Al‐Sa'd M, Vanhatalo S, Tokariev A. Multiplex dynamic networks in the newborn brain disclose latent links with neurobehavioral phenotypes.
Hum Brain Mapp 2024;
45:e26610. [PMID:
38339895 PMCID:
PMC10839739 DOI:
10.1002/hbm.26610]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The higher brain functions arise from coordinated neural activity between distinct brain regions, but the spatial, temporal, and spectral complexity of these functional connectivity networks (FCNs) has challenged the identification of correlates with neurobehavioral phenotypes. Characterizing behavioral correlates of early life FCNs is important to understand the activity dependent emergence of neurodevelopmental performance and for improving health outcomes. Here, we develop an analysis pipeline for identifying multiplex dynamic FCNs that combine spectral and spatiotemporal characteristics of the newborn cortical activity. This data-driven approach automatically uncovers latent networks that show robust neurobehavioral correlations and consistent effects by in utero drug exposure. Altogether, the proposed pipeline provides a robust end-to-end solution for an objective assessment and quantitation of neurobehaviorally meaningful network constellations in the highly dynamic cortical functions.
Collapse