1
|
Lo Cigno I, Calati F, Girone C, Catozzo M, Gariglio M. High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 2024; 96:e29685. [PMID: 38783790 DOI: 10.1002/jmv.29685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marta Catozzo
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| |
Collapse
|
2
|
Malekian F, Shamsian A, Kodam SP, Ullah M. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective. J Physiol 2023; 601:4853-4872. [PMID: 35570717 DOI: 10.1113/jp282799] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2023] Open
Abstract
Exosomes are membrane-bound vesicles that are released by most cells. They carry nucleic acids, cytokines, growth factors, proteins, lipids, and metabolites. They are responsible for inter- and intracellular communications and their role in drug delivery is well defined. Exosomes have great potential for therapeutic applications, but the clinical use is restricted because of limitations in standardized procedures for isolation, purification, and drug delivery. Bioengineering of exosomes could be one approach to achieve standardization and reproducible isolation for clinical use. Exosomes are important transporters for targeted drug delivery because of their small size, stable structure, non-immunogenicity, and non-toxic nature, as well as their ability to carry a wide variety of compounds. These features of exosomes can be enhanced further by bioengineering. In this review, possible exosome bioengineering approaches, their biomedical applications, and targeted drug delivery are discussed.
Collapse
Affiliation(s)
- Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Alireza Shamsian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
3
|
Chakraborty S, Ye J, Wang H, Sun M, Zhang Y, Sang X, Zhuang Z. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front Immunol 2023; 14:1227833. [PMID: 37936697 PMCID: PMC10626551 DOI: 10.3389/fimmu.2023.1227833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) expressed in various immune cell types and perform multiple purposes and duties involved in the induction of innate and adaptive immunity. Their capability to propagate immunity makes them attractive targets for the expansion of numerous immunotherapeutic approaches targeting cancer. These immunotherapeutic strategies include using TLR ligands/agonists as monotherapy or combined therapeutic strategies. Several TLR agonists have demonstrated significant efficacy in advanced clinical trials. In recent years, multiple reports established the applicability of TLR agonists as adjuvants to chemotherapeutic drugs, radiation, and immunotherapies, including cancer vaccines. Cancer vaccines are a relatively novel approach in the field of cancer immunotherapy and are currently under extensive evaluation for treating different cancers. In the present review, we tried to deliver an inclusive discussion of the significant TLR agonists and discussed their application and challenges to their incorporation into cancer immunotherapy approaches, particularly highlighting the usage of TLR agonists as functional adjuvants to cancer vaccines. Finally, we present the translational potential of rWTC-MBTA vaccination [irradiated whole tumor cells (rWTC) pulsed with phagocytic agonists Mannan-BAM, TLR ligands, and anti-CD40 agonisticAntibody], an autologous cancer vaccine leveraging membrane-bound Mannan-BAM, and the immune-inducing prowess of TLR agonists as a probable immunotherapy in multiple cancer types.
Collapse
Affiliation(s)
- Samik Chakraborty
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- NE1 Inc., New York, NY, United States
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mitchell Sun
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yaping Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueyu Sang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Geng Y, Sun YJ, Song H, Miao QJ, Wang YF, Qi JL, Xu XL, Sun JF. Construction and Identification of an NLR-Associated Prognostic Signature Revealing the Heterogeneous Immune Response in Skin Cutaneous Melanoma. Clin Cosmet Investig Dermatol 2023; 16:1623-1639. [PMID: 37396711 PMCID: PMC10312339 DOI: 10.2147/ccid.s410723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Background Skin cutaneous melanoma (SKCM) is the deadliest dermatology tumor. Ongoing researches have confirmed that the NOD-like receptors (NLRs) family are crucial in driving carcinogenesis. However, the function of NLRs signaling pathway-related genes in SKCM remains unclear. Objective To establish and identify an NLRs-related prognostic signature and to explore its predictive power for heterogeneous immune response in SKCM patients. Methods Establishment of the predictive signature using the NLRs-related genes by least absolute shrinkage and selection operator-Cox regression analysis (LASSO-COX algorithm). Through univariate and multivariate COX analyses, NLRs signature's independent predictive effectiveness was proven. CIBERSORT examined the comparative infiltration ratios of 22 distinct types of immune cells. RT-qPCR and immunohistochemistry implemented expression validation for critical NLRs-related prognostic genes in clinical samples. Results The prognostic signature, including 7 genes, was obtained by the LASSO-Cox algorithm. In TCGA and validation cohorts, SKCM patients with higher risk scores had remarkably poorer overall survival. The independent predictive role of this signature was confirmed by multivariate Cox analysis. Additionally, a graphic nomogram demonstrated that the risk score of the NLRs signature has high predictive accuracy. SKCM patients in the low-risk group revealed a distinct immune microenvironment characterized by the significantly activated inflammatory response, interferon-α/γ response, and complement pathways. Indeed, several anti-tumor immune cell types were significantly accumulated in the low-risk group, including M1 macrophage, CD8 T cell, and activated NK cell. It is worth noting that our NLRs prognostic signature could serve as one of the promising biomarkers for predicting response rates to immune checkpoint blockade (ICB) therapy. Furthermore, the results of expression validation (RT-qPCR and IHC) were consistent with the previous analysis. Conclusion A promising NLRs signature with excellent predictive efficacy for SKCM was developed.
Collapse
Affiliation(s)
- Yi Geng
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Yu-Jie Sun
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Hao Song
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Qiu-Ju Miao
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Yi-Fei Wang
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People’s Republic of China
| | - Xiu-Lian Xu
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Jian-Fang Sun
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| |
Collapse
|
5
|
Gurudas Shivji G, Dhar R, Devi A. Role of Exosomes and its emerging therapeutic applications in the pathophysiology of Non-Infectious disease. Biomarkers 2022; 27:534-548. [PMID: 35451890 DOI: 10.1080/1354750x.2022.2067233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exosomes are a type of small Extracellular Vesicles (EVs) and play crucial roles in cancer and other diseases. Exosomes role in various diseases has been studied as they regulate intercellular communication and are obtained from almost any part of the body. Exosomes use is complicated in diseases as they promote pathogenesis but also act as a very good therapeutic agent in most diseases. The presence of a complex molecular cargo consisting of nucleic acids (DNA, RNA, miRNA, siRNA, etc.,) makes it a very good delivery agent and acts as a biomarker for many cancers, cardiovascular and neurodegenerative diseases. They can be used to selectively target cells and activate immune cell responses depending on the source obtained. Exosomes based immunotherapy is an area of gaining importance due to the proteins present in them and their specificity to the targeted cells. The role of exosomes in the diagnosis and treatment of non-infectious diseases is discussed in detail in this article.
Collapse
Affiliation(s)
- Gauresh Gurudas Shivji
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu 603203, India
| | - Rajib Dhar
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu 603203, India
| | - Arikketh Devi
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu 603203, India
| |
Collapse
|
6
|
Mortezaee K, Majidpoor J. (Im)maturity in Tumor Ecosystem. Front Oncol 2022; 11:813897. [PMID: 35145911 PMCID: PMC8821092 DOI: 10.3389/fonc.2021.813897] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Tumors have special features that make them distinct from their normal counterparts. Immature cells in a tumor mass and their critical contributions to the tumorigenesis will open new windows toward cancer therapy. Incomplete cellular development brings versatile and unique functionality in the cellular tumor ecosystem, such as what is seen for highly potential embryonic cells. There is evidence that maturation of certain types of cells in this ecosystem can recover the sensitivity of the tumor. Therefore, understanding more about the mechanisms that contributed to this immaturity will render new therapeutic approaches in cancer therapy. Targeting such mechanisms can be exploited as a supplementary to the current immunotherapeutic treatment schedules, such as immune checkpoint inhibitor (ICI) therapy. The key focus of this review is to discuss the impact of (im)maturity in cellular tumor ecosystems on cancer progression, focusing mainly on immaturity in the immune cell compartment of the tumor, as well as on the stemness of tumor cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
7
|
Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci 2021; 286:120057. [PMID: 34662552 DOI: 10.1016/j.lfs.2021.120057] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Hypoxia is a known feature of solid tumors and a critical promoter of tumor hallmarks. Hypoxia influences tumor immunity in a way favoring immune evasion and resistance. Extreme hypoxia and aberrant hypoxia-inducible factor-1 (HIF-1) activity in tumor microenvironment (TME) is a drawback for effective immunotherapy. Infiltration and activity of CD8+ T cells is reduced in such condition, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) show high activities. Highly hypoxic TME also impairs maturation and activity of dendritic cell (DCs) and natural killer (NK) cells. In addition, the hypoxic TME positively is linked positively with metabolic changes in cells of immune system. These alterations are indicative of a need for hypoxia modulation as a complementary targeting strategy to go with immune checkpoint inhibitor (ICI) therapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
8
|
Gruijs M, Ganzevles SH, Stigter-van Walsum M, van der Mast R, van Ostaijen-ten Dam MM, Tuk CW, Schilham MW, Leemans CR, Brakenhoff RH, van Egmond M, van de Ven R, Bakema JE. NK Cell-Dependent Antibody-Mediated Immunotherapy Is Improved In Vitro and In Vivo When Combined with Agonists for Toll-like Receptor 2 in Head and Neck Cancer Models. Int J Mol Sci 2021; 22:11057. [PMID: 34681717 PMCID: PMC8541276 DOI: 10.3390/ijms222011057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The immunosuppressive character of head and neck cancers may explain the relatively low response rates to antibody therapy targeting a tumor antigen, such as cetuximab, and anti-PD-1 checkpoint inhibition. Immunostimulatory agents that overcome tumor-derived inhibitory signals could augment therapeutic efficacy, thereby enhancing tumor elimination and improving patient survival. Here, we demonstrate that cetuximab treatment combined with immunostimulatory agonists for Toll-like receptor (TLR) 2 induces profound immune responses. Natural killer (NK) cells, isolated from healthy individuals or patients with head and neck cancer, harbored enhanced cytotoxic capacity and increased tumor-killing potential in vitro. Additionally, combination treatment increased the release of several pro-inflammatory cytokines and chemokines by NK cells. Tumor-bearing mice that received cetuximab and the TLR2 ligand Pam3CSK4 showed increased infiltration of immune cells into the tumors compared to mice that received cetuximab monotherapy, resulting in a significant delay in tumor growth or even complete tumor regression. Moreover, combination treatment resulted in improved overall survival in vivo. In conclusion, combining tumor-targeting antibody-based immunotherapy with TLR stimulation represents a promising treatment strategy to improve the clinical outcomes of cancer patients. This treatment could well be applied together with other therapeutic strategies such as anti-PD-(L)1 checkpoint inhibition to further overcome immunosuppression.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity/immunology
- Cell Line, Tumor
- Cetuximab/pharmacology
- Cetuximab/therapeutic use
- Cytokines/metabolism
- Drug Therapy, Combination
- Female
- Head and Neck Neoplasms/therapy
- Humans
- Immunotherapy
- Killer Cells, Natural/immunology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lipopeptides/pharmacology
- Lipopeptides/therapeutic use
- Mice
- Mice, Nude
- Receptors, IgG/agonists
- Receptors, IgG/metabolism
- Toll-Like Receptor 2/agonists
- Toll-Like Receptor 2/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
| | - Sonja H. Ganzevles
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Marijke Stigter-van Walsum
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Richard van der Mast
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Monique M. van Ostaijen-ten Dam
- Leiden University Medical Center, Department of Pediatrics, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (M.M.v.O.-t.D.); (M.W.S.)
| | - Cornelis W. Tuk
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
| | - Marco W. Schilham
- Leiden University Medical Center, Department of Pediatrics, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (M.M.v.O.-t.D.); (M.W.S.)
| | - C. René Leemans
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Ruud H. Brakenhoff
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Marjolein van Egmond
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
- Amsterdam UMC, Department of Surgery, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Jantine E. Bakema
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| |
Collapse
|
9
|
Kaur D, Arora C, Raghava GPS. Prognostic Biomarker-Based Identification of Drugs for Managing the Treatment of Endometrial Cancer. Mol Diagn Ther 2021; 25:629-646. [PMID: 34155607 DOI: 10.1007/s40291-021-00539-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Uterine corpus endometrial carcinoma (UCEC) causes thousands of deaths per year. To improve the overall survival of patients with UCEC, there is a need to identify prognostic biomarkers and potential drugs. OBJECTIVES The aim of this study was twofold: the identification of prognostic gene signatures from expression profiles of pattern recognition receptor (PRR) genes and identification of the most effective existing drugs using the prognostic gene signature. METHODS This study was based on the expression profile of PRR genes of 541 patients with UCEC obtained from The Cancer Genome Atlas. Key prognostic signatures were identified using various approaches, including survival analysis, network, and clustering. Hub genes were identified by constructing a co-expression network. Representative genes were identified using k-means and k-medoids-based clustering. Univariate Cox proportional hazard (PH) analysis was used to identify survival-associated genes. 'cmap2' was used to identify potential drugs that can suppress/enhance the expression of prognostic genes. RESULTS Models were developed using hub genes and achieved a maximum hazard ratio (HR) of 1.37 (p = 0.294). Then, a clustering-based model was developed using seven genes (HR 9.14; p = 1.49 × 10-12). Finally, a nine gene-based risk stratification model was developed (CLEC1B, CLEC3A, IRF7, CTSB, FCN1, RIPK2, NLRP10, NLRP9, and SARM1) and achieved HR 10.70; p = 1.1 × 10-12. The performance of this model improved significantly in combination with the clinical stage and achieved HR 15.23; p = 2.21 × 10-7. We also developed a model for predicting high-risk patients (survival ≤ 4.3 years) and achieved an area under the receiver operating characteristic curve (AUROC) of 0.86. CONCLUSION We identified potential immunotherapeutic agents based on prognostic gene signature: hexamethonium bromide and isoflupredone. Several novel candidate drugs were suggested, including human interferon-α-2b, paclitaxel, imiquimod, MESO-DAP1, and mifamurtide. These biomolecules and repurposed drugs may be utilised for prognosis and treatment for better survival.
Collapse
Affiliation(s)
- Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla Industrial Estate, New Delhi, 110020, India
| | - Chakit Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla Industrial Estate, New Delhi, 110020, India
| | - Gajendra Pal Singh Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla Industrial Estate, New Delhi, 110020, India.
| |
Collapse
|
10
|
Cui L, Wang X, Zhang D. TLRs as a Promise Target Along With Immune Checkpoint Against Gastric Cancer. Front Cell Dev Biol 2021; 8:611444. [PMID: 33469538 PMCID: PMC7813757 DOI: 10.3389/fcell.2020.611444] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers in the world, and the incidence of gastric cancer in Asia appears to increase in recent years. Although there is a lot of improvement in treatment approaches, the prognosis of GC is poor. So it is urgent to search for a novel and more effective treatment to improve the survival rate of patients. Both innate immunity and adaptive immunity are important in cancer. In the innate immune system, pattern recognition receptors (PRRs) activate immune responses by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs). Many studies have reported that TLRs are involved in the occurrence, development, and treatment of GC. Therefore, TLRs are potential targets for immunotherapy to gastric cancer. However, gastric cancer is a heterogeneous disorder, and TLRs function in GC is complex. TLRs agonists can be potentially used not only as therapeutic agents to treat gastric cancer but also as adjuvants in conjunction with other immunotherapies. They might provide a promising new target for GC treatment. In the review, we sort out the mechanism of TLRs involved in tumor immunity and summarize the current progress in TLRs-based therapeutic approaches and other immunotherapies in the treatment of GC.
Collapse
Affiliation(s)
- Lin Cui
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiuqing Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Texas A&M University, Houston, TX, United States
| |
Collapse
|
11
|
Mediratta K, El-Sahli S, D’Costa V, Wang L. Current Progresses and Challenges of Immunotherapy in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:E3529. [PMID: 33256070 PMCID: PMC7761500 DOI: 10.3390/cancers12123529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
With improved understanding of the immunogenicity of triple-negative breast cancer (TNBC), immunotherapy has emerged as a promising candidate to treat this lethal disease owing to the lack of specific targets and effective treatments. While immune checkpoint inhibition (ICI) has been effectively used in immunotherapy for several types of solid tumor, monotherapies targeting programmed death 1 (PD-1), its ligand PD-L1, or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) have shown little efficacy for TNBC patients. Over the past few years, various therapeutic candidates have been reviewed, attempting to improve ICI efficacy on TNBC through combinatorial treatment. In this review, we describe the clinical limitations of ICI and illustrate candidates from an immunological, pharmacological, and metabolic perspective that may potentiate therapy to improve the outcomes of TNBC patients.
Collapse
Affiliation(s)
- Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Vanessa D’Costa
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
12
|
Keshavarz A, Pourbagheri-Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. Toll-like receptors (TLRs) in cancer; with an extensive focus on TLR agonists and antagonists. IUBMB Life 2020; 73:10-25. [PMID: 33217774 DOI: 10.1002/iub.2412] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
At the forefront of the battle against pathogens or any endogenously released molecules, toll-like receptors (TLRs) play an important role as the most noble pattern recognition receptors. The ability of these receptors in distinguishing "self" and "non-self" antigens is a cornerstone in the innate immunity system; however, misregulation links inflammatory responses to the development of human cancers. It has been known for some time that aberrant expression and regulation of TLRs not only endows cancer cells an opportunity to escape from the immune system but also supports them through enhancing proliferation and angiogenesis. Over the past decades, cancer research studies have witnessed a number of preclinical and clinical breakthroughs in the field of TLR modulators and some of the agents have exceptionally performed well in advanced clinical trials. In the present review, we have provided a comprehensive review of different TLR agonists and antagonists and discuss their limitations, toxicities, and challenges to outline their future incorporation in cancer treatment strategies.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Bai L, Li W, Zheng W, Xu D, Chen N, Cui J. Promising targets based on pattern recognition receptors for cancer immunotherapy. Pharmacol Res 2020; 159:105017. [DOI: 10.1016/j.phrs.2020.105017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
14
|
Toll-Like Receptors Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:81-97. [PMID: 32030686 DOI: 10.1007/978-3-030-35582-1_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The involvement of inflammation in cancer progression is well-established. The immune system can play both tumor-promoting and -suppressive roles, and efforts to harness the immune system to help fight tumor growth are at the forefront of research. Of particular importance is the inflammatory profile at the site of the tumor, with respect to both the leukocyte population numbers, the phenotype of these cells, as well as the contribution of the tumor cells themselves. In this regard, the pro-inflammatory effects of pattern recognition receptor expression and activation in the tumor microenvironment have emerged as a relevant issue both for therapy and to understand tumor development.Pattern recognition receptors (PRRs) were originally recognized as components of immune cells, particularly innate immune cells, as detectors of pathogens. PRR signaling in immune cells activates them, inducing robust antimicrobial responses. In particular, toll-like receptors (TLRs) constitute a family of membrane-bound PRRs which can recognize pathogen-associated molecular patterns (PAMPs) carried by bacteria, virus, and fungi. In addition, PRRs can recognize products generated by stressed cells or damaged tissues, namely damage-associated molecular patterns or DAMPS. Taking into account the role of the immune system in fighting tumors together with the presence of immune cells in the microenvironment of different types of tumors, strategies to activate immune cells via PRR ligands have been envisioned as an anticancer therapeutic approach.In the last decades, it has been determined that PRRs are present and functional on nonimmune cells and that their activation in these cells contributes to the inflammation in the tumor microenvironment. Both tumor-promoting and antitumor effects have been observed when tumor cell PRRs are activated. This argues against nonspecific activation of PRR ligands in the tumor microenvironment as a therapeutic approach. Therefore, the use of PRR ligands for anticancer therapy might benefit from strategies that specifically deliver these ligands to immune cells, thus avoiding tumor cells in some settings. This review focuses on these aspects of TLR signaling in the tumor microenvironment.
Collapse
|
15
|
Li H, Yu J, Wu Y, Shao B, Wei X. In situ antitumor vaccination: Targeting the tumor microenvironment. J Cell Physiol 2020; 235:5490-5500. [PMID: 32030759 DOI: 10.1002/jcp.29551] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023]
Abstract
Tumor microenvironment is known to play important roles in tumor progression. Many therapies, targeting the tumor microenvironment, are designed and applied in the clinic. One of these approaches is in situ antitumor therapy. This way, bacteria, antibodies, plasmid DNA, viruses, and cells are intratumorally delivered into the tumor site as "in-situ antitumor vaccine," which seeks to enhance immunogenicity and generate systemic T cell responses. In addition, this intratumoral therapy can alter the tumor microenvironment from immunosuppressive to immunostimulatory while limiting the risk of systemic exposure and associated toxicity. Contemporarily, promising preclinical results and some initial success in clinical trials have been obtained after intratumoral therapy.
Collapse
Affiliation(s)
- Hanwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Cancer Center, Sichuan University, Chengdu, China
| | - Jiayun Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Cancer Center, Sichuan University, Chengdu, China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Cancer Center, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Cancer Center, Sichuan University, Chengdu, China
| | - Xiawei Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Cancer Center, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Javaid N, Choi S. Toll-like Receptors from the Perspective of Cancer Treatment. Cancers (Basel) 2020; 12:E297. [PMID: 32012718 PMCID: PMC7072551 DOI: 10.3390/cancers12020297] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) represent a family of pattern recognition receptors that recognize certain pathogen-associated molecular patterns and damage-associated molecular patterns. TLRs are highly interesting to researchers including immunologists because of the involvement in various diseases including cancers, allergies, autoimmunity, infections, and inflammation. After ligand engagement, TLRs trigger multiple signaling pathways involving nuclear factor-κB (NF-κB), interferon-regulatory factors (IRFs), and mitogen-activated protein kinases (MAPKs) for the production of various cytokines that play an important role in diseases like cancer. TLR activation in immune as well as cancer cells may prevent the formation and growth of a tumor. Nonetheless, under certain conditions, either hyperactivation or hypoactivation of TLRs supports the survival and metastasis of a tumor. Therefore, the design of TLR-targeting agonists as well as antagonists is a promising immunotherapeutic approach to cancer. In this review, we mainly describe TLRs, their involvement in cancer, and their promising properties for anticancer drug discovery.
Collapse
Affiliation(s)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
17
|
Braunstein MJ, Kucharczyk J, Adams S. Targeting Toll-Like Receptors for Cancer Therapy. Target Oncol 2019; 13:583-598. [PMID: 30229471 DOI: 10.1007/s11523-018-0589-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system encompasses a broad array of defense mechanisms against foreign threats, including invading pathogens and transformed neoplastic cells. Toll-like receptors (TLRs) are critically involved in innate immunity, serving as pattern recognition receptors whose stimulation leads to additional innate and adaptive immune responses. Malignant cells exploit the natural immunomodulatory functions of TLRs, expressed mainly by infiltrating immune cells but also aberrantly by tumor cells, to foster their survival, invasion, and evasion of anti-tumor immune responses. An extensive body of research has demonstrated context-specific roles for TLR activation in different malignancies, promoting disease progression in certain instances while limiting cancer growth in others. Despite these conflicting roles, TLR agonists have established therapeutic benefits as anti-cancer agents that activate immune cells in the tumor microenvironment and facilitate the expression of cytokines that allow for infiltration of anti-tumor lymphocytes and the suppression of oncogenic signaling pathways. This review focuses on the clinical application of TLR agonists for cancer treatment. We also highlight agents that are undergoing development in clinical trials, including investigations of TLR agonists in combination with other immunotherapies.
Collapse
Affiliation(s)
- Marc J Braunstein
- Department of Medicine, NYU Winthrop Hospital, 120 Mineola Blvd. Suite 500, Mineola, 11501, NY, USA
| | - John Kucharczyk
- Department of Medicine, NYU Winthrop Hospital, 120 Mineola Blvd. Suite 500, Mineola, 11501, NY, USA
| | - Sylvia Adams
- Department of Medicine, NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, 160 East 34th Street, 4th Floor, New York, 10016, NY, USA.
| |
Collapse
|
18
|
Tran TH, Tran TTP, Truong DH, Nguyen HT, Pham TT, Yong CS, Kim JO. Toll-like receptor-targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy. Acta Biomater 2019; 94:82-96. [PMID: 31129358 DOI: 10.1016/j.actbio.2019.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Abstract
The expression of Toll-like receptors (TLRs) on antigen presenting cells, especially dendritic cells, offers several sensitive mediators to trigger an adaptive immune response, which potentially can be exploited to detect and eliminate pathogenic objects. Consequently, numerous agonists that target TLRs are being used clinically either alone or in combination with other therapies to strengthen the immune system in the battle against cancer. This review summarizes the roles of TLRs in tumor biology, and focuses on relevant TLR-dependent antitumor pathways and the conjugation of TLR agonists as adjuvants to nano- and micro-particles for boosting responses leading to cancer suppression and eradication. STATEMENT OF SIGNIFICANCE: Toll-like receptors (TLRs), which express on antigen presenting cells, such as dendritic cells and macrophages, play an important role in sensing pathogenic agents and inducing adaptive immunity. As a result, several TLR agonists have been investigating as therapeutic agents individually or in combination with other treatment modalities for cancer treatment through boosting the immune system. This review aims to focus on the roles of TLRs in cancer and TLR-dependent antitumor pathways as well as the use of different nano- or micro-particles bearing TLR agonists for tumor inhibition and elimination.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Thi Thu Phuong Tran
- The Institute of Molecular Genetics of Montpellier, CNRS, Montpellier, France
| | - Duy Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
19
|
Xu W, Dong J, Zheng Y, Zhou J, Yuan Y, Ta HM, Miller HE, Olson M, Rajasekaran K, Ernstoff MS, Wang D, Malarkannan S, Wang L. Immune-Checkpoint Protein VISTA Regulates Antitumor Immunity by Controlling Myeloid Cell-Mediated Inflammation and Immunosuppression. Cancer Immunol Res 2019; 7:1497-1510. [PMID: 31340983 DOI: 10.1158/2326-6066.cir-18-0489] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/04/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Immune-checkpoint protein V-domain immunoglobulin suppressor of T-cell activation (VISTA) controls antitumor immunity and is a valuable target for cancer immunotherapy. This study identified a role of VISTA in regulating Toll-like receptor (TLR) signaling in myeloid cells and controlling myeloid cell-mediated inflammation and immunosuppression. VISTA modulated the polyubiquitination and protein expression of TRAF6. Consequently, VISTA dampened TLR-mediated activation of MAPK/AP-1 and IKK/NF-κB signaling cascades. At cellular levels, VISTA regulated the effector functions of myeloid-derived suppressor cells and tolerogenic dendritic cell (DC) subsets. Blocking VISTA augmented their ability to produce proinflammatory mediators and diminished their T cell-suppressive functions. These myeloid cell-dependent effects resulted in a stimulatory tumor microenvironment that promoted T-cell infiltration and activation. We conclude that VISTA is a critical myeloid cell-intrinsic immune-checkpoint protein and that the reprogramming of tolerogenic myeloid cells following VISTA blockade promotes the development of T cell-mediated antitumor immunity.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Juan Dong
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Yongwei Zheng
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Blood Research Institute, Milwaukee, Wisconsin
| | - Juan Zhou
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Immunology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, P.R. China
| | - Ying Yuan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hieu Minh Ta
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Halli E Miller
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Olson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | - Demin Wang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Blood Research Institute, Milwaukee, Wisconsin
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Blood Research Institute, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Li Wang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
20
|
Dekker RFH, Queiroz EAIF, Cunha MAA, Barbosa-Dekker AM. Botryosphaeran – A Fungal Exopolysaccharide of the (1→3)(1→6)-β-D-Glucan Kind: Structure and Biological Functions. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Muccioli M, Nandigam H, Loftus T, Singh M, Venkatesh A, Wright J, Pate M, McCall K, Benencia F. Modulation of double-stranded RNA pattern recognition receptor signaling in ovarian cancer cells promotes inflammatory queues. Oncotarget 2018; 9:36666-36683. [PMID: 30613350 PMCID: PMC6291178 DOI: 10.18632/oncotarget.26378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation and cancer are inter-related, and both pro- and anti-tumorigenic effects are possible in different contexts, highlighting the importance of characterizing specific inflammatory pathways in distinct tumor types. Malignant cells and non-cancerous cells such as fibroblasts, infiltrating leukocytes (i.e., dendritic cells [DC], macrophages, or lymphocytes) and endothelial cells, in combination with the extracellular matrix, constitute the tumor microenvironment (TME). In the last decades, the role of the TME in cancer progression has gained increased attention and efforts directed at abrogating its deleterious effects on anti-cancer therapies have been ongoing. In this context, we investigated the potential of mouse and human ovarian cancer cells to produce inflammatory factors in response to pathogen recognition receptor (PRR) signaling, which might help to shape the biology of the TME. We determined that mouse ovarian tumors generate chemokines that are able to interact with receptors harbored by tumor-associated DCs. We also found that dsRNA triggers significant pro-inflammatory cytokine up-regulation in both human and mouse ovarian tumor cell lines, and that several PRR can simultaneously contribute to the stimulated inflammatory response displayed by these cells. Thus, dsRNA-activated PRRs may not only constitute potentially relevant drug targets for therapies aiming to prevent inflammation associated with leukocyte recruitment, or as co-adjuvants of therapeutic treatments, but also might have a role in development of nascent tumors, for example via activation of cancer cells by microbial molecules associated to pathogens, or with those appearing in circulation due to dysbiosis.
Collapse
Affiliation(s)
- Maria Muccioli
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Harika Nandigam
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Tiffany Loftus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Manindra Singh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Amritha Venkatesh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Julia Wright
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Kelly McCall
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| | - Fabian Benencia
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
22
|
Blomberg OS, Spagnuolo L, de Visser KE. Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Dis Model Mech 2018; 11:11/10/dmm036236. [PMID: 30355585 PMCID: PMC6215427 DOI: 10.1242/dmm.036236] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metastatic disease is the leading cause of death in cancer patients. Metastasis formation involves a cascade of events for which the underlying mechanisms are still poorly understood. During the metastatic cascade, cancer cells tightly interact with the immune system and they influence each other, both in the tumor microenvironment and systemically. The crosstalk between cancer and immune cells adds another layer of complexity to our understanding of metastasis formation, but at the same time opens new therapeutic opportunities for cancer patients. The intensifying development of immunotherapeutic strategies calls for a better understanding of immune regulation of metastasis in order to maximize the therapeutic benefit for patients with metastatic disease. In this Review and accompanying poster, we describe the main mechanisms of immune regulation of metastasis that have been reported to date, and present promising immunotherapeutic options that are currently available, or may become so in the near future, to tackle metastasis.
Collapse
Affiliation(s)
- Olga S Blomberg
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lorenzo Spagnuolo
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
23
|
Guinn ZP, Petro TM. IFN-γ synergism with poly I:C reduces growth of murine and human cancer cells with simultaneous changes in cell cycle and immune checkpoint proteins. Cancer Lett 2018; 438:1-9. [PMID: 30205169 DOI: 10.1016/j.canlet.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/13/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023]
Abstract
Previously, we reported that IFN-γ and poly I:C, a TLR3 Pattern Recognition Receptor (PRR) agonist, reduces growth of and induces Cleaved-Caspase-3, ISG54 and p27Kip in B16 melanoma cells. Here, analysis of IFN-γ/PRR synergism was expanded with UM-SCC1 and UM-SCC38 human squamous carcinoma cells and other PRR agonists. As in B16 cells, poly I:C plus IFN-γ synergism reduced UM-SCC1 and UM-SCC38 growth, and no more than 24 h was needed for significant growth reduction. IFN-γ synergism to stem B16 growth also occurred with TLR7, TLR9, TLR4, and STING agonists, but not TLR2 agonist. IFN-γ synergized with TLR3 and TLR4 agonists reducing UM-SCC1 growth, and with TLR7 and TLR3 agonists reducing UM-SCC38 growth. IFN-γ plus poly I:C, which had the most pronounced effect, decreased cyclin-D1, increased G1 cell cycle arrest, and increased Cleaved caspase-3 in B16 cells, as well as RAW264.7, a virus-transformed murine macrophage cell line. Finally, IFN-γ plus poly I:C modulated total but not cell surface expression of immune checkpoint protein PD-L1, as well as cell cycle checkpoint proteins in B16 cells. Thus IFN-γ plus poly I:C, and other PRR agonists, may well be effective adjuvants to cancer immunotherapy against several tumor cell types.
Collapse
Affiliation(s)
- Zachary P Guinn
- School of Biological Sciences, University of Nebraska-Lincoln, USA
| | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, USA; Department of Oral Biology, University of Nebraska Medical Center, USA.
| |
Collapse
|
24
|
Choi CH, Kang TH, Song JS, Kim YS, Chung EJ, Ylaya K, Kim S, Koh SS, Chung JY, Kim JH, Hewitt SM. Elevated expression of pancreatic adenocarcinoma upregulated factor (PAUF) is associated with poor prognosis and chemoresistance in epithelial ovarian cancer. Sci Rep 2018; 8:12161. [PMID: 30111860 PMCID: PMC6093878 DOI: 10.1038/s41598-018-30582-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic adenocarcinoma upregulated factor (PAUF) is a ligand of toll-like receptors (TLRs) and has been reported to be involved in pancreatic tumor development. However, the significance of PAUF expression in epithelial ovarian cancer remains unclear. We aimed to investigate the possible clinical significance of PAUF in epithelial ovarian cancer. We examined the link between PAUF and TLR4 in ovarian cancer cell lines. Recombinant PAUF induced cell activation and proliferation in ovarian cancer cell lines, whereas PAUF knockdown inhibited these properties. Subsequently, we assessed PAUF and TLR4 expression by immunohistochemistry on tissue microarray of 408 ovarian samples ranging from normal to metastatic. PAUF expression positively correlated with TLR4 expression. Overexpression of PAUF was associated with high-grade tumor (p = 0.014) and chemoresistant tumor (p = 0.017). Similarly, high expression of TLR4 correlated with advanced tumor stage (p = 0.002) and chemoresistant tumor (p = 0.001). Multivariate analysis indicated that PAUFhigh, TLR4high, and PAUFhigh/TLR4high expression are independent prognostic factor for progression-free survival, while TLR4high and PAUFhigh/TLR4high expression were independent prognostic factors for overall survival. Our results suggest that PAUF has a role in ovarian cancer progression and is a potential prognostic marker and novel chemotherapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Tae Heung Kang
- Department of Immunology, College of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Joon Seon Song
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Young Seob Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Kris Ylaya
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seokho Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sang Seok Koh
- Department of Biological Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Menendez D, Lowe JM, Snipe J, Resnick MA. Ligand dependent restoration of human TLR3 signaling and death in p53 mutant cells. Oncotarget 2018; 7:61630-61642. [PMID: 27533082 PMCID: PMC5308678 DOI: 10.18632/oncotarget.11210] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023] Open
Abstract
Diversity within the p53 transcriptional network can arise from a matrix of changes that include target response element sequences and p53 expression level variations. We previously found that wild type p53 (WT p53) can regulate expression of most innate immune-related Toll-like-receptor genes (TLRs) in human cells, thereby affecting immune responses. Since many tumor-associated p53 mutants exhibit change-of-spectrum transactivation from various p53 targets, we examined the ability of twenty-five p53 mutants to activate endogenous expression of the TLR gene family in p53 null human cancer cell lines following transfection with p53 mutant expression vectors. While many mutants retained the ability to drive TLR expression at WT levels, others exhibited null, limited, or change-of-spectrum transactivation of TLR genes. Using TLR3 signaling as a model, we show that some cancer-associated p53 mutants amplify cytokine, chemokine and apoptotic responses after stimulation by the cognate ligand poly(I:C). Furthermore, restoration of WT p53 activity for loss-of-function p53 mutants by the p53 reactivating drug RITA restored p53 regulation of TLR3 gene expression and enhanced DNA damage-induced apoptosis via TLR3 signaling. Overall, our findings have many implications for understanding the impact of WT and mutant p53 in immunological responses and cancer therapy.
Collapse
Affiliation(s)
- Daniel Menendez
- Genome Integrity & Structural Biology Laboratory, Inflammation Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Julie M Lowe
- Genome Integrity & Structural Biology Laboratory, Inflammation Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.,Immunity, Inflammation Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Joyce Snipe
- Genome Integrity & Structural Biology Laboratory, Inflammation Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Michael A Resnick
- Genome Integrity & Structural Biology Laboratory, Inflammation Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
26
|
Takeda Y, Azuma M, Funami K, Shime H, Matsumoto M, Seya T. Type I Interferon-Independent Dendritic Cell Priming and Antitumor T Cell Activation Induced by a Mycoplasma fermentans Lipopeptide. Front Immunol 2018; 9:496. [PMID: 29593736 PMCID: PMC5861346 DOI: 10.3389/fimmu.2018.00496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma fermentans-derived diacylated lipoprotein M161Ag (MALP404) is recognized by human/mouse toll-like receptor (TLR) 2/TLR6. Short proteolytic products including macrophage-activating lipopeptide 2 (MALP2) have been utilized as antitumor immune-enhancing adjuvants. We have chemically synthesized a short form of MALP2 named MALP2s (S-[2,3-bis(palmitoyloxy)propyl]-CGNNDE). MALP2 and MALP2s provoke natural killer (NK) cell activation in vitro but only poorly induce tumor regression using in vivo mouse models loading NK-sensitive tumors. Here, we identified the functional mechanism of MALP2s on dendritic cell (DC)-priming and cytotoxic T lymphocyte (CTL)-dependent tumor eradication using CTL-sensitive tumor-implant models EG7 and B16-OVA. Programmed death ligand-1 (PD-L1) blockade therapy in combination with MALP2s + ovalbumin (OVA) showed a significant additive effect on tumor growth suppression. MALP2s increased co-stimulators CD80/86 and CD40, which were totally MyD88-dependent, with no participation of toll-IL-1R homology domain-containing adaptor molecule-1 or type I interferon signaling in DC priming. MALP2s + OVA consequently augmented proliferation of OVA-specific CTLs in the spleen and at tumor sites. Chemokines and cytolytic factors were upregulated in the tumor. Strikingly, longer duration and reinvigoration of CTLs in spleen and tumors were accomplished by the addition of MALP2s + OVA to α-PD-L1 antibody (Ab) therapy compared to α-PD-L1 Ab monotherapy. Then, tumors regressed better in the MALP2s/OVA combination than in the α-PD-L1 Ab monotherapy. Hence, MALP2s/tumor-associated antigens combined with α-PD-L1 Ab is a good therapeutic strategy in some mouse models. Unfortunately, numerous patients are still resistant to PD-1/PD-L1 blockade, and good DC-priming adjuvants are desired. Cytokine toxicity by MALP2s remains to be settled, which should be improved by chemical modification in future studies.
Collapse
Affiliation(s)
- Yohei Takeda
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Azuma
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenji Funami
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroaki Shime
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Misako Matsumoto
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Seya
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
27
|
Biophysical evidence for differential gallated green tea catechins binding to membrane type-1 matrix metalloproteinase and its interactors. Biophys Chem 2018; 234:34-41. [PMID: 29407769 DOI: 10.1016/j.bpc.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a transmembrane MMP which triggers intracellular signaling and regulates extracellular matrix proteolysis, two functions that are critical for tumor-associated angiogenesis and inflammation. While green tea catechins, particularly epigallocatechin gallate (EGCG), are considered very effective in preventing MT1-MMP-mediated functions, lack of structure-function studies and evidence regarding their direct interaction with MT1-MMP-mediated biological activities remain. Here, we assessed the impact in both cellular and biophysical assays of four ungallated catechins along with their gallated counterparts on MT1-MMP-mediated functions and molecular binding partners. Concanavalin-A (ConA) was used to trigger MT1-MMP-mediated proMMP-2 activation, expression of MT1-MMP and of endoplasmic reticulum stress biomarker GRP78 in U87 glioblastoma cells. We found that ConA-mediated MT1-MMP induction was inhibited by EGCG and catechin gallate (CG), that GRP78 induction was inhibited by EGCG, CG, and gallocatechin gallate (GCG), whereas proMMP-2 activation was inhibited by EGCG and GCG. Surface plasmon resonance was used to assess direct interaction between catechins and MT1-MMP interactors. We found that gallated catechins interacted better than their ungallated analogs with MT1-MMP as well as with MT1-MMP binding partners MMP-2, TIMP-2, MTCBP-1 and LRP1-clusterIV. Overall, current structure-function evidence supports a role for the galloyl moiety in both direct and indirect interactions of green tea catechins with MT1-MMP-mediated oncogenic processes.
Collapse
|
28
|
Bendriss-Vermare N, Gourdin N, Vey N, Faget J, Sisirak V, Labidi-Galy I, Le Mercier I, Goutagny N, Puisieux I, Ménétrier-Caux C, Caux C. Plasmacytoid DC/Regulatory T Cell Interactions at the Center of an Immunosuppressive Network in Breast and Ovarian Tumors. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
Bazett M, Costa AM, Bosiljcic M, Anderson RM, Alexander MP, Wong SWY, Dhanji S, Chen JM, Pankovich J, Lam S, Sutcliffe S, Gunn H, Kalyan S, Mullins DW. Harnessing innate lung anti-cancer effector functions with a novel bacterial-derived immunotherapy. Oncoimmunology 2017; 7:e1398875. [PMID: 29399400 PMCID: PMC5790356 DOI: 10.1080/2162402x.2017.1398875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023] Open
Abstract
Acute infection is known to induce strong anti-tumor immune responses, but clinical translation has been hindered by the lack of an effective strategy to safely and consistently provoke a therapeutic response. These limitations are overcome with a novel treatment approach involving repeated subcutaneous delivery of a Klebsiella-derived investigational immunotherapeutic, QBKPN. In preclinical models of lung cancer, QBKPN administration consistently showed anti-cancer efficacy, which was dependent on Klebsiella pre-exposure, but was independent of adaptive immunity. Rather, QBKPN induced anti-tumor innate immunity that required NK cells and NKG2D engagement. QBKPN increased NK cells and macrophages in the lungs, altered macrophage polarization, and augmented the production of cytotoxic molecules. An exploratory trial in patients with non-small cell lung cancer demonstrated QBKPN was well tolerated, safe, and induced peripheral immune changes suggestive of macrophage polarization and reduction of PD-1 and PD-L1 expression on leukocytes. These data demonstrate preclinical efficacy, and clinical safety and tolerability, for this cancer immunotherapy strategy that exploits innate anti-tumor immune mechanisms.
Collapse
Affiliation(s)
- Mark Bazett
- Qu Biologics Inc., Vancouver, BC, V5 T 4T5, Canada
| | - Amanda M Costa
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | - Matthew P Alexander
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Stephanie W Y Wong
- Qu Biologics Inc., Vancouver, BC, V5 T 4T5, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Salim Dhanji
- Qu Biologics Inc., Vancouver, BC, V5 T 4T5, Canada
| | | | | | - Stephen Lam
- BC Cancer Research Center, Vancouver, BC, Canada
| | | | - Hal Gunn
- Qu Biologics Inc., Vancouver, BC, V5 T 4T5, Canada
| | - Shirin Kalyan
- Qu Biologics Inc., Vancouver, BC, V5 T 4T5, Canada.,Department of Medicine, Division of Endocrinology, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - David W Mullins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
30
|
Characterizing the Association Between Toll-like Receptor Subtypes and Nephrolithiasis With Renal Inflammation in an Animal Model. Urology 2017; 111:238.e1-238.e5. [PMID: 29054721 DOI: 10.1016/j.urology.2017.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/17/2017] [Accepted: 09/26/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To show experimentally induced renal stone disease and to evaluate secondary inflammatory responses in vivo, and to characterize changes in the expression of Toll-like receptor (TLR) subtypes in this model. METHODS Twenty 5- to 6-week-old male Wistar rats were divided into control and hyperoxaluria groups (n = 10 per group) and were supplied with normal water or 1% ethylene glycol, respectively, for 16 weeks. The animals were then placed in metabolic cages, and urine was collected for a 24-hour urine oxalate level evaluation. Following sacrifice, rats were subjected to bilateral nephrectomy and both kidneys were histopathologically evaluated. A 1-mm3 biopsy section from the right kidney of each rat was subjected to real-time polymerase chain reaction of the TLR expression. RESULTS At the end of week 16, the hyperoxaluria group had a higher mean 24-hour urine oxalate level (1.91) than the control group (0.29) (P <.05) and a remarkably increased deposition of renal CaOx crystals (15/20) than the control group (0/20) (P <.05), which was universally accompanied by inflammation (15/15). Twelve and no rats in the hyperoxaluria and control groups, respectively, had macroscopically visible renal pelvic stones (P <.05). Quantitative real-time polymerase chain reaction revealed significant decreases in the expression of several TLRs, particularly TLR11 and TLR7. Decreases in TLR1, TLR3, and TLR6 expressions and an increase in the TLR2 expression did not differ significantly between the groups. CONCLUSION We believe that is the first evaluation of TLR expression associated with renal stone formation in an animal model of inflammation. These results might lead to novel TLR-based treatments for nephrolithiasis and related inflammatory renal damage.
Collapse
|
31
|
Sabah-Ozcan S, Baser A, Olcucu T, Barıs IC, Elmas L, Tuncay L, Eskicorapci S, Turk NS, Caner V. Human TLR gene family members are differentially expressed in patients with urothelial carcinoma of the bladder. Urol Oncol 2017; 35:674.e11-674.e17. [PMID: 28843340 DOI: 10.1016/j.urolonc.2017.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/22/2017] [Accepted: 07/23/2017] [Indexed: 01/25/2023]
Abstract
PURPOSE Toll-like receptors (TLRs) have an important role in the activation of both innate and adaptive immunity in response to pathogens and endogenous danger signals from damaged or dying cells. The aim of this study was to determine the relationship between urothelial carcinoma (UC) and TLR expression. BASIC PROCEDURES Real-time polymerase chain reaction evaluation was made of the messenger RNA expression of TLRs 1-10 in 24 UC samples and 46 nontumoral bladder tissue samples. The levels of proinflammatory cytokines (IL-1β, IL-6, and IL-8) in the urine samples were also determined with enzyme-linked immunosorbent assay. MAIN FINDINGS TLR2-7 and TLR10 expressions were significantly higher in UC than in the control group (P<0.05 for all comparisons). No concordance was found between matched tumor tissue and urine samples in terms of TLR expression. IL-1β, IL-6, and IL-8 levels were significantly higher in urine specimens of patients with UC (P = 0.033, P = 0.001, and P = 0.008, respectively). PRINCIPAL CONCLUSIONS The results of this study demonstrated that the TLR gene expression profiles reflect the heterogeneity within UC. These results might also prompt further investigation to better understand the role of the TLR gene family expression in the tumor progression of UC.
Collapse
Affiliation(s)
- Seda Sabah-Ozcan
- Department of Medical Biology, School of Medicine, Bozok University, Yozgat, Turkey
| | - Aykut Baser
- Department of Urology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Taha Olcucu
- Department of Urology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Ikbal Cansu Barıs
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Levent Elmas
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Levent Tuncay
- Department of Urology, School of Medicine, Pamukkale University, Denizli, Turkey
| | | | - Nilay Sen Turk
- Department of Pathology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Vildan Caner
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
32
|
Takaki H, Sato H, Kurata R, Hikono H, Hiono T, Kida H, Matsumoto M, Saito T, Seya T. Cytokine responses to eye spray adjuvants for enhancing vaccine-induced immunity in chickens. Microbiol Immunol 2017; 60:511-5. [PMID: 27240729 DOI: 10.1111/1348-0421.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 11/30/2022]
Abstract
Eye spray influenza vaccines for chickens are increasingly available; however, how to enhance cellular and antibody responses to them remains undetermined. Here, eye-drops containing the immune-enhancing adjuvants Pam2CSK4 or polyI:C were assessed in chickens. Application of these TLR agonists to chicken conjunctiva resulted in up-regulation of IL-1β, but not other cytokines, including IFN and IL-6, in the spleen, lung and Harderian gland. Thus, responses to adjuvant applied to the conjunctival mucosa of chickens differ from those expected from the responses to intra-nasal adjuvants in mammals. Identifying an appropriate delivery route for adjuvants is crucial for evoking immune responses in chickens.
Collapse
Affiliation(s)
- Hiromi Takaki
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine
| | - Haruko Sato
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine
| | - Riho Kurata
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hirokazu Hikono
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Takahiro Hiono
- Department of Disease Control, Hokkaido University Graduate School of Veterinary Medicine
| | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Kita-ku, Sapporo
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine
| | - Takehiko Saito
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine
| |
Collapse
|
33
|
Lohmueller J, Finn OJ. Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Pharmacol Ther 2017; 178:31-47. [PMID: 28322974 DOI: 10.1016/j.pharmthera.2017.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Successes of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy in curing patients with otherwise lethal cancers have validated immunotherapy as a treatment for cancer and have inspired excitement for its broader potential. Most promising is the ability of each approach to eliminate bulky and advanced-stage cancers and to achieve durable cures. Despite this success, to date only a subset of cancer patients and a limited number of cancer types respond to these therapies. A major goal now is to expand the types of cancer and number of patients who can be successfully treated. To this end a multitude of immunotherapies are being tested clinically in new combinations, and many new immunomodulatory antibodies and CARs are in development. A third major immunotherapeutic approach with renewed interest is cancer vaccines. While over 20years of therapeutic cancer vaccine trials have met with limited success, these studies have laid the groundwork for the use of therapeutic vaccines in combination with other immunotherapies or alone as prophylactic cancer vaccines. Prophylactic vaccines are now poised to revolutionize cancer prevention as they have done for the prevention of infectious diseases. In this review we examine three major cancer immunotherapy modalities: immunomodulatory antibodies, CAR T cell therapy and vaccines. For each we describe the current state of the art and outline major challenges and research directions forward.
Collapse
Affiliation(s)
- Jason Lohmueller
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA
| | - Olivera J Finn
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Ansa-Addo EA, Thaxton J, Hong F, Wu BX, Zhang Y, Fugle CW, Metelli A, Riesenberg B, Williams K, Gewirth DT, Chiosis G, Liu B, Li Z. Clients and Oncogenic Roles of Molecular Chaperone gp96/grp94. Curr Top Med Chem 2017; 16:2765-78. [PMID: 27072698 DOI: 10.2174/1568026616666160413141613] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/07/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022]
Abstract
As an endoplasmic reticulum heat shock protein (HSP) 90 paralogue, glycoprotein (gp) 96 possesses immunological properties by chaperoning antigenic peptides for activation of T cells. Genetic studies in the last decade have unveiled that gp96 is also an essential master chaperone for multiple receptors and secreting proteins including Toll-like receptors (TLRs), integrins, the Wnt coreceptor, Low Density Lipoprotein Receptor-Related Protein 6 (LRP6), the latent TGFβ docking receptor, Glycoprotein A Repetitions Predominant (GARP), Glycoprotein (GP) Ib and insulin-like growth factors (IGF). Clinically, elevated expression of gp96 in a variety of cancers correlates with the advanced stage and poor survival of cancer patients. Recent preclinical studies have also uncovered that gp96 expression is closely linked to cancer progression in multiple myeloma, hepatocellular carcinoma, breast cancer and inflammation-associated colon cancer. Thus, gp96 is an attractive therapeutic target for cancer treatment. The chaperone function of gp96 depends on its ATPase domain, which is structurally distinct from other HSP90 members, and thus favors the design of highly selective gp96-targeted inhibitors against cancer. We herein discuss the strategically important oncogenic clients of gp96 and their underlying biology. The roles of cell-intrinsic gp96 in T cell biology are also discussed, in part because it offers another opportunity of cancer therapy by manipulating levels of gp96 in T cells to enhance host immune defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zihai Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29466, USA.
| |
Collapse
|
35
|
Klein JC, Wild CA, Lang S, Brandau S. Differential immunomodulatory activity of tumor cell death induced by cancer therapeutic toll-like receptor ligands. Cancer Immunol Immunother 2016; 65:689-700. [PMID: 27034235 PMCID: PMC11029710 DOI: 10.1007/s00262-016-1828-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
Abstract
Synthetic toll-like receptor (TLR) ligands stimulate defined immune cell subsets and are currently tested as novel immunotherapeutic agents against cancer with, however, varying clinical efficacy. Recent data showed the expression of TLR receptors also on tumor cells. In this study we investigated immunological events associated with the induction of tumor cell death by poly(I:C) and imiquimod. A human head and neck squamous cell carcinoma (HNSCC) cell line was exposed to poly(I:C) and imiquimod, which were delivered exogenously via culture medium or via electroporation. Cell death and cell biological consequences thereof were analyzed. For in vivo analyses, a human xenograft and a syngeneic immunocompetent mouse model were used. Poly(I:C) induced cell death only if delivered by electroporation into the cytosol. Cell death induced by poly(I:C) resulted in cytokine release and activation of monocytes in vitro. Monocytes activated by the supernatant of cancer cells previously exposed to poly(I:C) recruited significantly more Th1 cells than monocytes exposed to control supernatants. If delivered exogenously, imiquimod also induced tumor cell death and some release of interleukin-6, but cell death was not associated with release of Th1 cytokines, interferons, monocyte activation and Th1 recruitment. Interestingly, intratumoral injection of poly(I:C) triggered tumor cell death in tumor-bearing mice and reduced tumor growth independent of TLR signaling on host cells. Imiquimod did not affect tumor size. Our data suggest that common cancer therapeutic RNA compounds can induce functionally diverse types of cell death in tumor cells with implications for the use of TLR ligands in cancer immunotherapy.
Collapse
Affiliation(s)
- Johanna C Klein
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
- Research Division, Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Clarissa A Wild
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
- Research Division, Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
- Research Division, Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany.
| |
Collapse
|
36
|
Azuma M, Takeda Y, Nakajima H, Sugiyama H, Ebihara T, Oshiumi H, Matsumoto M, Seya T. Biphasic function of TLR3 adjuvant on tumor and spleen dendritic cells promotes tumor T cell infiltration and regression in a vaccine therapy. Oncoimmunology 2016; 5:e1188244. [PMID: 27622060 DOI: 10.1080/2162402x.2016.1188244] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/30/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Successful cancer immunotherapy necessitates T cell proliferation and infiltration into tumor without exhaustion, a process closely links optimal maturation of dendritic cells (DC), and adjuvant promotes this process as an essential prerequisite. Poly(I:C) has contributed to adjuvant immunotherapy that evokes an antitumor response through the Toll-loke receptor 3 (TLR3)/TICAM-1 pathway in DC. However, the mechanism whereby Poly(I:C) acts on DC for T cell proliferation and migration remains undetermined. Subcutaneous injection of Poly(I:C) regressed implant tumors (WT1-C1498 or OVA-EG7) in C57BL/6 mice, which coincided with tumor-infiltration of CD8(+) T cells. Epitope-specific cytotoxic T lymphocytes (CTLs) were increased in spleen by challenge with Poly(I:C)+Db126 WT-1 peptide but not Poly(I:C) alone, suggesting the need of an exogenous Ag density for cross-priming. In tumor, CXCR3 ligands were upregulated by Poly(I:C), which facilitated recruitment of CTL to the tumor. Thus, Poly(I:C) acts on splenic CD8α(+) DC to cross-prime T cells and on intratumor cells to attract CTLs. Besides CD8(+) T cell cross-priming, T cell recruitment into tumor was significantly dampened in Batf3 (-/-) mice, reflecting the importance of tumor Batf3-dependent DC rather than macrophages in T cell recruitment. Poly(I:C)-induced XCR1(hi) CD8α(+) DC with high TLR3 levels were markedly decreased in Batf3 (-/-) mice, which hampered the production of IL-12 and IL-12-mediated CD4(+)/CD8(+) T cell proliferation. Subcutaneous administration of Poly(I:C) and adoptive transfer of wild-type CD8α(+) DC largely recovered antitumor response in those Batf3 (-/-) mice. Collectively, Poly(I:C) tunes up proper maturation of CD8α(+) DC to establish TLR3-mediated IL-12 function and cross-presentation in spleen and lymphocyte-attractive antitumor microenvironment in tumor.
Collapse
Affiliation(s)
- Masahiro Azuma
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Kita-ku, Sapporo, Japan
| | - Yohei Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Kita-ku, Sapporo, Japan
| | - Hiroko Nakajima
- Division of Health Sciences, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Haruo Sugiyama
- Division of Health Sciences, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Takashi Ebihara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Kita-ku, Sapporo, Japan
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Kita-ku, Sapporo, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Kita-ku, Sapporo, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Kita-ku, Sapporo, Japan
| |
Collapse
|
37
|
Yu Y, Blokhuis BR, Garssen J, Redegeld FA. Non-IgE mediated mast cell activation. Eur J Pharmacol 2016; 778:33-43. [DOI: 10.1016/j.ejphar.2015.07.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/15/2015] [Accepted: 07/07/2015] [Indexed: 12/28/2022]
|
38
|
Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. Int J Microbiol 2016; 2016:8451728. [PMID: 27051423 PMCID: PMC4802035 DOI: 10.1155/2016/8451728] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 01/20/2023] Open
Abstract
The rising incidence of cancer cases worldwide generates an urgent need of novel treatment options. Applying bacteria may represent a valuable therapeutic variant that is intensively investigated nowadays. Interestingly, the idea to apply bacteria wittingly or unwittingly dates back to ancient times and was revived in the 19th century mainly by the pioneer William Coley. This review summarizes and compares the results of the past 150 years in bacteria mediated tumor therapy from preclinical to clinical studies. Lessons we have learned from the past provide a solid foundation on which to base future efforts. In this regard, several perspectives are discussed by which bacteria in addition to their intrinsic antitumor effect can be used as vector systems that shuttle therapeutic compounds into the tumor. Strategic solutions like these provide a sound and more apt exploitation of bacteria that may overcome limitations of conventional therapies.
Collapse
Affiliation(s)
- Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
39
|
Smith SG, Zaharoff DA. Future directions in bladder cancer immunotherapy: towards adaptive immunity. Immunotherapy 2016; 8:351-65. [PMID: 26860539 DOI: 10.2217/imt.15.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The clinical management of bladder cancer has not changed significantly in several decades. In particular, intravesical bacillus Calmette-Guérin (BCG) immunotherapy has been a mainstay for high-risk nonmuscle invasive bladder cancer since the late 1970s/early 1980s. This is despite the fact that bladder cancer has the highest recurrence rates of any cancer and BCG immunotherapy has not been shown to induce a tumor-specific immune response. We and others have hypothesized that immunotherapies capable of inducing tumor-specific adaptive immunity are needed to impact bladder cancer morbidity and mortality. This article summarizes the preclinical and clinical development of bladder cancer immunotherapies with an emphasis on the last 5 years. Expected progress in the near future is also discussed.
Collapse
Affiliation(s)
- Sean G Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - David A Zaharoff
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
40
|
Seya T, Shime H, Takeda Y, Tatematsu M, Takashima K, Matsumoto M. Adjuvant for vaccine immunotherapy of cancer--focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity. Cancer Sci 2015; 106:1659-68. [PMID: 26395101 PMCID: PMC4714660 DOI: 10.1111/cas.12824] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022] Open
Abstract
Immune‐enhancing adjuvants usually targets antigen (Ag)‐presenting cells to tune up cellular and humoral immunity. CD141+ dendritic cells (DC) represent the professional Ag‐presenting cells in humans. In response to microbial pattern molecules, these DCs upgrade the maturation stage sufficient to improve cross‐presentation of exogenous Ag, and upregulation of MHC and costimulators, allowing CD4/CD8 T cells to proliferate and liberating cytokines/chemokines that support lymphocyte attraction and survival. These DCs also facilitate natural killer‐mediated cell damage. Toll‐like receptors (TLRs) and their signaling pathways in DCs play a pivotal role in DC maturation. Therefore, providing adjuvants in addition to Ag is indispensable for successful vaccine immunotherapy for cancer, which has been approved in comparison with antimicrobial vaccines. Mouse CD8α+DCs express TLR7 and TLR9 in addition to the TLR2 family (TLR1, 2, and 6) and TLR3, whereas human CD141+DCs exclusively express the TLR2 family and TLR3. Although human and mouse plasmacytoid DCs commonly express TLR7/9 to respond to their agonists, the results on mouse adjuvant studies using TLR7/9 agonists cannot be simply extrapolated to human adjuvant immunotherapy. In contrast, TLR2 and TLR3 are similarly expressed in both human and mouse Ag‐presenting DCs. Bacillus Calmette–Guerin peptidoglycan and polyinosinic–polycytidylic acid are representative agonists for TLR2 and TLR3, respectively, although they additionally stimulate cytoplasmic sensors: their functional specificities may not be limited to the relevant TLRs. These adjuvants have been posted up to a certain achievement in immunotherapy in some cancers. We herein summarize the history and perspectives of TLR2 and TLR3 agonists in vaccine‐adjuvant immunotherapy for cancer.
Collapse
Affiliation(s)
- Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Shime
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yohei Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Megumi Tatematsu
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Takashima
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Queiroz EA, Fortes ZB, da Cunha MA, Barbosa AM, Khaper N, Dekker RF. Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a. Int J Biochem Cell Biol 2015; 67:14-24. [DOI: 10.1016/j.biocel.2015.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
|
42
|
Marabelle A, Filatenkov A, Sagiv-Barfi I, Kohrt H. Radiotherapy and toll-like receptor agonists. Semin Radiat Oncol 2015; 25:34-9. [PMID: 25481264 DOI: 10.1016/j.semradonc.2014.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The clinical successes of CTLA4 and PD-1 immune checkpoint blockade in aggressive malignancies such as metastatic melanoma and non-small cell lung carcinoma inaugurate a new era in oncology. Indeed, as opposed to tumor-targeted therapies, it is now clear that immune-targeted therapies designed to enhance the antitumor immune response are a relevant strategy to obtain long-term tumor responses. Interestingly, the study of tumor cell death biology has recently revealed that part of radiotherapy efficacy relies on its ability to trigger an immune response against tumor cells. This "immunogenic cell death" partly relies on the generation of damage-associated molecular patterns, which can stimulate immune sensors such as toll-like receptors. Tumor radiation therapy can therefore be envisioned as a strategy to perform an in situ immunization because it can initiate the release of tumor-associated antigens, deplete immune suppressors, and stimulate antigen-presenting cells via endogenous release of toll-like receptor agonists. Moreover, combinations of radiotherapy with immune checkpoint antibodies are synergistic in preclinical models. The translation of these observations in the clinic is ongoing in early phase I/II trials.
Collapse
Affiliation(s)
- Aurelien Marabelle
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Alex Filatenkov
- Department of Medicine, Stanford University, Stanford, California
| | - Idit Sagiv-Barfi
- Department of Medicine, Stanford University, Stanford, California
| | - Holbrook Kohrt
- Department of Medicine, Stanford University, Stanford, California.
| |
Collapse
|
43
|
Rolf N, Kariminia A, Ivison S, Reid GS, Schultz KR. Heterodimer-specific TLR2 stimulation results in divergent functional outcomes in B-cell precursor acute lymphoblastic leukemia. Eur J Immunol 2015; 45:1980-90. [PMID: 25867213 DOI: 10.1002/eji.201444874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 02/06/2023]
Abstract
Reports of spontaneous acute lymphoblastic leukemia (ALL) remissions following severe bacterial infections suggest that bacterial components may trigger elimination of ALL. To date, TLR2, which recognizes a broad range of bacterial pathogens through TLR1 or TLR6 heterodimerization, has not been fully evaluated for direct effects on ALL. Studies investigating TLR2 signaling in other tumor cell types utilizing single ligands have yielded contradictory results, and comparative, heterodimer-specific analyses of TLR2 stimulation are lacking. In this study, we report that two well-characterized heterodimer-specific TLR2 ligands, Pam3 CSK4 (TLR2/1), and Pam2 CSK4 (TLR2/6), induce ALL cell lines and primary ALL samples to upregulate CD40 expression. However, only Pam3 CSK4 triggers Caspase-8-mediated apoptosis and sensitizes cells to vincristine-mediated cytotoxicity. Consistent with this result, stimulation of ALL cells through TLR2/1 or TLR2/6 activates Mal, p38 and the NF-κB and PI3K signaling pathways with divergent kinetics that may underlie their distinct downstream effects. Our results reveal a novel branching in downstream responses to heterodimer-specific TLR2 stimulation in ALL cells and emphasize the need for comparative studies to determine differential biological effects observed in specific tumor cells. Based on our results, TLR2/1 ligand Pam3 CSK4 possesses potential for generating anti-ALL activity through its direct effects on leukemic blasts.
Collapse
Affiliation(s)
- Nina Rolf
- The Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute and Division of Pediatric Hem/Onc/BMT, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Amina Kariminia
- The Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute and Division of Pediatric Hem/Onc/BMT, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Sabine Ivison
- The Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute and Division of Pediatric Hem/Onc/BMT, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Gregor S Reid
- The Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute and Division of Pediatric Hem/Onc/BMT, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kirk R Schultz
- The Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute and Division of Pediatric Hem/Onc/BMT, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Ito H, Ando T, Ogiso H, Arioka Y, Seishima M. Inhibition of induced nitric oxide synthase enhances the anti-tumor effects on cancer immunotherapy using TLR7 agonist in mice. Cancer Immunol Immunother 2015; 64:429-36. [PMID: 25567751 PMCID: PMC11029476 DOI: 10.1007/s00262-014-1644-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 12/13/2014] [Indexed: 12/11/2022]
Abstract
Toll-like receptor (TLR) agonists have been shown to have anti-tumor activity in basic research and clinical studies. However, TLR agonist monotherapy in cancer treatment dose not sufficiently eliminate tumors. Activation of the innate immune response by TLR agonists and other pathogen-associated molecular patterns is effective for driving adaptive immunity via interleukin (IL)-12 or IL-1, but is counteracted by the simultaneous induction of immunosuppressive cytokines and other molecules, including IL-10, tumor growth factor-β, and induced nitric oxide synthase (iNOS). In the present study, we evaluated the anticancer effect of the TLR7 agonist, imiquimod (IMQ), in the absence of iNOS. The administration of IMQ in iNOS-knockout (KO) mice implanted with tumor cells significantly suppressed tumor progression as compared to that in wild-type mice and improved the survival rate. Moreover, injection with IMQ enhanced the tumor antigen-specific Th1 response in iNOS-KO mice with tumors. The enhancement of the antigen-specific Th1 response was associated with an increase in IL-2 and IL-12b expressions in the tumor-draining lymph nodes. Combination therapy with IMQ and an iNOS inhibitor also significantly inhibited tumor growth in the established tumor model. Finally, our results indicated that the enhancement of iNOS expression through the administration with TLR agonists impairs host anti-tumor immunity, while the inhibition of iNOS could enhance the therapeutic efficacy of TLR agonists via the increase in Th1 immune response.
Collapse
MESH Headings
- Aminoquinolines/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Flow Cytometry
- Imiquimod
- Immunotherapy
- Interferon-gamma/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Membrane Glycoproteins/agonists
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Nitric Oxide Synthase Type II/physiology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Toll-Like Receptor 7/agonists
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan,
| | | | | | | | | |
Collapse
|
45
|
Shekarian T, Valsesia-Wittmann S, Caux C, Marabelle A. Paradigm shift in oncology: targeting the immune system rather than cancer cells. Mutagenesis 2015; 30:205-11. [DOI: 10.1093/mutage/geu073] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
46
|
Harashima N, Minami T, Uemura H, Harada M. Transfection of poly(I:C) can induce reactive oxygen species-triggered apoptosis and interferon-β-mediated growth arrest in human renal cell carcinoma cells via innate adjuvant receptors and the 2-5A system. Mol Cancer 2014; 13:217. [PMID: 25227113 PMCID: PMC4174632 DOI: 10.1186/1476-4598-13-217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 08/28/2014] [Indexed: 01/22/2023] Open
Abstract
Background Synthetic double-stranded RNA poly(I:C) is a useful immune adjuvant and exhibits direct antitumor effects against several types of cancers. In this study, we elucidated the mechanisms underlying the effects induced in poly(I:C)-transfected human renal cell carcinoma (RCC) cells. Results In contrast to the lack of an effect of adding poly(I:C), poly(I:C) transfection drastically decreased RCC cell viability. Poly(I:C) transfection induced reactive oxygen species (ROS)-dependent apoptosis in RCC cells and decreased the mitochondrial membrane potential (ΔΨm). Treatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, suppressed apoptosis and restored the ΔΨm. Although the levels of phosphorylated γH2A.X, an indicator of DNA damage, increased in poly(I:C)-transfected RCC cells, NAC treatment decreased their levels, suggesting ROS-mediated DNA damage. Furthermore, poly(I:C) transfection increased the levels of phosphorylated p53, NOXA, and tBid. Immunoblots and assays with a panel of caspase inhibitors revealed that poly(I:C) transfection-induced apoptosis was dependent on caspase-8 and -9, as well as caspase-2. Alternatively, poly(I:C) transfection increased mRNA expression of interferon (IFN)-β, and treatment with IFN-β suppressed growth of RCC cells without apoptosis. In addition, cyclinD1 and c-Myc expression decreased in poly(I:C)-transfected RCC cells. Moreover, RNA interference experiments revealed that poly(I:C) transfection exerted apoptotic effects on RCC cells through innate adjuvant receptors and the 2-5A system, the latter of which induces apoptosis in virus-infected cells. Conclusions These results suggest that poly(I:C) transfection induced two types of effects against RCC cells such as apoptosis, as a result of ROS-mediated DNA damage, and IFN-β-mediated growth arrest, both of which were exerted via innate adjuvant receptors and the 2-5A system. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-217) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
47
|
Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Appl Microbiol Biotechnol 2014; 98:9389-98. [DOI: 10.1007/s00253-014-6027-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/15/2014] [Accepted: 08/10/2014] [Indexed: 01/09/2023]
|
48
|
Muccioli M, Benencia F. Toll-like Receptors in Ovarian Cancer as Targets for Immunotherapies. Front Immunol 2014; 5:341. [PMID: 25101083 PMCID: PMC4105689 DOI: 10.3389/fimmu.2014.00341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/04/2014] [Indexed: 01/21/2023] Open
Abstract
In the last decade, it has become apparent that toll-like receptor (TLR) signaling can play an important role in ovarian cancer (OC) progression. Interestingly, TLR activation in immune cells can help activate an anti-tumor response, while TLR signaling in tumor cells themselves is often associated with cancer-promoting inflammation. For example, it has been shown that TLR activation in dendritic cells can result in more effective antigen presentation to T cells, thereby favoring tumor eradication. However, aberrant TLR expression in OC cells is associated with more aggressive disease (likely due to recruitment of pro-tumoral leukocytes to the tumor site) and has also been implicated in resistance to mainstream chemotherapy. The delicate balance of TLR activation in the tumor microenvironment in different cell types altogether help shape the inflammatory profile and outcome of tumor growth or regression. With further studies, specific activation or repression of TLRs may be harnessed to offer novel immunotherapies or adjuvants to traditional chemotherapy for some OC patients. Herewith, we review recent literature on basic and translational research concerning therapeutic targeting of TLR pathways for the treatment of OC.
Collapse
Affiliation(s)
- Maria Muccioli
- Molecular and Cell Biology Program, Ohio University , Athens, OH , USA
| | - Fabian Benencia
- Molecular and Cell Biology Program, Ohio University , Athens, OH , USA ; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University , Athens, OH , USA
| |
Collapse
|
49
|
Hara K, Fukumura M, Ohtsuka J, Kawano M, Nosaka T. Human parainfluenza virus type 2 vector induces dendritic cell maturation without viral RNA replication/transcription. Hum Gene Ther 2014; 24:683-91. [PMID: 23790317 DOI: 10.1089/hum.2013.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The dendritic cell (DC), a most potent antigen-presenting cell, plays a key role in vaccine therapy against infectious diseases and malignant tumors. Although advantages of viral vectors for vaccine therapy have been reported, potential risks for adverse effects prevent them from being licensed for clinical use. Human parainfluenza virus type 2 (hPIV2), one of the members of the Paramyxoviridae family, is a nonsegmented and negative-stranded RNA virus. We have developed a reverse genetics system for the production of infectious hPIV2 lacking the F gene (hPIV2ΔF), wherein various advantages for vaccine therapy exist, such as cytoplasmic replication/transcription, nontransmissible infectivity, and extremely high transduction efficacy in various types of target cells. Here we demonstrate that hPIV2ΔF shows high transduction efficiency in human DCs, while not so high in mouse DCs. In addition, hPIV2ΔF sufficiently induces maturation of both human and murine DCs, and the maturation state of both human and murine DCs is almost equivalent to that induced by lipopolysaccharide. Moreover, alkylating agent β-propiolactone-inactivated hPIV2ΔF (BPL-hPIV2ΔF) elicits DC maturation without viral replication/transcription. These results suggest that hPIV2ΔF may be a useful tool for vaccine therapy as a novel type of paramyxoviral vector, which is single-round infectious vector and has potential adjuvant activity.
Collapse
Affiliation(s)
- Kenichiro Hara
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | | | | | | | | |
Collapse
|
50
|
Toll-like receptors in lymphoid malignancies: Double-edged sword. Crit Rev Oncol Hematol 2014; 89:262-83. [DOI: 10.1016/j.critrevonc.2013.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/04/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
|