1
|
Rahman MU, Ullah MW, Alabbosh KF, Shah JA, Muhammad N, Zahoor, Shah SWA, Nawab S, Sethupathy S, Abdikakharovich SA, Khan KA, Elboughdiri N, Zhu D. Lignin valorization through the oxidative activity of β-etherases: Recent advances and perspectives. Int J Biol Macromol 2024; 281:136383. [PMID: 39395522 DOI: 10.1016/j.ijbiomac.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The increasing interest in lignin, a complex and abundant biopolymer, stems from its ability to produce environmentally beneficial biobased products. β-Etherases play a crucial role by breaking down the β-aryl ether bonds in lignin. This comprehensive review covers the latest advancements in β-etherase-mediated lignin valorization, focusing on substrate selectivity, enzymatic oxidative activity, and engineering methods. Research on the microbial origin, protein modification, and molecular structure determination of β-etherases has improved our understanding of their effectiveness. Furthermore, the use of these enzymes in biorefinery processes is promising for enhancing lignin breakdown and creating more valuable products. The review also discusses the challenges and future potential of β-etherases in advancing lignin valorization for biorefinery applications that are economically viable and environmentally sustainable.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | | | - Junaid Ali Shah
- Department of Molecular Biology and Biochemistry, College of Life Sciences, China Normal University, Shanghai 200241, PR China
| | - Nizar Muhammad
- COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zahoor
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | | | - Khalid Ali Khan
- Applied College & Center of Bee Research and its Products (CBRP), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Frade K, Silveira CM, Salgueiro BA, Mendes S, Martins LO, Frazão C, Todorovic S, Moe E. Biochemical, Biophysical, and Structural Analysis of an Unusual DyP from the Extremophile Deinococcus radiodurans. Molecules 2024; 29:358. [PMID: 38257271 PMCID: PMC10820274 DOI: 10.3390/molecules29020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Dye-decolorizing peroxidases (DyPs) are heme proteins with distinct structural properties and substrate specificities compared to classical peroxidases. Here, we demonstrate that DyP from the extremely radiation-resistant bacterium Deinococcus radiodurans is, like some other homologues, inactive at physiological pH. Resonance Raman (RR) spectroscopy confirms that the heme is in a six-coordinated-low-spin (6cLS) state at pH 7.5 and is thus unable to bind hydrogen peroxide. At pH 4.0, the RR spectra of the enzyme reveal the co-existence of high-spin and low-spin heme states, which corroborates catalytic activity towards H2O2 detected at lower pH. A sequence alignment with other DyPs reveals that DrDyP possesses a Methionine residue in position five in the highly conserved GXXDG motif. To analyze whether the presence of the Methionine is responsible for the lack of activity at high pH, this residue is substituted with a Glycine. UV-vis and RR spectroscopies reveal that the resulting DrDyPM190G is also in a 6cLS spin state at pH 7.5, and thus the Methionine does not affect the activity of the protein. The crystal structures of DrDyP and DrDyPM190G, determined to 2.20 and 1.53 Å resolution, respectively, nevertheless reveal interesting insights. The high-resolution structure of DrDyPM190G, obtained at pH 8.5, shows that one hydroxyl group and one water molecule are within hydrogen bonding distance to the heme and the catalytic Asparagine and Arginine. This strong ligand most likely prevents the binding of the H2O2 substrate, reinforcing questions about physiological substrates of this and other DyPs, and about the possible events that can trigger the removal of the hydroxyl group conferring catalytic activity to DrDyP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elin Moe
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da Republica (EAN), 2780-157 Oeiras, Portugal; (K.F.); (C.M.S.); (B.A.S.); (S.M.); (L.O.M.); (C.F.); (S.T.)
| |
Collapse
|
3
|
Okal EJ, Heng G, Magige EA, Khan S, Wu S, Ge Z, Zhang T, Mortimer PE, Xu J. Insights into the mechanisms involved in the fungal degradation of plastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115202. [PMID: 37390726 DOI: 10.1016/j.ecoenv.2023.115202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Fungi are considered among the most efficient microbial degraders of plastics, as they produce salient enzymes and can survive on recalcitrant compounds with limited nutrients. In recent years, studies have reported numerous species of fungi that can degrade different types of plastics, yet there remain many gaps in our understanding of the processes involved in biodegradation. In addition, many unknowns need to be resolved regarding the fungal enzymes responsible for plastic fragmentation and the regulatory mechanisms which fungi use to hydrolyse, assimilate and mineralize synthetic plastics. This review aims to detail the main methods used in plastic hydrolysis by fungi, key enzymatic and molecular mechanisms, chemical agents that enhance the enzymatic breakdown of plastics, and viable industrial applications. Considering that polymers such as lignin, bioplastics, phenolics, and other petroleum-based compounds exhibit closely related characteristics in terms of hydrophobicity and structure, and are degraded by similar fungal enzymes as plastics, we have reasoned that genes that have been reported to regulate the biodegradation of these compounds or their homologs could equally be involved in the regulation of plastic degrading enzymes in fungi. Thus, this review highlights and provides insight into some of the most likely regulatory mechanisms by which fungi degrade plastics, target enzymes, genes, and transcription factors involved in the process, as well as key limitations to industrial upscaling of plastic biodegradation and biological approaches that can be employed to overcome these challenges.
Collapse
Affiliation(s)
- Eyalira Jacob Okal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Gui Heng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Ephie A Magige
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Sehroon Khan
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, 28100 Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Shixi Wu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Zhiqiang Ge
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Tianfu Zhang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Peter E Mortimer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
4
|
Hirakawa MP, Rodriguez A, Tran-Gyamfi MB, Light YK, Martinez S, Diamond-Pott H, Simmons BA, Sale KL. Phenothiazines Rapidly Induce Laccase Expression and Lignin-Degrading Properties in the White-Rot Fungus Phlebia radiata. J Fungi (Basel) 2023; 9:jof9030371. [PMID: 36983539 PMCID: PMC10053029 DOI: 10.3390/jof9030371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Phlebia radiata is a widespread white-rot basidiomycete fungus with significance in diverse biotechnological applications due to its ability to degrade aromatic compounds, xenobiotics, and lignin using an assortment of oxidative enzymes including laccase. In this work, a chemical screen with 480 conditions was conducted to identify chemical inducers of laccase expression in P. radiata. Among the chemicals tested, phenothiazines were observed to induce laccase activity in P. radiata, with promethazine being the strongest laccase inducer of the phenothiazine-derived compounds examined. Secretomes produced by promethazine-treated P. radiata exhibited increased laccase protein abundance, increased enzymatic activity, and an enhanced ability to degrade phenolic model lignin compounds. Transcriptomics analyses revealed that promethazine rapidly induced the expression of genes encoding lignin-degrading enzymes, including laccase and various oxidoreductases, showing that the increased laccase activity was due to increased laccase gene expression. Finally, the generality of promethazine as an inducer of laccases in fungi was demonstrated by showing that promethazine treatment also increased laccase activity in other relevant fungal species with known lignin conversion capabilities including Trametes versicolor and Pleurotus ostreatus.
Collapse
Affiliation(s)
- Matthew P. Hirakawa
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94550, USA
- Correspondence: (M.P.H.); (K.L.S.)
| | - Alberto Rodriguez
- Biomaterials and Biomanufacturing Department, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Mary B. Tran-Gyamfi
- Bioresource and Environmental Security Department, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Yooli K. Light
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Salvador Martinez
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Henry Diamond-Pott
- Bioresource and Environmental Security Department, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Blake A. Simmons
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Kenneth L. Sale
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Computational Biology and Biophysics Department, Sandia National Laboratories, Livermore, CA 94550, USA
- Correspondence: (M.P.H.); (K.L.S.)
| |
Collapse
|
5
|
Brazkova M, Koleva R, Angelova G, Yemendzhiev H. Ligninolytic enzymes in Basidiomycetes and their application in xenobiotics degradation. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variety of microorganisms have already proven their capabilities for degradation of wide range of wastes with anthropogenic nature. These pollutants, both liquid and solids, also include so called xenobiotics like phenol and its derivatives, PAHs, dyes, pesticides, pharmaceuticals, etc. Xenobiotics as bisphenol A (BPA), chlorhexidine (CHX), octenidine (OCT), other disinfectants and antiseptics have high ecotoxicological impact. Moreover, they can also impair our quality of life and our health interfering different metabolic and hormone receptors pathways in human body. Chemical treatment of such wastes is not a viable option because of its poor socio-economics and environmental merits. Therefore, applying effective, ecofriendly and cheap treatment methods is of great importance. Basidiomycetes are extensively investigated for their abilities to degrade numerous pollutants and xenobiotics. Through their extracellular ligninolytic enzymes they are capable of reducing or completely removing wide range of hazardous compounds. These enzymes can be categorized in two groups: oxidases (laccase) and peroxidases (manganese peroxidase, lignin peroxidase, versatile peroxidase). Due to the broad substrate specificity of the secreted enzymes Basidiomycetes can be applied as a powerful tool for bioremediation of diverse xenobiotics and recalcitrant compounds.
Collapse
|
6
|
Sellami K, Couvert A, Nasrallah N, Maachi R, Abouseoud M, Amrane A. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150500. [PMID: 34852426 DOI: 10.1016/j.scitotenv.2021.150500] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 05/16/2023]
Abstract
The fast-growing consumer demand drives industrial process intensification, which subsequently creates a significant amount of waste. These products are discharged into the environment and can affect the quality of air, degrade water streams, and alter soil characteristics. Waste materials may contain polluting agents that are especially harmful to human health and the ecosystem, such as the synthetic dyes, phenolic agents, polycyclic aromatic hydrocarbons, volatile organic compounds, polychlorinated biphenyls, pesticides and drug substances. Peroxidases are a class oxidoreductases capable of performing a wide variety of oxidation reactions, ranging from reactions driven by radical mechanisms, to oxygen insertion into CH bonds, and two-electron substrate oxidation. This versatility in the mode of action presents peroxidases as an interesting alternative in cleaning the environment. Herein, an effort has been made to describe mechanisms governing biochemical process of peroxidase enzymes while referring to H2O2/substrate stoichiometry and metabolite products. Plant peroxidases including horseradish peroxidase (HRP), soybean peroxidase (SBP), turnip and bitter gourd peroxidases have revealed notable biocatalytic potentialities in the degradation of toxic products. On the other hand, an introduction on the role played by ligninolytic enzymes such as manganese peroxidase (MnP) and lignin peroxidase (LiP) in the valorization of lignocellulosic materials is addressed. Moreover, sensitivity and selectivity of peroxidase-based biosensors found use in the quantitation of constituents and the development of diagnostic kits. The general merits of peroxidases and some key prospective applications have been outlined as concluding remarks.
Collapse
Affiliation(s)
- Kheireddine Sellami
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria; Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| | - Annabelle Couvert
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Noureddine Nasrallah
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria
| | - Rachida Maachi
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria
| | - Mahmoud Abouseoud
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria; Laboratoire de Biomatériaux et Phénomènes de Transport, Faculté des Sciences et de la Technologie, Université Yahia Fares de Médéa, Pôle Universitaire, RN1, Médéa 26000, Algeria
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
7
|
Adamian Y, Lonappan L, Alokpa K, Agathos SN, Cabana H. Recent Developments in the Immobilization of Laccase on Carbonaceous Supports for Environmental Applications - A Critical Review. Front Bioeng Biotechnol 2021; 9:778239. [PMID: 34938721 PMCID: PMC8685458 DOI: 10.3389/fbioe.2021.778239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Τhe ligninolytic enzyme laccase has proved its potential for environmental applications. However, there is no documented industrial application of free laccase due to low stability, poor reusability, and high costs. Immobilization has been considered as a powerful technique to enhance laccase's industrial potential. In this technology, appropriate support selection for laccase immobilization is a crucial step since the support could broadly affect the properties of the resulting catalyst system. Through the last decades, a large variety of inorganic, organic, and composite materials have been used in laccase immobilization. Among them, carbon-based materials have been explored as a support candidate for immobilization, due to their properties such as high porosity, high surface area, the existence of functional groups, and their highly aromatic structure. Carbon-based materials have also been used in culture media as supports, sources of nutrients, and inducers, for laccase production. This study aims to review the recent trends in laccase production, immobilization techniques, and essential support properties for enzyme immobilization. More specifically, this review analyzes and presents the significant benefits of carbon-based materials for their key role in laccase production and immobilization.
Collapse
Affiliation(s)
- Younes Adamian
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Linson Lonappan
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Komla Alokpa
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Spiros N. Agathos
- Laboratory of Bioengineering, Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Hubert Cabana
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Singh AK, Bilal M, Iqbal HMN, Raj A. Lignin peroxidase in focus for catalytic elimination of contaminants - A critical review on recent progress and perspectives. Int J Biol Macromol 2021; 177:58-82. [PMID: 33577817 DOI: 10.1016/j.ijbiomac.2021.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Lignin peroxidase (LiP) seems to be a catalyst for cleaving high-redox potential non-phenolic compounds with an oxidative cleavage of CC and COC bonds. LiP has been picked to seek a practical and cost-effective alternative to the sustainable mitigation of diverse environmental contaminants. LiP has been an outstanding tool for catalytic cleaning and efficient mitigation of environmental pollutants, including lignin, lignin derivatives, dyes, endocrine-disrupting compounds (EDCs), and persistent organic pollutants (POPs) for the past couple of decades. The extended deployment of LiP has proved to be a promising method for catalyzing these environmentally related hazardous pollutants of supreme interest. The advantageous potential and capabilities to act at different pH and thermostability offer its working tendencies in extended environmental engineering applications. Such advantages led to the emerging demand for LiP and increasing requirements in industrial and biotechnological sectors. The multitude of the ability attributed to LiP is triggered by its stability in xenobiotic and non-phenolic compound degradation. However, over the decades, the catalytic activity of LiP has been continuing in focus enormously towards catalytic functionalities over the available physiochemical, conventional, catalyst mediated technology for catalyzing such molecules. To cover this literature gap, this became much more evident to consider the catalytic attributes of LiP. In this review, the existing capabilities of LiP and other competencies have been described with recent updates. Furthermore, numerous recently emerged applications, such as textile effluent treatment, dye decolorization, catalytic elimination of pharmaceutical and EDCs compounds, have been discussed with suitable examples.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Bilal M, Bagheri AR, Vilar DS, Aramesh N, Eguiluz KIB, Ferreira LFR, Ashraf SS, Iqbal HMN. Oxidoreductases as a versatile biocatalytic tool to tackle pollutants for clean environment – a review. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY 2021. [DOI: 10.1002/jctb.6743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| | | | - Débora S Vilar
- Graduate Program in Process Engineering Tiradentes University (UNIT) Av. Murilo Dantas, 300, Farolândia Aracaju‐Sergipe 49032‐490 Brazil
| | - Nahal Aramesh
- Department of Chemistry Yasouj University Yasouj Iran
| | - Katlin Ivon Barrios Eguiluz
- Graduate Program in Process Engineering Tiradentes University (UNIT) Av. Murilo Dantas, 300, Farolândia Aracaju‐Sergipe 49032‐490 Brazil
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP) Tiradentes University (UNIT) Av. Murilo Dantas, 300, Farolândia Aracaju‐Sergipe 49032‐490 Brazil
| | - Syed Salman Ashraf
- Department of Chemistry College of Arts and Sciences, Khalifa University Abu Dhabi United Arab Emirates
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey School of Engineering and Sciences Monterrey 64849 Mexico
| |
Collapse
|
10
|
Henn C, Arakaki RM, Monteiro DA, Boscolo M, da Silva R, Gomes E. Degradation of the Organochlorinated Herbicide Diuron by Rainforest Basidiomycetes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5324391. [PMID: 33083471 PMCID: PMC7559502 DOI: 10.1155/2020/5324391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
The main organochlorinated compounds used on agricultural crops are often recalcitrant, affecting nontarget organisms and contaminating rivers or groundwater. Diuron (N-(3,4-dichlorophenyl)-N',N'-dimethylurea) is a chlorinated herbicide widely used in sugarcane plantations. Here, we evaluated the ability of 13 basidiomycete strains of growing in a contaminated culture medium and degrading the xenobiotic. Dissipation rates in culture medium with initial 25 mg/L of diuron ranged from 7.3 to 96.8%, being Pluteus cubensis SXS 320 the most efficient strain, leaving no detectable residues after diuron metabolism. Pycnoporus sanguineus MCA 16 removed 56% of diuron after 40 days of cultivation, producing three metabolites more polar than parental herbicide, two of them identified as being DCPU and DCPMU. Despite of the strong inductive effect of diuron upon laccase synthesis and secretion, the application of crude enzymatic extracts of P. sanguineus did not catalyzed the breakdown of the herbicide in vitro, indicating that diuron biodegradation was not related to this oxidative enzyme.
Collapse
Affiliation(s)
- Caroline Henn
- ITAIPU Binacional, Divisão de Reservatório-MARR.CD, PR, Brazil, Avenida Tancredo Neves, 6731, CEP 85856-970 Foz do Iguaçu, Paraná, Brazil
| | - Ricardo M. Arakaki
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Diego Alves Monteiro
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Mauricio Boscolo
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Roberto da Silva
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Eleni Gomes
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| |
Collapse
|
11
|
Henn C, Monteiro DA, Boscolo M, da Silva R, Gomes E. Biodegradation of atrazine and ligninolytic enzyme production by basidiomycete strains. BMC Microbiol 2020; 20:266. [PMID: 32847512 PMCID: PMC7448495 DOI: 10.1186/s12866-020-01950-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atrazine is one of the most widespread chlorinated herbicides, leaving large bulks in soils and groundwater. The biodegradation of atrazine by bacteria is well described, but many aspects of the fungal metabolism of this compound remain unclear. Thus, we investigated the toxicity and degradation of atrazine by 13 rainforest basidiomycete strains. RESULTS In liquid medium, Pluteus cubensis SXS320, Gloelophyllum striatum MCA7, and Agaricales MCA17 removed 30, 37, and 38%, respectively, of initial 25 mg L- 1 of the herbicide within 20 days. Deficiency of nitrogen drove atrazine degradation by Pluteus cubensis SXS320; this strain removed 30% of atrazine within 20 days in a culture medium with 2.5 mM of N, raising three metabolites; in a medium with 25 mM of N, only 21% of initial atrazine were removed after 40 days, and two metabolites appeared in culture extracts. This is the first report of such different outcomes linked to nitrogen availability during the biodegradation of atrazine by basidiomycetes. The herbicide also induced synthesis and secretion of extracellular laccases by Datronia caperata MCA5, Pycnoporus sanguineus MCA16, and Polyporus tenuiculus MCA11. Laccase levels produced by of P. tenuiculus MCA11 were 13.3-fold superior in the contaminated medium than in control; the possible role of this enzyme on atrazine biodegradation was evaluated, considering the strong induction and the removal of 13.9% of the herbicide in vivo. Although 88% of initial laccase activity remained after 6 h, no evidence of in vitro degradation was observed, even though ABTS was present as mediator. CONCLUSIONS This study revealed a high potential for atrazine biodegradation among tropical basidiomycete strains. Further investigations, focusing on less explored ligninolytic enzymes and cell-bound mechanisms, could enlighten key aspects of the atrazine fungal metabolism and the role of the nitrogen in the process.
Collapse
Affiliation(s)
- Caroline Henn
- ITAIPU Binacional, Divisão de Reservatório, Avenida Tancredo Neves, 6731, Foz do Iguaçu, PR, 85866-900, Brasil.
| | - Diego Alves Monteiro
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP, Brasil
| | - Mauricio Boscolo
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP, Brasil
| | - Roberto da Silva
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP, Brasil
| | - Eleni Gomes
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP, Brasil
| |
Collapse
|
12
|
Non-Hydrolyzable Plastics - An Interdisciplinary Look at Plastic Bio-Oxidation. Trends Biotechnol 2020; 39:12-23. [PMID: 32487438 DOI: 10.1016/j.tibtech.2020.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Enzymatic plastic conversion has emerged recently as a potential adjunct and alternative to conventional plastic waste management technology. Publicity over progress in the enzymatic degradation of polyesters largely neglects that the majority of commercial plastics, including polyethylene, polypropylene, polystyrene and polyvinyl chloride, are still not biodegradable. Details about the mechanisms used by enzymes and an understanding of macromolecular factors influencing these have proved to be vital in developing biodegradation methods for polyesters. To expand the application of enzymatic degradation to other more recalcitrant plastics, extensive knowledge gaps need to be addressed. By drawing on interdisciplinary knowledge, we suggest that physicochemical influences also have a crucial impact on reactions in less well-studied types of plastic, and these need to be investigated in detail.
Collapse
|
13
|
Ligninolytic Enzymes Mediated Ligninolysis: An Untapped Biocatalytic Potential to Deconstruct Lignocellulosic Molecules in a Sustainable Manner. Catal Letters 2020. [DOI: 10.1007/s10562-019-03096-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Rico-García D, Ruiz-Rubio L, Pérez-Alvarez L, Hernández-Olmos SL, Guerrero-Ramírez GL, Vilas-Vilela JL. Lignin-Based Hydrogels: Synthesis and Applications. Polymers (Basel) 2020; 12:E81. [PMID: 31947714 PMCID: PMC7023625 DOI: 10.3390/polym12010081] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Polymers obtained from biomass are an interesting alternative to petro-based polymers due to their low cost of production, biocompatibility, and biodegradability. This is the case of lignin, which is the second most abundant biopolymer in plants. As a consequence, the exploitation of lignin for the production of new materials with improved properties is currently considered as one of the main challenging issues, especially for the paper industry. Regarding its chemical structure, lignin is a crosslinked polymer that contains many functional hydrophilic and active groups, such as hydroxyls, carbonyls and methoxyls, which provides a great potential to be employed in the synthesis of biodegradable hydrogels, materials that are recognized for their interesting applicability in biomedicine, soil and water treatment, and agriculture, among others. This work describes the main methods for the preparation of lignin-based hydrogels reported in the last years, based on the chemical and/or physical interaction with polymers widely used in hydrogels formulations. Furthermore, herein are also reviewed the current applications of lignin hydrogels as stimuli-responsive materials, flexible supercapacitors, and wearable electronics for biomedical and water remediation applications.
Collapse
Affiliation(s)
- Diana Rico-García
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, 44430 Guadalajara, Mexico; (D.R.-G.); (S.L.H.-O.); (G.L.G.-R.)
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (L.P.-A.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Pérez-Alvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (L.P.-A.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Saira L. Hernández-Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, 44430 Guadalajara, Mexico; (D.R.-G.); (S.L.H.-O.); (G.L.G.-R.)
| | - Guillermo L. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, 44430 Guadalajara, Mexico; (D.R.-G.); (S.L.H.-O.); (G.L.G.-R.)
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (L.P.-A.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
15
|
Bilal M, Ashraf SS, Barceló D, Iqbal HMN. Biocatalytic degradation/redefining "removal" fate of pharmaceutically active compounds and antibiotics in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1190-1211. [PMID: 31466201 DOI: 10.1016/j.scitotenv.2019.07.224] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 02/05/2023]
Abstract
Recently, the increasing concentration and persistent appearance of antibiotics traces in the water streams are considered an issue of high concern. In this context, an array of antibiotics has been categorized as pollutants of emerging concern due to their complex and highly stable bioactivity, indiscriminate usage with ultimate release into water bodies, and notable persistence in environmental matrices. Moreover, antibiotics traces containing household sewage/drain waste and pharmaceutical wastewater effluents contain a range of bioactive/toxic organic compounds, inorganic salts, pharmaceutically-active ingredients, or a mixture of all, which possesses negative influences ranging from ecological pollution to damage biodiversity. Moreover, their uncontrolled and undesirable bioaccumulation also poses a potential threat to target and non-target organisms in the environment. Aiming to tackle this issue effectively, various detection, quantification, degradation, and redefining "removal" processes have been proposed and investigated based on physical, chemical, and biological strategies. Though both useful and side effects of antibiotics on humans and animals are usually investigated thoroughly following safety and toxicity measures, however, their direct or indirect environmental impacts are not well reviewed yet. Owing to the considerable research gap, the environmental perfectives of antibiotics traces and their effects on target and non-target populations have now become the topic of research interest. Based on literature evidence, over the past several years, numerous individual studies have been performed and published covering various aspects of antibiotics. However, a comprehensive compilation on enzyme-based degradation of antibiotics is still lacking and requires careful consideration. Hence, this review summarizes up-to-date literature on enzymes as biocatalytic systems, explicitly, free as well as immobilized forms and their effective exploitation for the degradation of various antibiotics traces and other pharmaceutically-active compounds present in the water bodies. It is further envisioned that the enzyme-based strategies, for antibiotics degradation or removal, discussed herein, will help readers for a better understanding of antibiotics persistence in the environment along with the associated risks and removal measures. In summary, the current research thrust presented in this review will additionally evoke researcher to engineer robust and sustainable processes to effectively remediate antibiotics-contaminated environmental matrices.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
16
|
Badon MM, Tekverk DG, Vishnosky NS, Woolridge EM. Establishing the oxidative tolerance of Thermomyces lanuginosus xylanase. J Appl Microbiol 2019; 127:508-519. [PMID: 31077501 DOI: 10.1111/jam.14306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 11/30/2022]
Abstract
AIMS This work aims to determine the tolerance of xylanase towards enzyme-generated oxidative conditions, such as those produced by the peroxidase or laccase mediator systems (LMS). METHODS AND RESULTS The activity of Thermomyces lanuginosus xylanase was measured after incubation with lignin peroxidase, manganese peroxidase or laccase plus various mediators. The laccase system, using mediators such as 1-hydroxybenzotriazole and violuric acid, resulted in complete loss of xylanase activity, accompanied by an increase in the solution potential. However, an increase in solution potential alone was not sufficient to inactivate xylanase, nor was loss of xylanase activity always accompanied by a significant increase in solution potential, as observed with N-hydroxyphthalimide as the mediator. Neither lignin peroxidase nor manganese peroxidase impacted xylanase activity; only extended treatment with elevated hydrogen peroxide concentration promoted modest xylanase activity loss. The mechanism of inactivation as determined by the tryptophan-modifying reagent N-bromosuccinimide (NBS) indicated that oxidation of just one of the eight tryptophan residues of T. lanuginosus xylanase would be sufficient to result in complete loss of xylanase activity, since xylanase is completely inactivated at 1 : 1 molar ratio of NBS to xylanase. CONCLUSIONS While showing tolerance to peroxidase-based enzyme systems, T. lanuginosus xylanase is readily inactivated in the presence of the LMS. Based upon treatment with NBS as the oxidant, inactivation can be attributed to modification of a single tryptophan residue. SIGNIFICANCE AND IMPACT OF THE STUDY The simultaneous application of mixed hydrolytic and oxidative enzyme systems is of importance to biomass processing industries. Understanding the tolerance of xylanase to oxidative conditions will facilitate the design of reaction conditions or enzyme variants to maximize the impact of mixed enzyme systems.
Collapse
Affiliation(s)
- M M Badon
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, USA
| | - D G Tekverk
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, USA
| | - N S Vishnosky
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, USA
| | - E M Woolridge
- Department of Chemistry, Biochemistry, & Physics, Marist College, Poughkeepsie, NY, USA
| |
Collapse
|
17
|
Echavarri-Bravo V, Tinzl M, Kew W, Cruickshank F, Logan Mackay C, Clarke DJ, Horsfall LE. High resolution fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the characterisation of enzymatic processing of commercial lignin. N Biotechnol 2019; 52:1-8. [PMID: 30922999 DOI: 10.1016/j.nbt.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/06/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
Lignin and lignin components of woody biomass have been identified as an attractive alternative to fossil fuels. However, the complex composition of this plant polymer is one of the drawbacks that limits its exploitation. Biocatalysis of lignin to produce platform chemicals has been receiving great attention as it presents a sustainable approach for lignin valorisation. Aligned with this area of research, in the present study we have applied ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to identify the preferred lignin substrates of a ligninolytic enzyme, a laccase produced by the terrestrial fungus Trametes versicolor. A commercial lignin was incubated with the laccase and acetosyringone (a laccase mediator) for up to 168 h and direct infusion electrospray FT-ICR MS enabled the identification of thousands of molecular species present in the complex lignin sample at different incubation time points. Significant changes in the chemical composition of lignin were detected upon laccase treatment, which resulted in a decrease in the molecular mass distribution of assigned species, consistent with laccase lytic activity. This reduction was predominantly in species classified as lignin-like (based on elemental ratios) and polymeric in nature (>400 Da). Of particular note was a fall in the number of species assigned containing sulfur. Changes in the chemical composition/structure of the lignin polymer were supported by FT-IR spectroscopy. We propose the use of FT-ICR MS as a rapid and efficient technique to support the biotechnological valorisation of lignin as well as the development and optimization of laccase-mediator systems for treating complex mixtures.
Collapse
Affiliation(s)
- Virginia Echavarri-Bravo
- School of Biological Sciences, Roger Land Building, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Matthias Tinzl
- School of Biological Sciences, Roger Land Building, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Will Kew
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Faye Cruickshank
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - C Logan Mackay
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - David J Clarke
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Louise E Horsfall
- School of Biological Sciences, Roger Land Building, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
18
|
Zhang HL, Wei JK, Wang QH, Yang R, Gao XJ, Sang YX, Cai PP, Zhang GQ, Chen QJ. Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production. Sci Rep 2019; 9:1151. [PMID: 30718596 PMCID: PMC6362146 DOI: 10.1038/s41598-018-37681-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Agaricus bisporus is in general cultivated on wheat and rice straw in China. However, millet straw is a potential alternative resource for Agaricus bisporus cultivation, but this has hardly been studied. In the present study, the feasibility of millet straw based mushroom production was analyzed by three successive trials. Mature compost demonstrated high quality with total nitrogen, pH, and C/N ratio of 2.0%, 7.5, and 18:1 respectively, which was suitable for mushroom mycelia growth. During composting, 47–50% of cellulose, 63–65% of hemicellulose, and 8–17% lignin were degraded, while 22–27% of cellulose, 14–16% of hemicellulose, and 15–21% of lignin were consumed by A. bisporus mycelia during cultivation. The highest FPUase and CMCase were observed during mushroom flushes. Endo-xylanase had the key role in hemicellulose degradation with high enzyme activity during cultivation stages. Laccase participated in lignin degradation with the highest enzyme activity in Pinning stage followed by a sharp decline at the first flush. Yield was up to 20 kg/m2, as this is similar to growth on wheat straw, this shows that millet straw is an effective resource for mushroom cultivation. Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria were the dominant phyla, based on 16S rRNA gene sequencing during composting. The key environmental factors dominating bacterial communities of the samples were determined to be pH value, cellulose content, and hemicellulose content for prewetting and premixed phase of basic mixture (P0); moisture content for phase I (PI); and nitrogen content, lignin content, and ash content for phase II (PII), respectively.
Collapse
Affiliation(s)
- Hao-Lin Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jin-Kang Wei
- Beijing Agricultural Technology Extension Station, Beijing, 100029, China
| | - Qing-Hui Wang
- Chengde Xingchunhe Agricultural Co. Ltd., Chengde, 067000, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiao-Jing Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yu-Xi Sang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Pan-Pan Cai
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Guo-Qing Zhang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China.
| | - Qing-Jun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
19
|
Falade AO, Eyisi OA, Mabinya LV, Nwodo UU, Okoh AI. Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2017; 16:12-17. [PMID: 29062721 PMCID: PMC5645169 DOI: 10.1016/j.btre.2017.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/11/2017] [Accepted: 10/06/2017] [Indexed: 12/01/2022]
Abstract
Interest in novel ligninolytic bacteria has remained topical due to, in part, the maneuverability of the bacterial genome. Conversely, the fungal genome lacks the dexterity for similar maneuverability thus, posing challenges in the fungal enzyme yield optimization process. Some impact of this situation includes the inability to commercialize the bio-catalytic process of lignin degradation by fungi. Consequently, this study assessed some fresh water bacteria isolates for ligninolytic and peroxidase properties through the utilization and degradation of model lignin compounds (guaiacol and veratryl alcohol) and the decolourization of selected ligninolytic indicator dyes; Azure B (AZB), Remazol Brilliant Blue R (RBBR) and Congo Red (CR). Bacterial strains with appreciable ligninolytic and peroxidase production potentials were identified through 16S rDNA sequence analysis and the nucleotide sequences deposited in the GenBank. About 5 isolates were positive for the degradation of both guaiacol (GA) and veratryl alcohol (VA) thus, accounting for about 17% of the test isolates. Similarly, AZB, RBBR and CR were respectively decolorized by 3, 2 and 5 bacterial strains thus, accounting for 10%, 7% and 17% of the test isolates. Two of the test bacterial strains were able to decolourize AZB, RBBR and CR respectively and these bacterial strains were identified as Raoultella ornithinolytica OKOH-1 and Ensifer adhaerens NWODO-2 with respective accession numbers as KX640917 and KX640918. Upon quantitation of the peroxidase activities; 5250 ± 0.00 U/L was recorded against Raoultella ornithinolytica OKOH-1 and 5833 ± 0.00 U/L against Ensifer adhaerens NWODO-2. The ligninolytic and dye decolourization properties of Raoultella ornithinolytica OKOH-1 and Ensifer adhaerens NWODO-2 marks for novelty particularly, as dyes with arene substituents were decolourized. Consequently, the potentials for the industrial applicability of these test bacterial strains abound as there is a dearth of information on organisms with such potentials.
Collapse
Affiliation(s)
- Ayodeji O. Falade
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Onyedikachi A.L. Eyisi
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Leonard V. Mabinya
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Uchechukwu U. Nwodo
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Anthony I. Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| |
Collapse
|
20
|
Elisashvili V, Kachlishvili E, Asatiani MD, Darlington R, Kucharzyk KH. Physiological Peculiarities of Lignin-Modifying Enzyme Production by the White-Rot Basidiomycete Coriolopsis gallica Strain BCC 142. Microorganisms 2017; 5:microorganisms5040073. [PMID: 29149086 PMCID: PMC5748582 DOI: 10.3390/microorganisms5040073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022] Open
Abstract
Sixteen white-rot Basidiomycota isolates were screened for production of lignin-modifying enzymes (LME) in glycerol- and mandarin peel-containing media. In the synthetic medium, Cerrena unicolor strains were the only high laccase (Lac) (3.2–9.4 U/mL) and manganese peroxidase (MnP) (0.56–1.64 U/mL) producers while one isolate Coriolopsis gallica was the only lignin peroxidase (LiP) (0.07 U/mL) producer. Addition of mandarin peels to the synthetic medium promoted Lac production either due to an increase in fungal biomass (Funalia trogii, Trametes hirsuta, and T. versicolor) or enhancement of enzyme production (C. unicolor, Merulius tremellosus, Phlebia radiata, Trametes ochracea). Mandarin peels favored enhanced MnP and LiP secretion by the majority of the tested fungi. The ability of LiP activity production by C. gallica, C. unicolor, F. trogii, T. ochracea, and T. zonatus in the medium containing mandarin-peels was reported for the first time. Several factors, such as supplementation of the nutrient medium with a variety of lignocellulosic materials, nitrogen source or surfactant (Tween 80, Triton X-100) significantly influenced production of LME by a novel strain of C. gallica. Moreover, C. gallica was found to be a promising LME producer with a potential for an easy scale up cultivation in a bioreactor and high enzyme yields (Lac-9.4 U/mL, MnP-0.31 U/mL, LiP-0.45 U/mL).
Collapse
Affiliation(s)
- Vladimir Elisashvili
- Agricultural University of Georgia, 240 David Agmashenebeli Alley, 0159 Tbilisi, Georgia.
| | - Eva Kachlishvili
- Agricultural University of Georgia, 240 David Agmashenebeli Alley, 0159 Tbilisi, Georgia.
| | - Mikheil D Asatiani
- Agricultural University of Georgia, 240 David Agmashenebeli Alley, 0159 Tbilisi, Georgia.
| | | | | |
Collapse
|
21
|
|
22
|
Manganese-enhanced degradation of lignocellulosic waste by Phanerochaete chrysosporium: evidence of enzyme activity and gene transcription. Appl Microbiol Biotechnol 2017; 101:6541-6549. [DOI: 10.1007/s00253-017-8371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022]
|
23
|
Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI. Lignin peroxidase functionalities and prospective applications. Microbiologyopen 2017; 6:e00394. [PMID: 27605423 PMCID: PMC5300883 DOI: 10.1002/mbo3.394] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/18/2016] [Accepted: 06/28/2016] [Indexed: 11/18/2022] Open
Abstract
Ligninolytic extracellular enzymes, including lignin peroxidase, are topical owing to their high redox potential and prospective industrial applications. The prospective applications of lignin peroxidase span through sectors such as biorefinery, textile, energy, bioremediation, cosmetology, and dermatology industries. The litany of potentials attributed to lignin peroxidase is occasioned by its versatility in the degradation of xenobiotics and compounds with both phenolic and non-phenolic constituents. Over the years, ligninolytic enzymes have been studied however; research on lignin peroxidase seems to have been lagging when compared to other ligninolytic enzymes which are extracellular in nature including laccase and manganese peroxidase. This assertion becomes more pronounced when the application of lignin peroxidase is put into perspective. Consequently, a succinct documentation of the contemporary functionalities of lignin peroxidase and, some prospective applications of futuristic relevance has been advanced in this review. Some articulated applications include delignification of feedstock for ethanol production, textile effluent treatment and dye decolourization, coal depolymerization, treatment of hyperpigmentation, and skin-lightening through melanin oxidation. Prospective application of lignin peroxidase in skin-lightening functions through novel mechanisms, hence, it holds high value for the cosmetics sector where it may serve as suitable alternative to hydroquinone; a potent skin-lightening agent whose safety has generated lots of controversy and concern.
Collapse
Affiliation(s)
- Ayodeji O. Falade
- SAMRC Microbial Water Quality Monitoring CentreUniversity of Fort HareAliceSouth Africa
- Applied and Environmental Microbiology Research Group (AEMREG)Department of Biochemistry and MicrobiologyUniversity of Fort HareAliceSouth Africa
| | - Uchechukwu U. Nwodo
- SAMRC Microbial Water Quality Monitoring CentreUniversity of Fort HareAliceSouth Africa
- Applied and Environmental Microbiology Research Group (AEMREG)Department of Biochemistry and MicrobiologyUniversity of Fort HareAliceSouth Africa
| | - Benson C. Iweriebor
- SAMRC Microbial Water Quality Monitoring CentreUniversity of Fort HareAliceSouth Africa
- Applied and Environmental Microbiology Research Group (AEMREG)Department of Biochemistry and MicrobiologyUniversity of Fort HareAliceSouth Africa
| | - Ezekiel Green
- SAMRC Microbial Water Quality Monitoring CentreUniversity of Fort HareAliceSouth Africa
- Applied and Environmental Microbiology Research Group (AEMREG)Department of Biochemistry and MicrobiologyUniversity of Fort HareAliceSouth Africa
| | - Leonard V. Mabinya
- SAMRC Microbial Water Quality Monitoring CentreUniversity of Fort HareAliceSouth Africa
- Applied and Environmental Microbiology Research Group (AEMREG)Department of Biochemistry and MicrobiologyUniversity of Fort HareAliceSouth Africa
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring CentreUniversity of Fort HareAliceSouth Africa
- Applied and Environmental Microbiology Research Group (AEMREG)Department of Biochemistry and MicrobiologyUniversity of Fort HareAliceSouth Africa
| |
Collapse
|
24
|
Rais D, Zibek S. Biotechnological and Biochemical Utilization of Lignin. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:469-518. [PMID: 28540404 DOI: 10.1007/10_2017_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This chapter provides an overview of the biosynthesis and structure of lignin. Moreover, examples of the commercial use of lignin and its promising future implementation are briefly described. Many applications are still hampered by the properties of technical lignins. Thus, the major challenge is the conversion of lignins into suitable building blocks or aromatics in order to open up new avenues for the usage of this renewable raw material. This chapter focuses on details about natural lignin degradation by fungi and bacteria, which harbor potential tools for lignin degradation and modification, which might help to develop eco-efficient processes for lignin utilization.
Collapse
Affiliation(s)
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| |
Collapse
|
25
|
Wei S. The application of biotechnology on the enhancing of biogas production from lignocellulosic waste. Appl Microbiol Biotechnol 2016; 100:9821-9836. [PMID: 27761635 DOI: 10.1007/s00253-016-7926-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Abstract
Anaerobic digestion of lignocellulosic waste is considered to be an efficient way to answer present-day energy crisis and environmental challenges. However, the recalcitrance of lignocellulosic material forms a major obstacle for obtaining maximum biogas production. The use of biological pretreatment and bioaugmentation for enhancing the performance of anaerobic digestion is quite recent and still needs to be investigated. This paper reviews the status and perspectives of recent studies on biotechnology concept and investigates its possible use for enhancing biogas production from lignocellulosic waste with main emphases on biological pretreatment and bioaugmentation techniques.
Collapse
Affiliation(s)
- Suzhen Wei
- Department of Resource and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, 860000, China.
| |
Collapse
|
26
|
Chen CY, Lee CC, Chen HS, Yang CH, Wang SP, Wu JH, Meng M. Modification of lignin in sugarcane bagasse by a monocopper hydrogen peroxide-generating oxidase from Thermobifida fusca. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|