1
|
Yogita Mehra, Pragasam Viswanathan. Early Evidence of Global DNA Methylation and Hydroxymethylation Changes in Rat Kidneys Consequent to Hyperoxaluria-Induced Renal Calcium Oxalate Stones. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Moon S, Zhao YT. Convergent biological pathways underlying the Kallmann syndrome-linked genes Hs6st1 and Fgfr1. Hum Mol Genet 2022; 31:4207-4216. [PMID: 35899427 PMCID: PMC9759331 DOI: 10.1093/hmg/ddac172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/24/2022] [Indexed: 01/21/2023] Open
Abstract
Kallmann syndrome (KS) is a congenital disorder characterized by idiopathic hypogonadotropic hypogonadism and olfactory dysfunction. KS is linked to variants in >34 genes, which are scattered across the human genome and show disparate biological functions. Although the genetic basis of KS is well studied, the mechanisms by which disruptions of these diverse genes cause the same outcome of KS are not fully understood. Here we show that disruptions of KS-linked genes affect the same biological processes, indicating convergent molecular mechanisms underlying KS. We carried out machine learning-based predictions and found that KS-linked mutations in heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) are likely loss-of-function mutations. We next disrupted Hs6st1 and another KS-linked gene, fibroblast growth factor receptor 1 (Fgfr1), in mouse neuronal cells and measured transcriptome changes using RNA sequencing. We found that disruptions of Hs6st1 and Fgfr1 altered genes in the same biological processes, including the upregulation of genes in extracellular pathways and the downregulation of genes in chromatin pathways. Moreover, we performed genomics and bioinformatics analyses and found that Hs6st1 and Fgfr1 regulate gene transcription likely via the transcription factor Sox9/Sox10 and the chromatin regulator Chd7, which are also associated with KS. Together, our results demonstrate how different KS-linked genes work coordinately in a convergent signaling pathway to regulate the same biological processes, thus providing new insights into KS.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Ying-Tao Zhao
- To whom correspondence should be addressed: Tel: 516-686-3764; Fax: 516-686-3832;
| |
Collapse
|
3
|
Moon S, Zhao YT. Recursive splicing is a rare event in the mouse brain. PLoS One 2022; 17:e0263082. [PMID: 35089962 PMCID: PMC8797253 DOI: 10.1371/journal.pone.0263082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
Recursive splicing (RS) is a splicing mechanism to remove long introns from messenger RNA precursors of long genes. Compared to the hundreds of RS events identified in humans and drosophila, only ten RS events have been reported in mice. To further investigate RS in mice, we analyzed RS in the mouse brain, a tissue that is enriched in the expression of long genes. We found that nuclear total RNA sequencing is an efficient approach to investigate RS events. We analyzed 1.15 billion uniquely mapped reads from the nuclear total RNA sequencing data in the mouse cerebral cortex. Unexpectedly, we only identified 20 RS sites, suggesting that RS is a rare event in the mouse brain. We also identified that RS is constitutive between excitatory and inhibitory neurons and between sexes in the mouse cerebral cortex. In addition, we found that the primary sequence context is associated with RS splicing intermediates and distinguishes RS AGGT site from non-RS AGGT sites, indicating the importance of the primary sequence context in RS sites. Moreover, we discovered that cryptic exons may use an RS-like mechanism for splicing. Overall, we provide novel findings about RS in long genes in the mouse brain.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Ying-Tao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Moon S, Zhao YT. Spatial, temporal, and cell-type-specific expression profiles of genes encoding heparan sulfate biosynthesis enzymes and proteoglycan core proteins. Glycobiology 2021; 31:1308-1318. [PMID: 34132783 DOI: 10.1093/glycob/cwab054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide found in almost all animal cells and plays an important role in various biological processes. HS functions mainly via covalently binding to core proteins to form HS proteoglycans (HSPGs), which are heterogeneous in the lengths of the HS chain, the modifications on HS, and the core proteins. The molecular mechanisms underlying HSPG heterogeneity, although widely studied, are not yet fully defined. The expression profiles of HS biosynthesis enzymes and HSPG core proteins likely contribute to the HSPG heterogeneity, but these expression profiles remain poorly characterized. To investigate the expression profiles of genes encoding HS biosynthesis enzymes and HSPG core proteins, we systematically integrated the publicly available RNA sequencing data in mice. To reveal the spatial expression of these genes, we analyzed their expression in 21 mouse tissues. To reveal the temporal expression of these genes, we analyzed their expression at 17 time points during the mouse forebrain development. To determine the cell-type-specific expression of these genes, we obtained their expression profiles in 23 cell types in the mouse cerebral cortex by integrating single nucleus RNA sequencing data. Our findings demonstrate the spatial, temporal, and cell-type-specific expression of genes encoding HS biosynthesis enzymes and HSPG core proteins and represent a valuable resource to the HS research community.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Ying-Tao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| |
Collapse
|
5
|
Zhao YT, Kwon DY, Johnson BS, Fasolino M, Lamonica JM, Kim YJ, Zhao BS, He C, Vahedi G, Kim TH, Zhou Z. Long genes linked to autism spectrum disorders harbor broad enhancer-like chromatin domains. Genome Res 2018; 28:933-942. [PMID: 29848492 PMCID: PMC6028126 DOI: 10.1101/gr.233775.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Genetic variants associated with autism spectrum disorders (ASDs) are enriched in genes encoding synaptic proteins and chromatin regulators. Although the role of synaptic proteins in ASDs is widely studied, the mechanism by which chromatin regulators contribute to ASD risk remains poorly understood. Upon profiling and analyzing the transcriptional and epigenomic features of genes expressed in the cortex, we uncovered a unique set of long genes that contain broad enhancer-like chromatin domains (BELDs) spanning across their entire gene bodies. Analyses of these BELD genes show that they are highly transcribed with frequent RNA polymerase II (Pol II) initiation and low Pol II pausing, and they exhibit frequent chromatin-chromatin interactions within their gene bodies. These BELD features are conserved from rodents to humans, are enriched in genes involved in synaptic function, and appear post-natally concomitant with synapse development. Importantly, we find that BELD genes are highly implicated in neurodevelopmental disorders, particularly ASDs, and that their expression is preferentially down-regulated in individuals with idiopathic autism. Finally, we find that the transcription of BELD genes is particularly sensitive to alternations in ASD-associated chromatin regulators. These findings suggest that the epigenomic regulation of BELD genes is important for post-natal cortical development and lend support to a model by which mutations in chromatin regulators causally contribute to ASDs by preferentially impairing BELD gene transcription.
Collapse
Affiliation(s)
- Ying-Tao Zhao
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Deborah Y Kwon
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Brian S Johnson
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Maria Fasolino
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Janine M Lamonica
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Yoon Jung Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Boxuan Simen Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|