Biol 2022; 225:275426. [DOI: 10.1242/jeb.243205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 05/08/2022] [Indexed: 11/20/2022]
Abstract
The capacity to deal with external and internal challenges is thought to affect fitness, and the age-linked impairment of this capacity defines the ageing process. Using a recently developed intra-peritoneal glucose tolerance test (GTT) in zebra finches, we tested for a link between the capacity to regulate glucose levels and survival. We also investigated for the effects of ambient factors, age, sex, and manipulated developmental and adult conditions (i.e. natal brood size and foraging cost, in a full factorial design) on glucose tolerance. Glucose tolerance was quantified using the incremental ‘area under the curve’ (AUC), with lower values indicating higher tolerance. Glucose tolerance predicted survival probability in old birds, above the median age, with individuals with higher glucose tolerance showing better survival than individuals with low or intermediate glucose tolerance. In young birds there was no association between glucose tolerance and survival. Experimentally induced adverse developmental conditions did not affect glucose tolerance, but low ambient temperature at sampling and hard foraging conditions during adulthood induced a fast return to baseline levels (i.e. high glucose tolerance). These findings can be interpreted as an efficient return to baseline glucose levels when energy requirements are high, with glucose presumably being used for energy metabolism or storage. Glucose tolerance was independent of sex. Our main finding that old birds with higher glucose tolerance had better survival supports the hypothesis that the capacity to efficiently cope with a physiological challenge predicts lifespan, at least in old birds.
Collapse
Affiliation(s)
- Bibiana Montoya
- Laboratorio de Conducta Animal, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Mexico
| | - Michael Briga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Department of Biology, University of Turku, Turku, Finland
- Infectious Disease Epidemiology group, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| |
Collapse
|
11
|
Brown CLJ, Zaytsoff SJM, Montina T, Inglis GD. Corticosterone-Mediated Physiological Stress Alters Liver, Kidney, and Breast Muscle Metabolomic Profiles in Chickens. Animals (Basel) 2021; 11:3056. [PMID: 34827788 PMCID: PMC8614290 DOI: 10.3390/ani11113056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
The impact of physiological stress on the metabolomes of liver, kidney, and breast muscle was investigated in chickens. To incite a stress response, birds were continuously administered corticosterone (CORT) in their drinking water at three doses (0, 10, and 30 mg L-1), and they were sampled 1, 5, and 12 days after the start of the CORT administration. To solubilize CORT, it was first dissolved in ethanol and then added to water. The administration of ethanol alone significantly altered branched chain amino acid metabolism in both the liver and the kidney, and amino acid and nitrogen metabolism in breast muscle. CORT significantly altered sugar and amino acid metabolism in all three tissues, but to a much greater degree than ethanol alone. In this regard, CORT administration significantly altered 11, 46, and 14 unique metabolites in liver, kidney, and breast muscle, respectively. Many of the metabolites that were affected by CORT administration, such as mannose and glucose, were previously linked to increases in glycosylation and gluconeogenesis in chickens under conditions of production stress. Moreover, several of these metabolites, such as dimethylglycine, galactose, and carnosine were also previously linked to reduced quality meat. In summary, the administration of CORT in chickens significantly modulated host metabolism. Moreover, results indicated that energy potentials are diverted from muscle anabolism to muscle catabolism and gluconeogenesis during periods of stress.
Collapse
Affiliation(s)
- Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sarah J. M. Zaytsoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Science Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
| |
Collapse
|
12
|
Emon NU, Rudra S, Alam S, Haidar IKA, Paul S, Richi FT, Shahriar S, Sayeed MA, Tumpa NI, Ganguly A. Chemical, biological and protein-receptor binding profiling of Bauhinia scandens L. stems provide new insights into the management of pain, inflammation, pyrexia and thrombosis. Biomed Pharmacother 2021; 143:112185. [PMID: 34543985 DOI: 10.1016/j.biopha.2021.112185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023] Open
Abstract
Bauhinia scandens L. (Family, Fabaceae) is a medicinal plant used for conventional and societal medication in Ayurveda. The present study has been conducted to screen the chemical, pharmacological and biochemical potentiality of the methanol extracts of B. scandens stems (MEBS) along with its related fractions including carbon tetrachloride (CTBS), di-chloromethane (DMBS) and n-butanol (BTBS). UPLC-QTOF-MS has been implemented to analyze the chemical compounds of the methanol extracts of Bauhinia scandens stems. Additionally, antinociceptive and anti-inflammatory effects were performed by following the acetic acid-induced writhing test and formalin-mediated paw licking test in the mice model. The antipyretic investigation was performed by Brewer Yeast induced pyrexia method. The clot lysis method was implemented to screen the thrombolytic activity in human serum. Besides, the in silico study was performed for the five selected chemical compounds of Bauhinia scandens, found by UPLC-QTOF-MS By using Discover Studio 2020, UCSF Chimera, PyRx autodock vina and online tools. The MEBS and its fractions exhibited remarkable inhibition in dose dependant manner in the antinociceptive and antiinflammatory investigations. The antipyretic results of MEBS and DMBS were close to the standard drug indomethacin. Investigation of the thrombolytic effect of MEBS, CTBS, DMBS, and BTBS revealed notable clot-lytic potentials. Besides, the phenolic compounds of the plant extracts revealed strong binding affinity to the COX-1, COX-2, mPGES-1 and plasminogen activator enzymes. To recapitulate, based on the research work, Bauhinia scandens L. stem and its phytochemicals can be considered as prospective wellsprings for novel drug development and discovery by future researchers.
Collapse
Affiliation(s)
- Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Sajib Rudra
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Safaet Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | | | - Susmita Paul
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Fahmida Tasnim Richi
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saimon Shahriar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammed Aktar Sayeed
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh.
| | - Nadia Islam Tumpa
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Amlan Ganguly
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
13
|
Abd El-Wahab A, Chuppava B, Radko D, Visscher C. Hepatic lipidosis in fattening turkeys: A review. TURKEY DISEASES, PRODUCTION AND MANAGEMENT 2021; 1:48-66. [DOI: 10.51585/gjvr.2021.3.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The conditions on turkey fattening farms, including management, housing, and feeding, have been constantly improved recently in favour of animal health. Many studies deal scientifically with poultry health. However, specifically concerning liver health, there are still open questions regarding the influence of dietary factors on the metabolism and function of the liver. Consideration of the factors that could influence and alter liver metabolism is therefore of critical relevance. The liver, as a major metabolic organ, is the main site of fat synthesis in turkeys. Under certain conditions, fat can excessively accumulate in the liver and adversely affect the birds’ health. The so-called hepatic lipidosis (HL) in fattening turkeys has been known for years. This disease has unacceptable economic and animal welfare impacts, with high animal losses up to 15% within only a few days. To date, little is known about the causes and the metabolic changes in fattening turkeys leading to HL despite the increasing focus on health management and animal welfare. To understand what is different in turkeys compared to other species, it is necessary to discuss the metabolism of the liver in more detail, including HL-associated gross and microscopic lesions. In the current review, aspects of liver structure and lipid metabolism with special regard to lipogenesis are explained to discuss all dietary factors attributing to the development and prevention of HL. As part of the prevention of the HL, dietetics measures can be helpful in the future.
Collapse
|
14
|
Young KG, Vanderboor CM, Regnault TRH, Guglielmo CG. Species-specific metabolic responses of songbird, shorebird, and murine cultured myotubes to n-3 polyunsaturated fatty acids. Am J Physiol Regul Integr Comp Physiol 2020; 320:R362-R376. [PMID: 33356878 DOI: 10.1152/ajpregu.00249.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Migratory birds may benefit from diets rich in polyunsaturated fatty acids (PUFAs) that could improve exercise performance. Previous investigations suggest that different types of birds may respond differently to PUFA. We established muscle myocyte cell culture models from muscle satellite cells of a migratory passerine songbird (yellow-rumped warbler, Setophaga coronata coronata) and a nonpasserine shorebird (sanderling, Calidris alba). We differentiated and treated avian myotubes and immortalized murine C2C12 myotubes with n-3 PUFA docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and with monounsaturated oleic acid (OA) to compare effects on aerobic performance, metabolic enzyme activities, key fatty acid (FA) transporters, and expression of peroxisome proliferator-activated receptors (PPARs). Sanderling and C2C12 myotubes increased expression of PPARs with n-3 PUFA treatments, whereas expression was unchanged in yellow-rumped warblers. Both sanderlings and yellow-rumped warblers increased expression of fatty acid transporters, whereas C2C12 cells decreased expression following n-3 PUFA treatments. Only yellow-rumped warbler myotubes increased expression of some metabolic enzymes, whereas the sanderling and C2C12 cells were unchanged. PUFA supplementation in C2C12 myotubes increased mitochondrial respiratory chain efficiency, whereas sanderlings increased proton leak-associated respiration and maximal respiration (measurements were not made in warblers). This research indicates that songbirds and shorebirds respond differently to n-3 PUFA and provides support for the hypothesis that n-3 PUFA increase the aerobic capacity of migrant shorebird muscle, which may improve overall endurance flight performance.
Collapse
Affiliation(s)
- Kevin G Young
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| | - Christina M Vanderboor
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| |
Collapse
|
15
|
McGraw KJ, Chou K, Bridge A, McGraw HC, McGraw PR, Simpson RK. Body condition and poxvirus infection predict circulating glucose levels in a colorful songbird that inhabits urban and rural environments. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:561-568. [PMID: 32515908 DOI: 10.1002/jez.2391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/10/2022]
Abstract
There is widespread contemporary interest in causes and consequences of blood glucose status in humans (e.g., links to diabetes and cardiovascular disease), but we know comparatively less about what underlies variation in glucose levels of wild animals. Several environmental factors, including diet, disease status, and habitat quality, may regulate glucose circulation, and we are in need of work that assesses many organismal traits simultaneously to understand the plasticity and predictability of glucose levels in ecological and evolutionary contexts. Here, we measured circulating glucose levels in a species of passerine bird (the house finch, Haemorhous mexicanus) that has served as a valuable model for research on sexual selection, disease, and urban behavioral ecology, as these animals display sexually dichromatic ornamental coloration, harbor many infectious diseases (e.g., poxvirus, coccidiosis, mycoplasmal conjunctivitis), and reside in both natural habitats and cities. We tested the effects of sex, habitat type, body condition, coccidiosis and poxvirus infections, and expression of carotenoid plumage coloration on blood glucose concentrations and found that the body condition and poxvirus infection significantly predicted circulating glucose levels. Specifically, birds with higher blood glucose levels had higher body condition scores and were infected with poxvirus. This result is consistent with biomedical, domesticated-animal, and wildlife-rehabilitation findings, and the premise that glucose elevation is a physiological response to or indicator of infection and relative body weight. The fact that we failed to find links between glucose and our other measurements suggests that blood glucose levels can reveal some but not all aspects of organismal or environmental quality.
Collapse
Affiliation(s)
- Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Katherine Chou
- Science and Engineering Experience (SCENE) program, Arizona State University, Tempe, Arizona
| | - Annika Bridge
- Science and Engineering Experience (SCENE) program, Arizona State University, Tempe, Arizona
| | - Hannah C McGraw
- Science and Engineering Experience (SCENE) program, Arizona State University, Tempe, Arizona
| | - Peyton R McGraw
- Science and Engineering Experience (SCENE) program, Arizona State University, Tempe, Arizona
| | - Richard K Simpson
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
16
|
Montoya B, Briga M, Jimeno B, Verhulst S. Glucose regulation is a repeatable trait affected by successive handling in zebra finches. J Comp Physiol B 2020; 190:455-464. [PMID: 32424441 DOI: 10.1007/s00360-020-01283-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 11/29/2022]
Abstract
The capacity to adequately respond to (physiological) perturbations is a fundamental aspect of physiology, and may affect health and thereby Darwinian fitness. However, little is known of the degree of individual variation in this capacity in non-model organisms. The glucose tolerance test evaluates the individual's ability to regulate circulating glucose levels, and is a widely used tool in medicine and biomedical research, because glucose regulation is thought to play a role in the ageing process, among other reasons. Here, we developed an application of the intraperitoneal glucose tolerance test (IP-GTT) to be used in small birds, to test whether individuals can be characterized by their regulation of glucose levels and the effect of successive handling on such regulation. Since the IP-injection (intraperitoneal glucose injection), repeated handling and blood sampling may trigger a stress response, which involves a rise in glucose levels, we also evaluated the effects of handling protocols on glucose response. Blood glucose levels decreased immediately following an IP-injection, either vehicle or glucose loaded, and increased with successive blood sampling. Blood glucose levels peaked, on average, at 20 min post-injection (PI) and had not yet returned back to initial levels at 120 min PI. Glucose measurements taken during the IP-GTT were integrated to estimate magnitude of changes in glucose levels over time using the incremental area under the curve (AUC) up to 40 min PI. Glucose levels integrated in the AUC were significantly repeatable within individuals over months (r = 50%; 95% CI 30-79%), showing that the ability to regulate glucose differs consistently between individuals.
Collapse
Affiliation(s)
- Bibiana Montoya
- Laboratorio de Conducta Animal, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands. .,Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| | - Michael Briga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Department of Biology, University of Turku, Turku, Finland
| | - Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
17
|
Sun J, Gou Y, Liu J, Chen H, Kan J, Qian C, Zhang N, Niu F, Jin C. Anti-inflammatory activity of a water-soluble polysaccharide from the roots of purple sweet potato. RSC Adv 2020; 10:39673-39686. [PMID: 35515390 PMCID: PMC9057464 DOI: 10.1039/d0ra07551e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, a water-soluble polysaccharide was isolated from purple sweet potato roots. The in vitro and in vivo anti-inflammatory effects of the polysaccharide were evaluated by lipopolysaccharide (LPS)-induced inflammatory RAW264.7 macrophages and mice, respectively. The in vitro anti-inflammatory assay showed that the polysaccharide could effectively inhibit the overproduction of nitric oxide and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) while increasing the secretion of anti-inflammatory cytokine (IL-10). The in vivo anti-inflammatory assay revealed that mice administered with the polysaccharide showed higher IL-10, SOD, and T-AOC levels but lower TNF-α, IL-1β, IL-6 and MDA levels as compared to the LPS-treated model. Meanwhile, mice administered with the polysaccharide showed increased abundance of Lachnospiraceae, Lactobacillales and Parabacteroides but decreased amounts of Psychrobacter and Staphylococcus as compared to the LPS model group. Moreover, mice administered with polysaccharide showed enhanced production of short chain fatty acids by gut microbiota in the lipopolysaccharide-induced inflammatory mice. Our results suggested that the water-soluble polysaccharide from purple sweet potato roots could be utilized as a novel anti-inflammatory agent. A water-soluble polysaccharide from purple sweet potato roots played anti-inflammatory roles by regulating inflammatory cytokines, gut microbiota and antioxidant defense system.![]()
Collapse
Affiliation(s)
- Jian Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
| | - Yarun Gou
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Hong Chen
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Juan Kan
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Chunlu Qian
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Nianfeng Zhang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Fuxiang Niu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
- Xuzhou 221131
- China
| | - Changhai Jin
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- College of Food Science and Engineering
| |
Collapse
|
18
|
Shi S, Qi Z, Gu B, Cheng B, Tu J, Song X, Shao Y, Liu H, Qi K, Li S. Analysis of high-throughput sequencing for cecal microbiota diversity and function in hens under different rearing systems. 3 Biotech 2019; 9:438. [PMID: 31750036 DOI: 10.1007/s13205-019-1970-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/23/2019] [Indexed: 01/16/2023] Open
Abstract
Rearing systems play an important role in animal welfare, health and the composition of the gut microbiome. Therefore, the purpose of this study was to investigate the effects of different rearing systems on the composition and function of cecal microbiota in chickens. The 120-day-old Lohmann hens of cage rearing systems (CRS) and free-range systems (FRS) were studied. The cecal bacterial populations of hens were surveyed by high-throughput sequencing (HTS) of the bacterial 16S rRNA hypervariable region V3-V4 combined with metagenomic sequencing analysis. The 16S rRNA sequencing analysis showed that the cecal microbiota differed between the FRS and CRS. The three most abundant bacteria phyla in the two systems were the Bacteroidetes (> 48%), Firmicutes (> 37%), and Proteobacteria (> 6%), the Deferribacteres (> 2.4%) were found in FRS and almost absent in CRS (< 0.01%). The three most abundant genera were the Bacteroides, Rikenellaceae_RC9, and Faecalibacterium, and we found relative abundance of the Parabacteroides (P < 0.05), Prevotellaceae_Ga6A1 (P < 0.01), unclassified Proteobacteria (P < 0.05), and unclassified Spirochaetaceae (P < 0.01) was greater in FRS, whereas abundance of Faecalibacterium, Ruminococcaceae, and Helicobacter was greater in CRS (P < 0.05). Functional gene classification of metagenomic sequencing suggested that energy production and conversion, carbohydrate transport and metabolism, as well as amino acid transport and metabolism were significantly more abundant in FRS, and we identified a range of antibiotic resistance categories in gut microbes of hens reared under both systems. We confirmed differences in microbe gut composition and function in hens reared using two contrasting systems, and ARGs were also identified in the microbiota of these hens. This work has produced new data for laying hens in different production systems and increased the understanding of intestinal microorganisms in laying hens.
Collapse
Affiliation(s)
- Shuiqin Shi
- 1Present Address: Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science 11 and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui People's Republic of China
| | - Zhao Qi
- 2School of Information and Computer, Anhui Agricultural University, Hefei, 230036 People's Republic of China
| | - Bintao Gu
- 1Present Address: Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science 11 and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui People's Republic of China
| | - Baoyan Cheng
- 1Present Address: Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science 11 and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui People's Republic of China
| | - Jian Tu
- 1Present Address: Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science 11 and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui People's Republic of China
| | - Xiangjun Song
- 1Present Address: Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science 11 and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui People's Republic of China
| | - Yin Shao
- 1Present Address: Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science 11 and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui People's Republic of China
| | - Hongmei Liu
- 1Present Address: Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science 11 and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui People's Republic of China
| | - Kezong Qi
- 1Present Address: Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science 11 and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui People's Republic of China
| | - Shaowen Li
- 2School of Information and Computer, Anhui Agricultural University, Hefei, 230036 People's Republic of China
| |
Collapse
|
19
|
Li X, Zheng Z, Pan J, Jiang D, Tian Y, Huang Y. Influences of melatonin and endotoxin lipopolysaccharide on goose productive performance and gut microbiota. Br Poult Sci 2019; 61:217-224. [DOI: 10.1080/00071668.2019.1687851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- X. Li
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - Z. Zheng
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - J. Pan
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - D. Jiang
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - Y. Tian
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - Y. Huang
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
20
|
Araújo PM, Viegas I, Rocha AD, Villegas A, Jones JG, Mendonça L, Ramos JA, Masero JA, Alves JA. Understanding how birds rebuild fat stores during migration: insights from an experimental study. Sci Rep 2019; 9:10065. [PMID: 31296911 PMCID: PMC6624420 DOI: 10.1038/s41598-019-46487-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
Mechanisms underlying fat accumulation for long-distance migration are not fully understood. This is especially relevant in the context of global change, as many migrants are dealing with changes in natural habitats and associated food sources and energy stores. The continental Black-tailed godwit Limosa limosa limosa is a long-distance migratory bird that has undergone a considerable dietary shift over the past few decades. Historically, godwits fed on an animal-based diet, but currently, during the non-breeding period godwits feed almost exclusively on rice seeds. The latter diet may allow building up of their fuel stores for migration by significantly increasing de novo lipogenesis (DNL) activity. Here, we performed an experiment to investigate lipid flux and the abundance of key enzymes involved in DNL in godwits, during fasting and refueling periods at the staging site, while feeding on rice seeds or fly larvae. Despite no significant differences found in enzymatic abundance (FASN, ME1, ACC and LPL) in stored fat, experimental godwits feeding on rice seeds presented high rates of DNL when compared to fly-larvae fed birds (~35 times more) and fasted godwits (no DNL activity). The increase of fractional DNL in godwits feeding on a carbohydrate-rich diet can potentially be enhanced by the fasting period that stimulates lipogenesis. Although requiring further testing, these recent findings provide new insights into the mechanisms of avian fat accumulation during a fasting and refueling cycle and associated responses to habitat and dietary changes in a migratory species.
Collapse
Affiliation(s)
- Pedro M Araújo
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517, Coimbra, Portugal.
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661, Vairão, Portugal.
| | - Ivan Viegas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004- 517, Portugal
- CEF - Center for Functional Ecology, Department Life Sciences, University of Coimbra, Coimbra, 3000-456, Portugal
| | - Afonso D Rocha
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3180-193, Aveiro, Portugal
| | - Auxiliadora Villegas
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Avenida de Elvas s/n, 06071, Badajoz, Spain
| | - John G Jones
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004- 517, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004- 517, Portugal
| | - Jaime A Ramos
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517, Coimbra, Portugal
| | - José A Masero
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Avenida de Elvas s/n, 06071, Badajoz, Spain
| | - José A Alves
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3180-193, Aveiro, Portugal
- University of Iceland, South Iceland Research Centre, Lindarbraut 4, IS-840, Laugarvatn, Iceland
| |
Collapse
|
21
|
Tomasek O, Bobek L, Kralova T, Adamkova M, Albrecht T. Fuel for the pace of life: Baseline blood glucose concentration co-evolves with life-history traits in songbirds. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Oldrich Tomasek
- Institute of Vertebrate Biology of the Czech Academy of Sciences; Brno Czech Republic
- Department of Zoology, Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Lukas Bobek
- Institute of Vertebrate Biology of the Czech Academy of Sciences; Brno Czech Republic
- Department of Botany and Zoology, Faculty of Science; Masaryk University; Brno Czech Republic
| | - Tereza Kralova
- Institute of Vertebrate Biology of the Czech Academy of Sciences; Brno Czech Republic
- Department of Botany and Zoology, Faculty of Science; Masaryk University; Brno Czech Republic
| | - Marie Adamkova
- Institute of Vertebrate Biology of the Czech Academy of Sciences; Brno Czech Republic
- Department of Botany and Zoology, Faculty of Science; Masaryk University; Brno Czech Republic
| | - Tomas Albrecht
- Institute of Vertebrate Biology of the Czech Academy of Sciences; Brno Czech Republic
- Department of Zoology, Faculty of Science; Charles University; Prague 2 Czech Republic
| |
Collapse
|
22
|
Wang W, Zheng S, Li L, Yang Y, Liu Y, Wang A, Sharshov K, Li Y. Comparative metagenomics of the gut microbiota in wild greylag geese (Anser anser) and ruddy shelducks (Tadorna ferruginea). Microbiologyopen 2018; 8:e00725. [PMID: 30296008 PMCID: PMC6528571 DOI: 10.1002/mbo3.725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Gut microbiome contributes to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of immune system. Wild greylag geese (Anser anser) and ruddy shelducks (Tadorna ferruginea), migrating along the central Asian flyway, appear to be one of the most popular species in the rare birds rearing industries of China. However, the structure and function of the gut microbial communities associated with these two bird species remain poorly understood. Here, for the first time, we compared gut metagenomes from greylag geese to ruddy shelducks and investigated the similarities and differences between these two bird species in detail. Taxonomic classifications revealed the top three bacterial phyla, Firmicutes, Proteobacteria, and Fusobacteria, in both greylag geese and ruddy shelducks. Furthermore, between the two species, 12 bacterial genera were found to be more abundant in ruddy shelducks and 41 genera were significantly higher in greylag geese. A total of 613 genera (approximately 70%) were found to be present in both groups. Metabolic categories related to carbohydrate metabolism, metabolism of cofactors and vitamins, lipid metabolism, amino acid metabolism, and glycan biosynthesis and metabolism were significantly more abundant in ruddy shelducks, while greylag geese were enriched in nucleotide metabolism and energy metabolism. The herbivorous greylag geese gut microbiota harbored more carbohydrate‐active enzymes than omnivorous ruddy shelducks. In our study, a range of antibiotic resistance categories were also identified in the gut microbiota of greylag geese and ruddy shelducks. In addition to providing a better understanding of the composition and function of wild birds gut microbiome, this comparative study provides reference values of the artificial domestication of these birds.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, China
| | - Sisi Zheng
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai, China
| | - Laixing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai, China
| | - Yongsheng Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Aizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai, China
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - Yao Li
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai, China
| |
Collapse
|
23
|
Thomas AL, Maekawa F, Kawashima T, Sakamoto H, Sakamoto T, Davis P, Dores RM. Analyzing the effects of co-expression of chick (Gallus gallus) melanocortin receptors with either chick MRAP1 or MRAP2 in CHO cells on sensitivity to ACTH(1-24) or ACTH(1-13)NH 2: Implications for the avian HPA axis and avian melanocortin circuits in the hypothalamus. Gen Comp Endocrinol 2018; 256:50-56. [PMID: 28888694 DOI: 10.1016/j.ygcen.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
In order to better understand the roles that melanocortin receptors (cMCRs) and melanocortin-2 receptor accessory proteins (cMRAP1 and cMRAP2) play in the HPA axis and hypothalamus, adrenal gland and hypothalamus mRNA from 1day-old white leghorn chicks (Gallus gallus), were analyzed by real-time PCR. mRNA was also made for kidney, ovary, and liver. Mrap1 mRNA could be detected in adrenal tissue, but not in any of the other tissues, and mrap2 mRNA was also detected in the adrenal gland. Finally, all five melanocortin receptors mRNAs could be detected in the adrenal gland; mc2r and mc5r mRNAs were the most abundant. To evaluate any potential interactions between MRAP1 and the MCRs that may occur in adrenal cells, individual chick mcr cDNA constructs were transiently expressed in CHO cells either in the presence or absence of a chick mrap1 cDNA, and the transfected cells were stimulated with hACTH(1-24) at concentrations ranging from 10-13M to 10-6M. As expected, MC2R required co-expression with MRAP1 for functional expression; whereas, co-expression of cMC3R with cMRAP1 had no statistically significant effect on sensitivity to hACTH(1-24). However, co-expression of MC4R and MC5R with MRAP1, increased sensitivity for ACTH(1-24) by approximately 35 fold and 365 fold, respectively. However, co-expressing of cMRAP2 with these melanocortin receptors had no effect on sensitivity to hACTH(1-24). Since the real-time PCR analysis detected mrap2 mRNA and mc4r mRNA in the hypothalamus, the interaction between cMC4R and cMRAP2 with respect to sensitivity to ACTH(1-13)NH2 stimulation was also evaluated. However, no effect, either positive or negative, was observed. Finally, the highest levels of mc5r mRNA were detected in liver cells. This observation raises the possibility that in one-day old chicks, activation of the HPA axis may also involve a physiological response from liver cells.
Collapse
|
24
|
Bai S, Pan S, Zhang K, Ding X, Wang J, Zeng Q, Xuan Y, Su Z. Long-term effect of dietary overload lithium on the glucose metabolism in broiler chickens. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:191-198. [PMID: 28778020 DOI: 10.1016/j.etap.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Lithium, like insulin, activates glycogen synthase and stimulates glucose transport in rat adipocytes. To investigate the effect of dietary overload lithium on glucose metabolism in broiler chickens, one-day-old chicks were fed a basal diet supplemented with 0 (control) or 100mg lithium/kg (overload lithium) for 35days. Compared to controls, glucose disappearance rates were lower (p=0.035) 15-120min after glucose gavage, and blood glucose concentrations were lower (p=0.038) 30min after insulin injection in overload lithium broilers. Overload lithium decreased (p<0.05) glycogen and glucose-6-phosphate concentrations in liver, but increased (p<0.05) their concentrations in pectoralis major. Overload lithium increased (p<0.05) mRNA expression of glucose transporter (GLUT) 3 and GLUT9 in liver, and GLUT1, GLUT3, GLUT8, and GLUT9 in pectoralis major, but decreased (p<0.05) cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in liver and mitochondrial PEPCK in pectoralis major. These results suggest that dietary overload lithium decreases glucose tolerance and gluconeogenesis, but increases insulin sensitivity and glucose transport in broiler chickens.
Collapse
Affiliation(s)
- Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Shuqin Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xuemei Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yue Xuan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zuowei Su
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
25
|
Visscher C, Middendorf L, Günther R, Engels A, Leibfacher C, Möhle H, Düngelhoef K, Weier S, Haider W, Radko D. Fat content, fatty acid pattern and iron content in livers of turkeys with hepatic lipidosis. Lipids Health Dis 2017; 16:98. [PMID: 28558775 PMCID: PMC5450264 DOI: 10.1186/s12944-017-0484-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The so-called "hepatic lipidosis" in turkeys is an acute progressive disease associated with a high mortality rate in a very short time. Dead animals show a massive fatty degeneration of the liver. The cause is still unclear. Previous findings suggest that there may be parallels to human non-alcoholic fatty liver disease. The object of the study was to examine the changes in the fat contents, the fatty acid composition and the iron content in livers of animals, which have died from hepatic lipidosis. METHODS The conspicuous livers (n = 85) were collected from 20 flocks where the phenomenon of massive increased animal losses accompanied by marked macroscopically visible pathological liver steatosis suddenly occurred. For comparison and as a reference, livers (n = 16) of two healthy flocks were taken. Healthy and diseased flocks were fed identical diets concerning official nutrient recommendations and were operating under standardized, comparable conventional conditions. RESULTS Compared to livers of healthy animals, in the livers of turkeys died from hepatic lipidosis there were found massively increased fat levels (130 ± 33.2 vs. 324 ± 101 g/kg dry matter-DM). In all fatty livers, different fatty acids concentrations were present in significantly increased concentrations compared to controls (palmitic acid: 104 g/kg DM, +345%; palmitoleic acid: 18.0 g/kg DM, + 570%; oleic acid: 115 g/kg DM, +437%). Fatty acids concentrations relevant for liver metabolism and inflammation were significantly reduced (arachidonic acid: 2.92 g/kg DM, -66.6%; eicosapentaenoic acid: 0.141 g/kg DM, -78.3%; docosahexaenoic acid: 0.227 g/kg DM, -90.4%). The ratio of certain fatty acids to one another between control and case livers changed analogously to liver diseases in humans (e.g.: C18:0/C16:0 - 0.913 against 0.311; C16:1n7/C16:0 - 0.090 against 0.165; C18:1/C18:0 - 0.938 against 4.03). The iron content in the liver tissue also increased massively (271 ± 51.5 vs 712 ± 214 mg/kg DM). CONCLUSION The hepatic lipidosis has a massive impact on the lipid content, the lipid composition and the iron content in the liver. The character of the metabolic disorder includes parallels to the non-alcoholic steatohepatitis in humans.
Collapse
Affiliation(s)
- Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173, Hannover, Germany.
| | - Lea Middendorf
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173, Hannover, Germany
| | - Ronald Günther
- Heidemark GmbH, Veterinärlabor, Jakob-Uffrecht-Str. 20, D-39340, Haldensleben, Germany
| | - Alexandra Engels
- Tierarztpraxis Dr. A. Engels, Gut Hacheney 2-5, D-59199, Bönen-Lenningsen, Germany
| | - Christof Leibfacher
- Tierarztpraxis Dr. A. Engels, Gut Hacheney 2-5, D-59199, Bönen-Lenningsen, Germany
| | - Henrik Möhle
- Tierärztliche Gemeinschaftspraxis Dres. Windhaus & Hemme, An der Ohe 1, D-49377, Vechta, Germany
| | - Kristian Düngelhoef
- Tierarztpraxis an der Güterstraße, Güterstraße 7, D-46499, Hamminkeln, Germany
| | - Stefan Weier
- Praxis am Bergweg, Bergweg 20, D-49393, Lohne (Oldenburg), Germany
| | - Wolfram Haider
- Institut für Tierpathologie, Schönhauser Str. 62, D-13127, Berlin, Germany
| | - Dimitri Radko
- Elanco Animal Health GmbH, Werner-Reimers-Str. 2-4, Bad Homburg, D-61352, Germany
| |
Collapse
|
26
|
Hernández-Díaz N, Torres R, Ramírez-Pinilla MP. Proteomic Profile of Mabuya sp. (Squamata: Scincidae) Ovary and Placenta During Gestation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:371-389. [PMID: 28397398 DOI: 10.1002/jez.b.22739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023]
Abstract
Reptiles are one of the most diverse groups of vertebrates, providing an integrated system for comparative studies on metabolic, animal physiology, and developmental biology. However, the molecular data available are limited and only recently have started to call attention in the "omics" sciences. Mabuya sp. is a viviparous placentrotrophic skink with particular reproductive features, including microlecithal eggs, early luteolysis, prolonged gestation, and development of a highly specialized placenta. This placenta is responsible for respiratory exchange and the transference of all nutrients necessary for embryonic development. Our aim was to identify differentially expressed proteins in the ovary and placenta of Mabuya sp. during early, mid, and late gestation; their possible metabolic pathways; and biological processes. We carried out a comparative proteomic analysis during gestation in both tissues by sodium dodecyl sulfate polyacrylamide gel electrophoresis, two-dimensional gel electrophoresis, and matrix-assisted laser desorption/ionization. Differential protein expression in both tissues (Student's t-test P < 0.05) was related to several processes such as cell structure, cell movement, and energy. Proteins found in ovary are mainly associated with follicular development and its regulation. In the placenta, particularly during mid and late gestation, protein expression is involved in nutrient metabolism, transport, protein synthesis, and embryonic development. This work provides new insights about the proteins expressed and their physiological mechanisms in Mabuya sp. placenta and ovary during gestation.
Collapse
Affiliation(s)
- Nathaly Hernández-Díaz
- Laboratorio de Biología Reproductiva de Vertebrados, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.,Grupo de Investigación en Bioquímica y Microbiología, GIBIM, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Rodrigo Torres
- Grupo de Investigación en Bioquímica y Microbiología, GIBIM, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.,Laboratorio de Biotecnología-CEO, Instituto Colombiano del Petróleo, ECOPETROL, Piedecuesta, Santander, Colombia
| | - Martha Patricia Ramírez-Pinilla
- Laboratorio de Biología Reproductiva de Vertebrados, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
27
|
Wang W, Zheng S, Sharshov K, Sun H, Yang F, Wang X, Li L, Xiao Z. Metagenomic profiling of gut microbial communities in both wild and artificially reared Bar-headed goose (Anser indicus). Microbiologyopen 2016; 6. [PMID: 27998035 PMCID: PMC5387313 DOI: 10.1002/mbo3.429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022] Open
Abstract
Bar-headed goose (Anser indicus), a species endemic to Asia, has become one of the most popular species in recent years for rare bird breeding industries in several provinces of China. There has been no information on the gut metagenome configuration in both wild and artificially reared Bar-headed geese, even though the importance of gut microbiome in vertebrate nutrient and energy metabolism, immune homeostasis and reproduction is widely acknowledged. In this study, metagenomic methods have been used to describe the microbial community structure and composition of functional genes associated with both wild and artificially reared Bar-headed goose. Taxonomic analyses revealed that Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes were the four most abundant phyla in the gut of Bar-headed geese. Bacteroidetes were significantly abundant in the artificially reared group compared to wild group. Through functional profiling, we found that artificially reared Bar-headed geese had higher bacterial gene content related to carbohydrate transport and metabolism, energy metabolism and coenzyme transport, and metabolism. A comprehensive gene catalog of Bar-headed geese metagenome was built, and the metabolism of carbohydrate, amino acid, nucleotide, and energy were found to be the four most abundant categories. These results create a baseline for future Bar-headed goose microbiology research, and make an original contribution to the artificial rearing of this bird.
Collapse
Affiliation(s)
- Wen Wang
- Center of GrowthMetabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life Sciences and State Key Laboratory of BiotherapySichuan UniversityChengduChina
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
| | - Sisi Zheng
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical MedicineNovosibirskRussia
| | - Hao Sun
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
| | - Fang Yang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
| | - Xuelian Wang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
| | - Laixing Li
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
| | - Zhixiong Xiao
- Center of GrowthMetabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life Sciences and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| |
Collapse
|
28
|
Deviche P, Valle S, Gao S, Davies S, Bittner S, Carpentier E. The seasonal glucocorticoid response of male Rufous-winged Sparrows to acute stress correlates with changes in plasma uric acid, but neither glucose nor testosterone. Gen Comp Endocrinol 2016; 235:78-88. [PMID: 27292791 DOI: 10.1016/j.ygcen.2016.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 05/09/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
We sought to clarify functional relationships between baseline and acute stress-induced changes in plasma levels of the stress hormone corticosterone (CORT) and the reproductive hormone testosterone (T), and those of two main metabolites, uric acid (UA) and glucose (GLU). Acute stress in vertebrates generally stimulates the secretion of glucocorticoids, which in birds is primarily CORT. This stimulation is thought to promote behavioral and metabolic changes, including increased glycemia. However, limited information in free-ranging birds supports the view that acutely elevated plasma CORT stimulates glycemia. Acute stress also often decreases the secretion of reproductive hormones (e.g., T in males), but the role of CORT in this decrease and the contribution of T to the regulation of plasma GLU remain poorly understood. We measured initial (pre-stress) and acute stress-induced plasma CORT and T as well as GLU in adult male Rufous-winged Sparrows, Peucaea carpalis, sampled during the pre-breeding, breeding, post-breeding molt, and non-breeding stages. Stress increased plasma CORT and the magnitude of this increase did not differ across life history stages. The stress-induced elevation of plasma CORT was consistently associated with decreased plasma UA, suggesting a role for CORT in the regulation of plasma UA during stress. During stress plasma GLU either increased (pre-breeding), did not change (breeding), or decreased (molt and non-breeding), and plasma T either decreased (pre-breeding and breeding) or did not change (molt and non-breeding). These data provide only partial support to the hypothesis that CORT secretion during acute stress exerts a hyperglycemic action or is responsible for the observed decrease in plasma T taking place at certain life history stages. They also do not support the hypothesis that rapid changes in plasma T influence glycemia.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Scott Davies
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Stephanie Bittner
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Elodie Carpentier
- Universite de Poitiers, Faculte des Sciences Fondamentales et Appliquees, Poitiers F-86022, France
| |
Collapse
|
29
|
Abstract
The glucokinase (GK) enzyme (EC 2.7.1.1.) is essential for the use of dietary glucose because it is the first enzyme to phosphorylate glucose in excess in different key tissues such as the pancreas and liver. The objective of the present review is not to fully describe the biochemical characteristics and the genetics of this enzyme but to detail its nutritional regulation in different vertebrates from fish to human. Indeed, the present review will describe the existence of the GK enzyme in different animal species that have naturally different levels of carbohydrate in their diets. Thus, some studies have been performed to analyse the nutritional regulation of the GK enzyme in humans and rodents (having high levels of dietary carbohydrates in their diets), in the chicken (moderate level of carbohydrates in its diet) and rainbow trout (no carbohydrate intake in its diet). All these data illustrate the nutritional importance of the GK enzyme irrespective of feeding habits, even in animals known to poorly use dietary carbohydrates (carnivorous species).
Collapse
|
30
|
Sumners LH, Zhang W, Zhao X, Honaker CF, Zhang S, Cline MA, Siegel PB, Gilbert ER. Chickens from lines artificially selected for juvenile low and high body weight differ in glucose homeostasis and pancreas physiology. Comp Biochem Physiol A Mol Integr Physiol 2014; 172:57-65. [PMID: 24614025 DOI: 10.1016/j.cbpa.2014.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/11/2014] [Accepted: 02/26/2014] [Indexed: 11/18/2022]
Abstract
Artificial selection of White Plymouth Rock chickens for juvenile (day 56) body weight resulted in two divergent genetic lines: hypophagic low weight (LWS) chickens and hyperphagic obese high weight (HWS) chickens, with the latter more than 10-fold heavier than the former at selection age. A study was designed to investigate glucose regulation and pancreas physiology at selection age in LWS chickens and HWS chickens. Oral glucose tolerance and insulin sensitivity tests revealed differences in threshold sensitivity to insulin and glucose clearance rate between the lines. Results from real-time PCR showed greater pancreatic mRNA expression of four glucose regulatory genes (preproinsulin, PPI; preproglucagon, PPG; glucose transporter 2, GLUT2; and pancreatic duodenal homeobox 1, Pdx1) in LWS chickens, than HWS chickens. Histological analysis of the pancreas revealed that HWS chickens have larger pancreatic islets, less pancreatic islet mass, and more pancreatic inflammation than LWS chickens, all of which presumably contribute to impaired glucose metabolism.
Collapse
Affiliation(s)
- L H Sumners
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - W Zhang
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - X Zhao
- Sichuan Agricultural University, Sichuan, China.
| | - C F Honaker
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - S Zhang
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - M A Cline
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - P B Siegel
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - E R Gilbert
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
31
|
Witteveen M, Brown M, Downs CT. Does sugar content matter? Blood plasma glucose levels in an occasional and a specialist avian nectarivore. Comp Biochem Physiol A Mol Integr Physiol 2014; 167:40-4. [DOI: 10.1016/j.cbpa.2013.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 12/20/2022]
|