1
|
Kontaxis S, Kanellos F, Ntanis A, Kostikis N, Konitsiotis S, Rigas G. An Inertial-Based Wearable System for Monitoring Vital Signs during Sleep. SENSORS (BASEL, SWITZERLAND) 2024; 24:4139. [PMID: 39000917 PMCID: PMC11244494 DOI: 10.3390/s24134139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024]
Abstract
This study explores the feasibility of a wearable system to monitor vital signs during sleep. The system incorporates five inertial measurement units (IMUs) located on the waist, the arms, and the legs. To evaluate the performance of a novel framework, twenty-three participants underwent a sleep study, and vital signs, including respiratory rate (RR) and heart rate (HR), were monitored via polysomnography (PSG). The dataset comprises individuals with varying severity of sleep-disordered breathing (SDB). Using a single IMU sensor positioned at the waist, strong correlations of more than 0.95 with the PSG-derived vital signs were obtained. Low inter-participant mean absolute errors of about 0.66 breaths/min and 1.32 beats/min were achieved, for RR and HR, respectively. The percentage of data available for analysis, representing the time coverage, was 98.3% for RR estimation and 78.3% for HR estimation. Nevertheless, the fusion of data from IMUs positioned at the arms and legs enhanced the inter-participant time coverage of HR estimation by over 15%. These findings imply that the proposed methodology can be used for vital sign monitoring during sleep, paving the way for a comprehensive understanding of sleep quality in individuals with SDB.
Collapse
Affiliation(s)
| | - Foivos Kanellos
- PD Neurotechnology Ltd., 45500 Ioannina, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | | | - Spyridon Konitsiotis
- University Hospital of Ioannina and Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | |
Collapse
|
2
|
Laufer B, Docherty PD, Murray R, Krueger-Ziolek S, Jalal NA, Hoeflinger F, Rupitsch SJ, Reindl L, Moeller K. Sensor Selection for Tidal Volume Determination via Linear Regression-Impact of Lasso versus Ridge Regression. SENSORS (BASEL, SWITZERLAND) 2023; 23:7407. [PMID: 37687863 PMCID: PMC10490437 DOI: 10.3390/s23177407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
The measurement of respiratory volume based on upper body movements by means of a smart shirt is increasingly requested in medical applications. This research used upper body surface motions obtained by a motion capture system, and two regression methods to determine the optimal selection and placement of sensors on a smart shirt to recover respiratory parameters from benchmark spirometry values. The results of the two regression methods (Ridge regression and the least absolute shrinkage and selection operator (Lasso)) were compared. This work shows that the Lasso method offers advantages compared to the Ridge regression, as it provides sparse solutions and is more robust to outliers. However, both methods can be used in this application since they lead to a similar sensor subset with lower computational demand (from exponential effort for full exhaustive search down to the order of O (n2)). A smart shirt for respiratory volume estimation could replace spirometry in some cases and would allow for a more convenient measurement of respiratory parameters in home care or hospital settings.
Collapse
Affiliation(s)
- Bernhard Laufer
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Paul D. Docherty
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand
| | - Rua Murray
- School of Mathematics and Statistics, University of Canterbury, Christchurch 8041, New Zealand
| | - Sabine Krueger-Ziolek
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Nour Aldeen Jalal
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04109 Leipzig, Germany
| | - Fabian Hoeflinger
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| | - Stefan J. Rupitsch
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| | - Leonhard Reindl
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| | - Knut Moeller
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| |
Collapse
|
3
|
Jin Y, Rahman MM, Ahmed T, Kuang J, Gao AJ. RRDetection: Respiration Rate Estimation Using Earbuds During Physical Activities. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083350 DOI: 10.1109/embc40787.2023.10340157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In modern times, earbuds have become both popular and essential accessories for people to use with a wide range of devices in their everyday lives. Moreover, the respiration rate is a crucial vital sign that is sensitive to various pathological conditions. Many earbuds now come equipped with multiple sensing capabilities, including inertial and acoustic sensors. These sensors can be used by researchers to passively monitor users' vital signs, such as respiration rates. While current earbud-based breath rate estimation algorithms mostly focus on resting conditions, recent studies have demonstrated that respiration rates during physical activities can predict cardio-respiratory fitness for healthy individuals and pulmonary conditions for respiratory patients. To address this gap, we propose a novel algorithm called RRDetection that leverages the motion sensors in ordinary earbuds to detect respiration rates during light to moderate physical activities.
Collapse
|
4
|
Angelucci A, Aliverti A. An IMU-Based Wearable System for Respiratory Rate Estimation in Static and Dynamic Conditions. Cardiovasc Eng Technol 2023; 14:351-363. [PMID: 36849621 PMCID: PMC9970135 DOI: 10.1007/s13239-023-00657-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/24/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Breathing parameters change with activity and posture, but currently available solutions can perform measurements only during static conditions. METHODS This article presents an innovative wearable sensor system constituted by three inertial measurement units to simultaneously estimate respiratory rate (RR) in static and dynamic conditions and perform human activity recognition (HAR) with the same sensing principle. Two units are aimed at detecting chest wall breathing-related movements (one on the thorax, one on the abdomen); the third is on the lower back. All units compute the quaternions describing the subject's movement and send data continuously with the ANT transmission protocol to an app. The 20 healthy subjects involved in the research (9 men, 11 women) were between 23 and 54 years old, with mean age 26.8, mean height 172.5 cm and mean weight 66.9 kg. Data from these subjects during different postures or activities were collected and analyzed to extract RR. RESULTS Statistically significant differences between dynamic activities ("walking slow", "walking fast", "running" and "cycling") and static postures were detected (p < 0.05), confirming the obtained measurements are in line with physiology even during dynamic activities. Data from the reference unit only and from all three units were used as inputs to artificial intelligence methods for HAR. When the data from the reference unit were used, the Gated Recurrent Unit was the best performing method (97% accuracy). With three units, a 1D Convolutional Neural Network was the best performing (99% accuracy). CONCLUSION Overall, the proposed solution shows it is possible to perform simultaneous HAR and RR measurements in static and dynamic conditions with the same sensor system.
Collapse
Affiliation(s)
- Alessandra Angelucci
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133, Milan, Italy.
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
5
|
Laufer B, Hoeflinger F, Docherty PD, Jalal NA, Krueger-Ziolek S, Rupitsch SJ, Reindl L, Moeller K. Characterisation and Quantification of Upper Body Surface Motions for Tidal Volume Determination in Lung-Healthy Individuals. SENSORS (BASEL, SWITZERLAND) 2023; 23:1278. [PMID: 36772318 PMCID: PMC9920533 DOI: 10.3390/s23031278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Measurement of accurate tidal volumes based on respiration-induced surface movements of the upper body would be valuable in clinical and sports monitoring applications, but most current methods lack the precision, ease of use, or cost effectiveness required for wide-scale uptake. In this paper, the theoretical ability of different sensors, such as inertial measurement units, strain gauges, or circumference measurement devices to determine tidal volumes were investigated, scrutinised and evaluated. Sixteen subjects performed different breathing patterns of different tidal volumes, while using a motion capture system to record surface motions and a spirometer as a reference to obtain tidal volumes. Subsequently, the motion-capture data were used to determine upper-body circumferences, tilt angles, distance changes, movements and accelerations-such data could potentially be measured using optical encoders, inertial measurement units, or strain gauges. From these parameters, the measurement range and correlation with the volume signal of the spirometer were determined. The highest correlations were found between the spirometer volume and upper body circumferences; surface deflection was also well correlated, while accelerations carried minor respiratory information. The ranges of thorax motion parameters measurable with common sensors and the values and correlations to respiratory volume are presented. This article thus provides a novel tool for sensor selection for a smart shirt analysis of respiration.
Collapse
Affiliation(s)
- Bernhard Laufer
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Fabian Hoeflinger
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| | - Paul D. Docherty
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand
| | - Nour Aldeen Jalal
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04109 Leipzig, Germany
| | - Sabine Krueger-Ziolek
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Stefan J. Rupitsch
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| | - Leonhard Reindl
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
| | - Knut Moeller
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany
- Department of Microsystems Engineering, University of Freiburg, 79085 Freiburg, Germany
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
6
|
Centracchio J, Esposito D, Gargiulo GD, Andreozzi E. Changes in Forcecardiography Heartbeat Morphology Induced by Cardio-Respiratory Interactions. SENSORS (BASEL, SWITZERLAND) 2022; 22:9339. [PMID: 36502041 PMCID: PMC9736082 DOI: 10.3390/s22239339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The cardiac function is influenced by respiration. In particular, various parameters such as cardiac time intervals and the stroke volume are modulated by respiratory activity. It has long been recognized that cardio-respiratory interactions modify the morphology of cardio-mechanical signals, e.g., phonocardiogram, seismocardiogram (SCG), and ballistocardiogram. Forcecardiography (FCG) records the weak forces induced on the chest wall by the mechanical activity of the heart and lungs and relies on specific force sensors that are capable of monitoring respiration, infrasonic cardiac vibrations, and heart sounds, all simultaneously from a single site on the chest. This study addressed the changes in FCG heartbeat morphology caused by respiration. Two respiratory-modulated parameters were considered, namely the left ventricular ejection time (LVET) and a morphological similarity index (MSi) between heartbeats. The time trends of these parameters were extracted from FCG signals and further analyzed to evaluate their consistency within the respiratory cycle in order to assess their relationship with the breathing activity. The respiratory acts were localized in the time trends of the LVET and MSi and compared with a reference respiratory signal by computing the sensitivity and positive predictive value (PPV). In addition, the agreement between the inter-breath intervals estimated from the LVET and MSi and those estimated from the reference respiratory signal was assessed via linear regression and Bland-Altman analyses. The results of this study clearly showed a tight relationship between the respiratory activity and the considered respiratory-modulated parameters. Both the LVET and MSi exhibited cyclic time trends that remarkably matched the reference respiratory signal. In addition, they achieved a very high sensitivity and PPV (LVET: 94.7% and 95.7%, respectively; MSi: 99.3% and 95.3%, respectively). The linear regression analysis reported almost unit slopes for both the LVET (R2 = 0.86) and MSi (R2 = 0.97); the Bland-Altman analysis reported a non-significant bias for both the LVET and MSi as well as limits of agreement of ±1.68 s and ±0.771 s, respectively. In summary, the results obtained were substantially in line with previous findings on SCG signals, adding to the evidence that FCG and SCG signals share a similar information content.
Collapse
Affiliation(s)
- Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Daniele Esposito
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Gaetano D. Gargiulo
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy
| |
Collapse
|
7
|
Di Tocco J, Lo Presti D, Zaltieri M, Bravi M, Morrone M, Sterzi S, Schena E, Massaroni C. Investigating Stroke Effects on Respiratory Parameters Using a Wearable Device: A Pilot Study on Hemiplegic Patients. SENSORS (BASEL, SWITZERLAND) 2022; 22:6708. [PMID: 36081165 PMCID: PMC9459881 DOI: 10.3390/s22176708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Quantitatively assessing personal health status is gaining increasing attention due to the improvement of diagnostic technology and the increasing occurrence of chronic pathologies. Monitoring physiological parameters allows for retrieving a general overview of the personal health status. Respiratory activity can provide relevant information, especially when pathologies affect the muscles and organs involved in breathing. Among many technologies, wearables may represent a valid solution for continuous and remote monitoring of respiratory activity, thus reducing healthcare costs. The most popular wearables used in this arena are based on detecting the breathing-induced movement of the chest wall. Therefore, their use in patients with impaired chest wall motion and abnormal respiratory kinematics can be challenging, but literature is still in its infancy. This study investigates the performance of a custom wearable device for respiratory monitoring in post-stroke patients. We tested the device on six hemiplegic patients under different respiratory regimes. The estimated respiratory parameters (i.e., respiratory frequency and the timing of the respiratory phase) demonstrated good agreement with the ones provided by a gold standard device. The promising results of this pilot study encourage the exploitation of wearables on these patients that may strongly impact the treatment of chronic diseases, such as hemiplegia.
Collapse
Affiliation(s)
- Joshua Di Tocco
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Martina Zaltieri
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marco Bravi
- Unit of Physical and Rehabilitative Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Michelangelo Morrone
- Unit of Physical and Rehabilitative Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Silvia Sterzi
- Unit of Physical and Rehabilitative Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
8
|
Janik P, Janik MA, Pielka M. Monitoring Breathing and Heart Rate Using Episodic Broadcast Data Transmission. SENSORS (BASEL, SWITZERLAND) 2022; 22:6019. [PMID: 36015777 PMCID: PMC9416172 DOI: 10.3390/s22166019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The paper presents a wearable sensor for breath and pulse monitoring using an inertial sensor and episodic broadcast radio transmission. The data transmission control algorithm applied allows for the transmission of additional information using the standard PDU format and, at the same time, goes beyond the Bluetooth teletransmission standard (BLE). The episodic broadcast transmission makes it possible to receive information from sensors without the need to create a dedicated radio link or a defined network structure. The radio transmission controlled by the occurrence of a specific event in the monitored signal is combined with the reference wire transmission. The signals from two different types of sensors and the simulated ECG signal are used to control the BLE transmission. The presented results of laboratory tests indicate the effectiveness of episodic data transmission in the BLE standard. The conducted analysis showed that the mean difference in pulse detection using the episodic transmission compared to the wire transmission is 0.038 s, which is about 4% of the mean duration of a single cycle, assuming that the average adult human pulse is 60 BPM.
Collapse
|
9
|
LoMauro A, Colli A, Colombo L, Aliverti A. Breathing patterns recognition: A functional data analysis approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106670. [PMID: 35172250 DOI: 10.1016/j.cmpb.2022.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE The ongoing pandemic proved fundamental is to assess a subject's respiratory functionality and breathing pattern measurement during quiet breathing is feasible in almost all patients, even those uncooperative. Breathing pattern consists of tidal volume and respiratory rate in an individual assessed by data tracks of lung or chest wall volume over time. State-of-art analysis of these data requires operator-dependent choices such as individuation of local minima in the track, elimination of anomalous breaths and individuation of breath clusters corresponding to different breathing patterns. METHODS A semi-automatic, robust and reproducible procedure was proposed to pre-process and analyse respiratory tracks, based on Functional Data Analysis (FDA) techniques, to identify representative breath curve and the corresponding breathing patterns. This was achieved through three steps: 1) breath separation through precise localization of the minima of the volume trace; 2) functional outlier breaths detection according to time-duration, magnitude and shape; 3) breath clustering to identify different pattern of interest, through K-medoids with Alignment. The method was firstly validated on simulated tracks and then applied to real data in conditions of clinical interest: operational volume change, exercise, mechanical ventilation, paradoxical breathing and age. RESULTS The total error in the accuracy of minima detection and in was less than 5%; with the artificial outliers being almost completely removed with an accuracy of 99%. During incremental exercise and independently on the bike resistance level, five clusters were identified (quiet breathing; recovery phase; onset of exercise; maximal and intermediate levels of exercise). During mechanical ventilation, the procedure was able to separate the non-ventilated from the ventilatory-supported breathing and to identify the worsening of paradoxical breathing due to the disease progression and the breathing pattern changes in healthy subjects due to age. CONCLUSIONS We proposed a robust validated automatic breathing patterns identification algorithm that extracted representative curves that could be implemented in clinical practice for objective comparison of the breathing patterns within and between subjects. In all case studies the identified patterns proved to be coherent with the clinical conditions and the physiopathology of the subjects, therefore enforcing the potential clinical translational value of the method.
Collapse
Affiliation(s)
- A LoMauro
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. da Vinci 32; 20133 Milano, Italy.
| | - A Colli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. da Vinci 32; 20133 Milano, Italy
| | - L Colombo
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. da Vinci 32; 20133 Milano, Italy
| | - A Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. da Vinci 32; 20133 Milano, Italy
| |
Collapse
|
10
|
Assessing Respiratory Activity by Using IMUs: Modeling and Validation. SENSORS 2022; 22:s22062185. [PMID: 35336355 PMCID: PMC8950860 DOI: 10.3390/s22062185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to explore novel inertial measurement unit (IMU)-based strategies to estimate respiratory parameters in healthy adults lying on a bed while breathing normally. During the experimental sessions, the kinematics of the chest wall were contemporaneously collected through both a network of 9 IMUs and a set of 45 uniformly distributed reflective markers. All inertial kinematics were analyzed to identify a minimum set of signals and IMUs whose linear combination best matched the tidal volume measured by optoelectronic plethysmography. The resulting models were finally tuned and validated through a leave-one-out cross-validation approach to assess the extent to which they could accurately estimate a set of respiratory parameters related to three trunk compartments. The adopted methodological approach allowed us to identify two different models. The first, referred to as Model 1, relies on the 3D acceleration measured by three IMUs located on the abdominal compartment and on the lower costal margin. The second, referred to as Model 2, relies on only one component of the acceleration measured by two IMUs located on the abdominal compartment. Both models can accurately estimate the respiratory rate (relative error < 1.5%). Conversely, the duration of the respiratory phases and the tidal volume can be more accurately assessed by Model 2 (relative error < 5%) and Model 1 (relative error < 5%), respectively. We further discuss possible approaches to overcome limitations and improve the overall accuracy of the proposed approach.
Collapse
|
11
|
Ranta J, Ilén E, Palmu K, Salama J, Roienko O, Vanhatalo S. An openly available wearable, a diaper cover, monitors infant's respiration and position during rest and sleep. Acta Paediatr 2021; 110:2766-2771. [PMID: 34146357 DOI: 10.1111/apa.15996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/01/2022]
Abstract
AIM To describe and test the accuracy of respiratory rate assessment in long-term surveillance using an open-source infant wearable, NAPping PAnts (NAPPA). METHODS We recorded 24 infants aged 1-9 months using our newly developed infant wearable that is a diaper cover with an integrated programmable electronics with accelerometer and gyroscope sensors. The sensor collects child's respiration rate (RR), activity and body posture in 30-s epochs, to be downloaded afterwards into a mobile phone application. An automated RR quality measure was also implemented using autocorrelation function, and the accuracy of RR estimate was compared with a reference obtained from the simultaneously recorded capnography signal that was part of polysomnography recordings. RESULTS Altogether 88 h 27 min of data were recorded, and 4147 epochs (39% of all data) were accepted after quality detection. The median of patient wise mean absolute errors in RR estimates was 1.5 breaths per minute (interquartile range 1.1-2.6 bpm), and the Blandt-Altman analysis indicated an RR bias of 0.0 bpm with the 95% limits of agreement of -5.7-5.7 bpm. CONCLUSION Long-term monitoring of RR and posture can be done with reasonable accuracy in out-of-hospital settings using NAPPA, an openly available infant wearable.
Collapse
Affiliation(s)
- Jukka Ranta
- BABA Center Children's Hospital Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Elina Ilén
- Department of Design Aalto University Espoo Finland
| | - Kirsi Palmu
- BABA Center Children's Hospital Helsinki University Hospital and University of Helsinki Helsinki Finland
- Department of Clinical Neurophysiology HUS Medical Imaging Center University of HelsinkiHelsinki University Hospital and University of Helsinki Helsinki Finland
| | - Jonna Salama
- BABA Center Children's Hospital Helsinki University Hospital and University of Helsinki Helsinki Finland
- Department of Clinical Neurophysiology HUS Medical Imaging Center University of HelsinkiHelsinki University Hospital and University of Helsinki Helsinki Finland
| | - Oleksii Roienko
- BABA Center Children's Hospital Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Sampsa Vanhatalo
- BABA Center Children's Hospital Helsinki University Hospital and University of Helsinki Helsinki Finland
- Department of Clinical Neurophysiology HUS Medical Imaging Center University of HelsinkiHelsinki University Hospital and University of Helsinki Helsinki Finland
- Neuroscience Center University of Helsinki Helsinki Finland
| |
Collapse
|
12
|
Pennati F, LoMauro A, D’Angelo MG, Aliverti A. Non-Invasive Respiratory Assessment in Duchenne Muscular Dystrophy: From Clinical Research to Outcome Measures. Life (Basel) 2021; 11:life11090947. [PMID: 34575096 PMCID: PMC8468718 DOI: 10.3390/life11090947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
Ventilatory failure, due to the progressive wasting of respiratory muscles, is the main cause of death in patients with Duchenne muscular dystrophy (DMD). Reliable measures of lung function and respiratory muscle action are important to monitor disease progression, to identify early signs of ventilatory insufficiency and to plan individual respiratory management. Moreover, the current development of novel gene-modifying and pharmacological therapies highlighted the urgent need of respiratory outcomes to quantify the effects of these therapies. Pulmonary function tests represent the standard of care for lung function evaluation in DMD, but provide a global evaluation of respiratory involvement, which results from the interaction between different respiratory muscles. Currently, research studies have focused on finding novel outcome measures able to describe the behavior of individual respiratory muscles. This review overviews the measures currently identified in clinical research to follow the progressive respiratory decline in patients with DMD, from a global assessment to an individual structure–function muscle characterization. We aim to discuss their strengths and limitations, in relation to their current development and suitability as outcome measures for use in a clinical setting and as in upcoming drug trials in DMD.
Collapse
Affiliation(s)
- Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy; (A.L.); (A.A.)
- Correspondence:
| | - Antonella LoMauro
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy; (A.L.); (A.A.)
| | | | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy; (A.L.); (A.A.)
| |
Collapse
|
13
|
A Respiratory Motion Estimation Method Based on Inertial Measurement Units for Gated Positron Emission Tomography. SENSORS 2021; 21:s21123983. [PMID: 34207864 PMCID: PMC8228885 DOI: 10.3390/s21123983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 01/12/2023]
Abstract
We present a novel method for estimating respiratory motion using inertial measurement units (IMUs) based on microelectromechanical systems (MEMS) technology. As an application of the method we consider the amplitude gating of positron emission tomography (PET) imaging, and compare the method against a clinically used respiration motion estimation technique. The presented method can be used to detect respiratory cycles and estimate their lengths with state-of-the-art accuracy when compared to other IMU-based methods, and is the first based on commercial MEMS devices, which can estimate quantitatively both the magnitude and the phase of respiratory motion from the abdomen and chest regions. For the considered test group consisting of eight subjects with acute myocardial infarction, our method achieved the absolute breathing rate error per minute of 0.44 ± 0.23 1/min, and the absolute amplitude error of 0.24 ± 0.09 cm, when compared to the clinically used respiratory motion estimation technique. The presented method could be used to simplify the logistics related to respiratory motion estimation in PET imaging studies, and also to enable multi-position motion measurements for advanced organ motion estimation.
Collapse
|
14
|
Tavera CA, Ortiz JH, Khalaf OI, Saavedra DF, Aldhyani THH. Wearable Wireless Body Area Networks for Medical Applications. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5574376. [PMID: 33986824 PMCID: PMC8093056 DOI: 10.1155/2021/5574376] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/21/2021] [Accepted: 04/10/2021] [Indexed: 01/25/2023]
Abstract
In recent times, there has been a significant growth in networks known as the wireless body area networks (WBANs). A WBAN connects distributed nodes throughout the human body, which can be placed on the skin, under the skin, or on clothing and can use the human body's electromagnetic waves. An approach to reduce the size of different telecommunication equipment is constantly being sought; this allows these devices to be closer to the body or even glued and embedded within the skin without making the user feel uncomfortable or posing as a danger for the user. These networks promise new medical applications; however, these are always based on the freedom of movement and the comfort they offer. Among the advantages of these networks is that they can significantly increase user's quality of life. For example, a person can carry a WBAN with built-in sensors that calculate the user's heart rate at any given time and send these data over the internet to user's doctor. This study provides a systematic review of WBAN, describing the applications and trends that have been developed with this type of network and, in addition, the protocols and standards that must be considered.
Collapse
Affiliation(s)
| | - Jesús H. Ortiz
- Closemobile R&D Telecommunications LS, Fuenlabrada, Spain
| | | | | | - Theyazn H. H. Aldhyani
- Community College of Abqaiq, King Faisal University, P.O. Box 4000 Al-Ahsa, Saudi Arabia
| |
Collapse
|
15
|
George UZ, Moon KS, Lee SQ. Extraction and Analysis of Respiratory Motion Using a Comprehensive Wearable Health Monitoring System. SENSORS (BASEL, SWITZERLAND) 2021; 21:1393. [PMID: 33671202 PMCID: PMC7923104 DOI: 10.3390/s21041393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/22/2022]
Abstract
Respiratory activity is an important vital sign of life that can indicate health status. Diseases such as bronchitis, emphysema, pneumonia and coronavirus cause respiratory disorders that affect the respiratory systems. Typically, the diagnosis of these diseases is facilitated by pulmonary auscultation using a stethoscope. We present a new attempt to develop a lightweight, comprehensive wearable sensor system to monitor respiration using a multi-sensor approach. We employed new wearable sensor technology using a novel integration of acoustics and biopotentials to monitor various vital signs on two volunteers. In this study, a new method to monitor lung function, such as respiration rate and tidal volume, is presented using the multi-sensor approach. Using the new sensor, we obtained lung sound, electrocardiogram (ECG), and electromyogram (EMG) measurements at the external intercostal muscles (EIM) and at the diaphragm during breathing cycles with 500 mL, 625 mL, 750 mL, 875 mL, and 1000 mL tidal volume. The tidal volumes were controlled with a spirometer. The duration of each breathing cycle was 8 s and was timed using a metronome. For each of the different tidal volumes, the EMG data was plotted against time and the area under the curve (AUC) was calculated. The AUC calculated from EMG data obtained at the diaphragm and EIM represent the expansion of the diaphragm and EIM respectively. AUC obtained from EMG data collected at the diaphragm had a lower variance between samples per tidal volume compared to those monitored at the EIM. Using cubic spline interpolation, we built a model for computing tidal volume from EMG data at the diaphragm. Our findings show that the new sensor can be used to measure respiration rate and variations thereof and holds potential to estimate tidal lung volume from EMG measurements obtained from the diaphragm.
Collapse
Affiliation(s)
- Uduak Z. George
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA;
| | - Kee S. Moon
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Sung Q. Lee
- Electronics and Telecommunications Research Institute, Daejeon 34129, Korea;
| |
Collapse
|
16
|
Cesareo A, Nido SA, Biffi E, Gandossini S, D’Angelo MG, Aliverti A. A Wearable Device for Breathing Frequency Monitoring: A Pilot Study on Patients with Muscular Dystrophy. SENSORS 2020; 20:s20185346. [PMID: 32961986 PMCID: PMC7571149 DOI: 10.3390/s20185346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Patients at risk of developing respiratory dysfunctions, such as patients with severe forms of muscular dystrophy, need a careful respiratory assessment, and periodic follow-up visits to monitor the progression of the disease. In these patients, at-home continuous monitoring of respiratory activity patterns could provide additional understanding about disease progression, allowing prompt clinical intervention. The core aim of the present study is thus to investigate the feasibility of using an innovative wearable device for respiratory monitoring, particularly breathing frequency variation assessment, in patients with muscular dystrophy. A comparison of measurements of breathing frequency with gold standard methods showed that the device based on the inertial measurement units (IMU-based device) provided optimal results in terms of accuracy errors, correlation, and agreement. Participants positively evaluated the device for ease of use, comfort, usability, and wearability. Moreover, preliminary results confirmed that breathing frequency is a valuable breathing parameter to monitor, at the clinic and at home, because it strongly correlates with the main indexes of respiratory function.
Collapse
Affiliation(s)
- Ambra Cesareo
- Scientific Institute, IRCCS “E. Medea”, Bioengineering Lab, Bosisio Parini, 23842 Lecco, Italy; (A.C.); (E.B.)
| | - Santa Aurelia Nido
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy;
| | - Emilia Biffi
- Scientific Institute, IRCCS “E. Medea”, Bioengineering Lab, Bosisio Parini, 23842 Lecco, Italy; (A.C.); (E.B.)
| | - Sandra Gandossini
- Scientific Institute, IRCCS “E. Medea”, Department of Neurorehabilitation, Neuromuscular Unit, Bosisio Parini, 23842 Lecco, Italy; (S.G.); (M.G.D.)
| | - Maria Grazia D’Angelo
- Scientific Institute, IRCCS “E. Medea”, Department of Neurorehabilitation, Neuromuscular Unit, Bosisio Parini, 23842 Lecco, Italy; (S.G.); (M.G.D.)
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy;
- Correspondence:
| |
Collapse
|
17
|
do Nascimento LMS, Bonfati LV, Freitas MLB, Mendes Junior JJA, Siqueira HV, Stevan SL. Sensors and Systems for Physical Rehabilitation and Health Monitoring-A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4063. [PMID: 32707749 PMCID: PMC7436073 DOI: 10.3390/s20154063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 01/03/2023]
Abstract
The use of wearable equipment and sensing devices to monitor physical activities, whether for well-being, sports monitoring, or medical rehabilitation, has expanded rapidly due to the evolution of sensing techniques, cheaper integrated circuits, and the development of connectivity technologies. In this scenario, this paper presents a state-of-the-art review of sensors and systems for rehabilitation and health monitoring. Although we know the increasing importance of data processing techniques, our focus was on analyzing the implementation of sensors and biomedical applications. Although many themes overlap, we organized this review based on three groups: Sensors in Healthcare, Home Medical Assistance, and Continuous Health Monitoring; Systems and Sensors in Physical Rehabilitation; and Assistive Systems.
Collapse
Affiliation(s)
- Lucas Medeiros Souza do Nascimento
- Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil; (L.M.S.d.N.); (L.V.B.); (M.L.B.F.); (H.V.S.)
| | - Lucas Vacilotto Bonfati
- Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil; (L.M.S.d.N.); (L.V.B.); (M.L.B.F.); (H.V.S.)
| | - Melissa La Banca Freitas
- Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil; (L.M.S.d.N.); (L.V.B.); (M.L.B.F.); (H.V.S.)
| | - José Jair Alves Mendes Junior
- Graduate Program in Electrical Engineering and Industrial Informatics (CPGEI), Federal University of Technology of Parana (UTFPR), Curitiba (PR) 80230-901, Brazil;
| | - Hugo Valadares Siqueira
- Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil; (L.M.S.d.N.); (L.V.B.); (M.L.B.F.); (H.V.S.)
| | - Sergio Luiz Stevan
- Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil; (L.M.S.d.N.); (L.V.B.); (M.L.B.F.); (H.V.S.)
| |
Collapse
|