1
|
Wriessnegger SC, Leitner M, Kostoglou K. The brain under pressure: Exploring neurophysiological responses to cognitive stress. Brain Cogn 2024; 182:106239. [PMID: 39556965 DOI: 10.1016/j.bandc.2024.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Stress is an increasingly dominating part of our daily lives and higher performance requirements at work or to ourselves influence the physiological reaction of our body. Elevated stress levels can be reliably identified through electroencephalogram (EEG) and heart rate (HR) measurements. In this study, we examined how an arithmetic stress-inducing task impacted EEG and HR, establishing meaningful correlations between behavioral data and physiological recordings. Thirty-one healthy participants (15 females, 16 males, aged 20 to 37) willingly participated. Under time pressure, participants completed arithmetic calculations and filled out stress questionnaires before and after the task. Linear mixed effects (LME) allowed us to generate topographical association maps showing significant relations between EEG features (delta, theta, alpha, beta, and gamma power) and factors such as task difficulty, error rate, response time, stress scores, and HR. With task difficulty, we observed left centroparietal and parieto-occipital theta power decreases, and alpha power increases. Furthermore, frontal alpha, delta and theta activity increased with error rate and relative response time, while parieto-temporo-occipital alpha power decreased. Practice effects on EEG power included increases in temporal, parietal, and parieto-occipital theta and alpha activity. HR was positively associated with frontal delta, theta and alpha power whereas frontal gamma power decreases. Significant alpha laterality scores were observed for all factors except task difficulty and relative response time, showing overall increases in left parietal regions. Significant frontal alpha asymmetries emerged with increases in error rate, sex, run number, and HR and occipital alpha asymmetries were also found with run number and HR. Additionally we explored practice effects and noted sex-related differences in EEG features, HR, and questionnaire scores. Overall, our study enhances the understanding of EEG/ECG-based mental stress detection, crucial for early interventions, personalized treatment and objective stress assessment towards the development of a neuroadaptive system.
Collapse
Affiliation(s)
- S C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - M Leitner
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - K Kostoglou
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
2
|
Bipul MRS, Rahman MA, Hossain MF. Study on different brain activation rearrangement during cognitive workload from ERD/ERS and coherence analysis. Cogn Neurodyn 2024; 18:1709-1732. [PMID: 39104686 PMCID: PMC11297888 DOI: 10.1007/s11571-023-10032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 07/11/2023] [Accepted: 11/04/2023] [Indexed: 08/07/2024] Open
Abstract
The functional activities of the brain during any task like imaginary, motor, or cognitive are different in pattern as well as their area of activation in the brain is also different. This variation in pattern is also found in the brain's electrical variations that can be measured from the scalp of the brain using an electroencephalogram (EEG). This work exclusively studied a group of subjects' EEG data (available at: https://archive.physionet.org/physiobank/database/eegmat/) to unravel the activation pattern of the human brain during a mental arithmetic task. Since any cognitive task creates variations in EEG signal pattern, the relative changes in the signal power also occur which is also known as event-related desynchronization/synchronization (ERD/ERS). In this work, ERD/ERS have calculated the band-wise power spectral density (PSD) using Welch's method from the EEG signals. Besides, the coherence analysis was also performed to verify the results of ERD/ERS analysis from several randomly chosen subjects' EEG data. Here, subjects performing mental arithmetic tasks were grouped based on their performances: good (subtraction solved > 10 on average) and bad (subtraction solved ≤ 10 on average) to conduct group-specific ERD/ERS analysis regarding their performance in cognitive tasks. It was found that when the brain is on count condition, the variations found in the band power of theta and beta. The amounts of ERS in the left hemisphere are increased. When the task complexity increases, it contributes to an increase in relative ERD/ERS amounts and durations. The left and right hemispheres were asymmetrically distributed by both the pre-stimulus stages of the corresponding band power and relative ERD/ERS.
Collapse
Affiliation(s)
- Md. Rayahan Sarker Bipul
- Department of Biomedical Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203 Bangladesh
| | - Md. Asadur Rahman
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Mirpur Cantonment, Dhaka, 1216 Bangladesh
| | - Md. Foisal Hossain
- Department of Electronics and Communication Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203 Bangladesh
| |
Collapse
|
3
|
Budnik-Przybylska D, Syty P, Kaźmierczak M, Przybylski J, Doliński Ł, Łabuda M, Jasik P, Kastrau A, di Fronso S, Bertollo M. Psychophysiological strategies for enhancing performance through imagery-skin conductance level analysis in guided vs. self-produced imagery. Sci Rep 2024; 14:5197. [PMID: 38431722 PMCID: PMC10908843 DOI: 10.1038/s41598-024-55743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Athletes need to achieve their optimal level of arousal for peak performance. Visualization or mental rehearsal (i.e., Imagery) often helps to obtain an appropriate level of activation, which can be detected by monitoring Skin Conductance Level (SCL). However, different types of imagery could elicit different amount of physiological arousal. Therefore, this study aims: (1) to investigate differences in SCL associated with two instructional modalities of imagery (guided vs. self-produced) and six different scripts; (2) to check if SCL could differentiate respondents according to their sport expertise. Thirty participants, aged between 14 and 42 years (M = 22.93; SD = 5.24), with different sport levels took part in the study. Participants listened to each previously recorded script and then were asked to imagine the scene for a minute. During the task, SCL was monitored. We analysed the mean value, variance, slope and number of fluctuations per minute of the electrodermal signal. Unsupervised machine learning models were used for measuring the resemblance of the signal. The Wilcoxon signed-rank test was used for distinguishing guided and self-produced imagery, and The Mann-Whitney U test was used for distinguishing results of different level athletes. We discovered that among others, self-produced imagery generates lower SCL, higher variance, and a higher number of fluctuations compared to guided imagery. Moreover, we found similarities of the SCL signal among the groups of athletes (i.e. expertise level). From a practical point of view, our findings suggest that different imagery instructional modalities can be implemented for specific purposes of mental preparation.
Collapse
Affiliation(s)
- Dagmara Budnik-Przybylska
- Division of Sport Psychology, Institute of Psychology, Faculty of Social Science, University of Gdańsk, Gdańsk, Poland.
| | - Paweł Syty
- Institute of Physics and Applied Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Maria Kaźmierczak
- Institute of Psychology, Faculty of Social Sciences, Division of Family Studies and Quality of Life, University of Gdańsk, Gdańsk, Poland
| | - Jacek Przybylski
- Division of Sport Psychology, Institute of Psychology, Faculty of Social Science, University of Gdańsk, Gdańsk, Poland
| | - Łukasz Doliński
- Department of Biomechatronics, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Marta Łabuda
- Institute of Physics and Applied Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Patryk Jasik
- Institute of Physics and Applied Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Adrian Kastrau
- Institute of Physics and Applied Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Selenia di Fronso
- Department of Medicine and Aging Sciences, Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maurizio Bertollo
- Department of Medicine and Aging Sciences, Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Morrone JM, Pedlar CR. EEG-based neurophysiological indices for expert psychomotor performance - a review. Brain Cogn 2024; 175:106132. [PMID: 38219415 DOI: 10.1016/j.bandc.2024.106132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
A primary objective of current human neuropsychological performance research is to define the physiological correlates of adaptive knowledge utilization, in order to support the enhanced execution of both simple and complex tasks. Within the present article, electroencephalography-based neurophysiological indices characterizing expert psychomotor performance, will be explored. As a means of characterizing fundamental processes underlying efficient psychometric performance, the neural efficiency model will be evaluated in terms of alpha-wave-based selective cortical processes. Cognitive and motor domains will initially be explored independently, which will act to encapsulate the task-related neuronal adaptive requirements for enhanced psychomotor performance associating with the neural efficiency model. Moderating variables impacting the practical application of such neuropsychological model, will also be investigated. As a result, the aim of this review is to provide insight into detectable task-related modulation involved in developed neurocognitive strategies which support heightened psychomotor performance, for the implementation within practical settings requiring a high degree of expert performance (such as sports or military operational settings).
Collapse
Affiliation(s)
- Jazmin M Morrone
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK.
| | - Charles R Pedlar
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK; Institute of Sport, Exercise and Health, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
5
|
Ciaccioni S, Castro O, Bahrami F, Tomporowski PD, Capranica L, Biddle SJH, Vergeer I, Pesce C. Martial arts, combat sports, and mental health in adults: A systematic review. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 70:102556. [PMID: 37949383 DOI: 10.1016/j.psychsport.2023.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/15/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Martial arts (MA) and combat sports (CS) are physical activities that may be associated with health-related outcomes. The aim of this systematic review was to synthesize and evaluate the available evidence on the relationship between MA and CS training and mental health of adult practitioners (≥18 years). CochraneLibrary, EBSCOhost, Web-of-Science, and Scopus databases were searched up to September 2022 for measures of self-related constructs, ill-being and well-being, cognition and brain structure/function, in adult MA/CS practitioners. Seventy cross-sectional and two longitudinal studies were retained and submitted to risk of bias assessments through an adapted version of the Cochrane Collaboration's Tool. Associations between MA/CS practice and self-related constructs were inconclusive for both consistency and strength of evidence. Limited evidence of significant associations emerged for sub-domains of ill-being (i.e., externalizing and internalizing emotion regulation), and well-being. In regard to cognitive and brain structural/functional variables, evidence of positive association with MA/CS practice was consistent with respect to perceptual and inhibition abilities but limited with respect to attention and memory. Evidence on negative associations of boxing with changes of brain structure integrity due to concussions was also inconclusive. Functional imaging techniques could shed light onto brain activation mechanisms underlying complex cognitive performance. In relation to moderators, mixed results were found for activity exposure, expertise, level of competitive engagement (which often covary with the length of training) and sex and type of MA/CS. The MA/CS' multifaceted nature may produce different, sometimes conflicting outcomes on mental health. Studies on MA/CS represent a flourishing research area needing extensive improvement in theoretical and practical approaches.
Collapse
Affiliation(s)
- Simone Ciaccioni
- Department of Movement, Human and Health Sciences, Division of Human Movement and Sport Sciences, University of Rome Foro Italico, Italy.
| | - Oscar Castro
- Centre for Behaviour Change, University College London, London, United Kingdom; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Fatimah Bahrami
- Developmental Cognitive Neuroscience Lab, University of British Columbia, Vancouver Campus, Canada
| | | | - Laura Capranica
- Department of Movement, Human and Health Sciences, Division of Human Movement and Sport Sciences, University of Rome Foro Italico, Italy
| | - Stuart J H Biddle
- Physically Active Lifestyles (PALs) Research Group, Centre for Health Research, University of Southern Queensland, Springfield, QLD, Australia; Faculty of Sport & Health Sciences, University of Jyväskylä, Finland
| | - Ineke Vergeer
- Physically Active Lifestyles (PALs) Research Group, Centre for Health Research, University of Southern Queensland, Springfield, QLD, Australia
| | - Caterina Pesce
- Department of Movement, Human and Health Sciences, Division of Human Movement and Sport Sciences, University of Rome Foro Italico, Italy
| |
Collapse
|
6
|
Yu M, Xu S, Hu H, Li S, Yang G. Differences in right hemisphere fNIRS activation associated with executive network during performance of the lateralized attention network tast by elite, expert and novice ice hockey athletes. Behav Brain Res 2023; 443:114209. [PMID: 36368444 DOI: 10.1016/j.bbr.2022.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE We investigated brain activity associated with executive control attention network in elite, expert, and novice female ice hockey athletes during the revised lateralized attention network tast to determine whether the neural correlates of performance differ by skill level. METHODS We collected and analyzed functional near-infrared spectroscopy data of 38 participants while performing the revised lateralized attention network tast. RESULTS Elite players were significantly faster than novices (p = .005), and the experts' overall accuracy rate (ACC) was higher than that of novices (p = .001). The effect of the executive network on reaction time was higher in novices than in elite players (p = .008) and experts (p = .004). The effect of the executive network on the ACC was lower in elite players than in experts (p = .009) and novices (p = .010). Finally, elite player had higher flanker conflict effects on RT (p = .005) under the invalid cue condition. the effect of the alertness network and orientation on the ACC was lower in elite players than in novices (p = .000) and experts (p = .022). Changes in the blood oxygen level-dependent signal related to the flanker effect were significantly different in the right dorsolateral prefrontal cortex (F=3.980, p = .028) and right inferior frontal gyrus (F=3.703, p = .035) among the three groups. Elit players showed more efficient executive control (reduced conflict effect on ACC) (p = .006)in the RH.The changes related to the effect of blood oxygen level on orienting were significantly different in the right frontal eye fields (F=3.883, p = .030) among the three groups, Accompanied by significant activation of the right dorsolateral prefrontal cortex(p = .026). CONCLUSION Our findings provide partial evidence of the superior cognitive performance and high neural efficiency of elite ice hockey players during cognitive tasks. These results demonstrate the right hemisphere superiority for executive control.We also found that specific brain activation in hockey players does not show a clear and linear relationship with skill level.
Collapse
Affiliation(s)
- Miao Yu
- Sport Science College, Jilin Sport University, Changchun 130022, China.
| | - Sinuo Xu
- Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Hao Hu
- Sport Science College, Jilin Sport University, Changchun 130022, China.
| | - Shuangling Li
- School of Physical Education and Training, Harbin Sport College, Harbin 150008, China.
| | - Guang Yang
- School of Physical Education, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
7
|
Palucci Vieira LH, Carling C, da Silva JP, Santinelli FB, Polastri PF, Santiago PRP, Barbieri FA. Modelling the relationships between EEG signals, movement kinematics and outcome in soccer kicking. Cogn Neurodyn 2022; 16:1303-1321. [PMID: 36408067 PMCID: PMC9666621 DOI: 10.1007/s11571-022-09786-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
The contribution of cortical activity (e.g. EEG recordings) in various brain regions to motor control during goal-directed manipulative tasks using lower limbs remains unexplored. Therefore, the aim of the current study was to determine the magnitude of associations between EEG-derived brain activity and soccer kicking parameters. Twenty-four under-17 players performed an instep kicking task (18 m from the goal) aiming to hit 1 × 1 m targets allocated in the goalpost upper corners in the presence of a goalkeeper. Using a portable 64-channel EEG system, brain oscillations in delta, theta, alpha, beta and gamma frequency bands were determined at the frontal, motor, parietal and occipital regions separately for three phases of the kicks: preparatory, approach and immediately prior to ball contact. Movement kinematic measures included segmental linear and relative velocities, angular joint displacement and velocities. Mean radial error and ball velocity were assumed as outcome indicators. A significant influence of frontal theta power immediately prior to ball contact was observed in the variance of ball velocity (R 2 = 35%, P = 0.01) while the expression of occipital alpha component recorded during the preparatory phase contributed to the mean radial error (R 2 = 20%, P = 0.049). Ankle eversion angle at impact moment likely mediated the association between frontal theta power and subsequent ball velocity (β = 0.151, P = 0.06). The present analysis showed that the brain signalling at cortical level may be determinant in movement control, ball velocity and accuracy when performing kick attempts from the edge of penalty area. Trial registration number #RBR-8prx2m-Brazilian Registry of Clinical Trials ReBec. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09786-2.
Collapse
Affiliation(s)
- Luiz H. Palucci Vieira
- Human Movement Research Laboratory (MOVI-LAB), Faculty of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, São Paulo State University (Unesp), Av. Eng. Luís Edmundo Carrijo Coube, 2085 - Nucleo Res. Pres. Geisel, Bauru, SP 17033-360 Brazil
| | | | - João Pedro da Silva
- Human Movement Research Laboratory (MOVI-LAB), Faculty of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, São Paulo State University (Unesp), Av. Eng. Luís Edmundo Carrijo Coube, 2085 - Nucleo Res. Pres. Geisel, Bauru, SP 17033-360 Brazil
| | - Felipe B. Santinelli
- Human Movement Research Laboratory (MOVI-LAB), Faculty of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, São Paulo State University (Unesp), Av. Eng. Luís Edmundo Carrijo Coube, 2085 - Nucleo Res. Pres. Geisel, Bauru, SP 17033-360 Brazil
| | - Paula F. Polastri
- Laboratory of Information, Vision and Action (LIVIA), São Paulo State University (Unesp), Faculty of Sciences, Department of Physical Education, Graduate Program in Movement Sciences, Bauru, Brazil
| | - Paulo R. P. Santiago
- Biomechanics and Motor Control Laboratory (LaBioCoM), School of Physical Education and Sport of Ribeirão Preto (EEFERP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Fabio A. Barbieri
- Human Movement Research Laboratory (MOVI-LAB), Faculty of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, São Paulo State University (Unesp), Av. Eng. Luís Edmundo Carrijo Coube, 2085 - Nucleo Res. Pres. Geisel, Bauru, SP 17033-360 Brazil
| |
Collapse
|
8
|
Moscaleski LA, Fonseca A, Brito R, Morya E, Morgans R, Moreira A, Okano AH. Does high-definition transcranial direct current stimulation change brain electrical activity in professional female basketball players during free-throw shooting? FRONTIERS IN NEUROERGONOMICS 2022; 3:932542. [PMID: 38235466 PMCID: PMC10790899 DOI: 10.3389/fnrgo.2022.932542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 01/19/2024]
Abstract
Differentiated brain activation in high-performance athletes supports neuronal mechanisms relevant to sports performance. Preparation for the motor action involves cortical and sub-cortical regions that can be non-invasively modulated by electrical current stimulation. This study aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on electrical brain activity in professional female basketball players during free-throw shooting. Successful free-throw shooting (n = 2,361) from seven professional female basketball players was analyzed during two experimental conditions (HD-tDCS cathodic and sham) separated by 72 h. Three spectral bio-markers, Power Ratio Index (PRI), Delta Alpha Ratio (DAR), and Theta Beta Ratio (TBR) were measured (electroencephalography [EEG] Brain Products). Multi-channel HD-tDCS was applied for 20 min, considering current location and intensity for cathodic stimulation: FCC1h, AFF5h, AFF1h (-0.5 mA each), and FCC5h (ground). The within EEG analyses (pre and post HD-tDCS) of frontal channels (Fp1, Fp2, F3, F4, FC1, FC3) for 1 second epoch pre-shooting, showed increases in PRI (p < 0.001) and DAR (p < 0.001) for HD-tDCS cathodic condition, and in TBR for both conditions (cathodic, p = 0.01; sham, p = 0.002). Sub-group analysis divided the sample into less (n = 3; LSG) and more (n = 4; MSG) stable free-throw-shooting performers and revealed that increases in pre to post HD-tDCS in PRI only occurred for the LSG. These results suggest that the effect of HD-tDCS may induce changes in slow frontal frequency brain activities and that this alteration seems to be greater for players demonstrating a less stable free-throw shooting performance.
Collapse
Affiliation(s)
- Luciane Aparecida Moscaleski
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - André Fonseca
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Rodrigo Brito
- Neuroscience Applied Laboratory, Federal University of Pernambuco, Recife, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, RN, Brazil
| | - Ryland Morgans
- Department of Sports Medicine and Medical Rehabilitation, Sechenov First State Medical University, Moscow, Russia
| | - Alexandre Moreira
- Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Alexandre Hideki Okano
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| |
Collapse
|
9
|
Gao Q, Luo N, Sun M, Zhou W, Li Y, Liang M, Yang C, Zhang M, Li R, Gong L, Yu J, Leng J, Chen H. Neural efficiency and proficiency adaptation of effective connectivity corresponding to early and advanced skill levels in athletes of racket sports. Hum Brain Mapp 2022; 44:388-402. [PMID: 36053219 PMCID: PMC9842890 DOI: 10.1002/hbm.26057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 08/14/2022] [Indexed: 01/25/2023] Open
Abstract
This study explored how the neural efficiency and proficiency worked in athletes with different skill levels from the perspective of effective connectivity brain network in resting state. The deconvolved conditioned Granger causality (GC) analysis was applied to functional magnetic resonance imaging (fMRI) data of 35 elite athletes (EAs) and 42 student-athletes (SAs) of racket sports as well as 39 normal controls (NCs), to obtain the voxel-wised hemodynamic response function (HRF) parameters representing the functional segregation and effective connectivity representing the functional integration. The results showed decreased time-to-peak of HRF in the visual attention brain regions in the two athlete groups compared with NC and decreased response height in the advanced motor control brain regions in EA comparing to the nonelite groups, suggesting the neural efficiency represented by the regional HRF was different in early and advanced skill levels. GC analysis demonstrated that the GC values within the middle occipital gyrus had a linear trend from negative to positive, suggesting a stepwise "neural proficiency" of the effective connectivity from NC to SA then to EA. The GC values of the inter-lobe circuits in EA had the trend to regress to NC levels, in agreement with the neural efficiency of these circuits in EA. Further feature selection approach suggested the important role of the cerebral-brainstem GC circuit for discriminating EA. Our findings gave new insight into the complementary neural mechanisms in brain functional segregation and integration, which was associated with early and advanced skill levels in athletes of racket sports.
Collapse
Affiliation(s)
- Qing Gao
- Department of RadiologyFirst Affiliated Hospital to Army Medical UniversityChongqingPeople's Republic of China,School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Ning Luo
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Mengli Sun
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Weiqi Zhou
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Yan Li
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Minfeng Liang
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Chengbo Yang
- The Third Department of Physical Education and TrainingChengdu Sport UniversityChengduPeople's Republic of China
| | - Mu Zhang
- Information Technology CenterChengdu Sport UniversityChengduPeople's Republic of China
| | - Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Lisha Gong
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Jiali Yu
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Jinsong Leng
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Huafu Chen
- Department of RadiologyFirst Affiliated Hospital to Army Medical UniversityChongqingPeople's Republic of China,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| |
Collapse
|
10
|
Fang Q, Fang C, Li L, Song Y. Impact of sport training on adaptations in neural functioning and behavioral performance: A scoping review with meta-analysis on EEG research. J Exerc Sci Fit 2022; 20:206-215. [PMID: 35510253 PMCID: PMC9035717 DOI: 10.1016/j.jesf.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 01/08/2023] Open
Abstract
Background/objective Investigating the neural mechanisms underlying sport performance has been a research focus in the field of sport science. The current review aims to identify distinct characteristics between athletes and non-athletes at behavioral and neural levels. Further analysis was conducted as to potential reasons that contributed to the differences. Methods Literature was searched through PubMed, ScienceDirect, Cochrane, EBSCO, and Web of Science for EEG studies that compared athletes with non-athletes or novices in behavioral performance and brain function. Results The process of literature search and selection identified 16 studies that satisfied the predetermined inclusion criteria. Theta, alpha, and beta frequency bands were employed as the primary EEG measures of cortical activities in the included studies. Athletes indicated significant advantages over controls in behavioral performance, H e d g e s ' g = 0.42 , p = 0.02 , and brain function, H e d g e s ' g = 0.49 , p = 0.03 . Moderator analysis on behavioral performance indicated a large effect size in sport-related performance, H e d g e s ' g = 0.90 , p = 0.01 , but a small, non-significant effect size in general tasks, H e d g e s ' g = 0.14 , p = 0.44 . Conclusions Superior performance in sport-related tasks mostly contributed to athletes' significant advantage in behavioral performance. Additionally, favorable profiles of brain function associated with athletes included neural efficiency, increased cortical asymmetry, greater cognitive flexibility, and precise timing of cortical activation. Applying EEG technique to sport has shown promising directions in performance improvement and talent identification for young athletes.
Collapse
Affiliation(s)
- Qun Fang
- School of Physical Education, Qingdao University, China
| | - Chao Fang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, China
| | - Longxi Li
- Department of Physical Education and Health Education, Springfield College, USA
| | - Ying Song
- School of Physical Education, Shandong University, China
| |
Collapse
|
11
|
da Silva K, Curvina M, Araújo S, Rocha K, Victor Marinho F, Elezier Magalhães F, Teixeira S, Bastos V, Ribeiro P, Silva-Júnior F. Male practitioners of physical activity present lower absolute power of beta band in time perception test. Neurosci Lett 2021; 764:136210. [PMID: 34481000 DOI: 10.1016/j.neulet.2021.136210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022]
Abstract
Cortical changes resulting from physical activity and differences in the estimation of the time of practitioners and non-practitioners of physical activity have already been documented. However, there aren't studies that compare the cortical responses of the time estimate between these groups. Therefore, this study aimed to investigate the influence of the level of physical activity in time estimation and beta band activity in frontal regions, specifically in the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, and parietal cortex during the task of estimating time in practitioners and non-practitioners of physical activity. After characterizing the sample, the signal was captured using an electroencephalogram during a task to estimate the time of four intervals of supraseconds. The results indicated that the practitioners of physical activity had lower errors in the evaluation of time for the intervals of 1 s, 7 s, and 9 s. The beta band showed less activity among practitioners of physical activity. The correlation between task performance and the absolute power of the beta band proved to be positive in the task of estimating time in the 7 s, and 9 s intervals. It was concluded that participants involved in the regular practice of physical activity showed underestimation in the temporal judgment and lower absolute power of the beta band during the time estimate.
Collapse
Affiliation(s)
- Kamila da Silva
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil.
| | - Maria Curvina
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Sabrina Araújo
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Kaline Rocha
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | | | | | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Victor Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Pedro Ribeiro
- Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil
| | - Fernando Silva-Júnior
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil; Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Stress Classification by Multimodal Physiological Signals Using Variational Mode Decomposition and Machine Learning. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2146369. [PMID: 34484651 PMCID: PMC8413068 DOI: 10.1155/2021/2146369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 12/02/2022]
Abstract
In this pandemic situation, importance and awareness about mental health are getting more attention. Stress recognition from multimodal sensor based physiological signals such as electroencephalogram (EEG) and electrocardiography (ECG) signals is a very cost-effective way due to its noninvasive nature. A dataset, recorded during the mental arithmetic task, consisting of EEG + ECG signals of 36 participants is used. It contains two categories of performance, namely, “Good” (nonstressed) and “Bad” (stressed) (Gupta et al. 2018 and Eraldeír et al. 2018). This paper presents an effective approach for the recognition of stress marker at frontal, temporal, central, and occipital lobes. It processes the multimodality physiological signals. The variational mode decomposition (VMD) strategy is used for data preprocessing and for the decomposition of signals into various oscillatory mode functions. Poincare plots (PP) are derived from the first eight variational modes and features from these plots have been extracted such as mean, area, and central tendency measure of the elliptical region. The statistical significance of the extracted features with p < 0.5 has been performed using the Wilcoxson test. The multilayer perceptron (MPLN) and Support Vector Machine (SVM) algorithms are used for the classification of stress and nonstress categories. MLPN has achieved the maximum accuracies of 100% for frontal and temporal lobes. The suggested method can be incorporated in noninvasive EEG signal processing based automated stress identification systems.
Collapse
|
13
|
Li L, Smith DM. Neural Efficiency in Athletes: A Systematic Review. Front Behav Neurosci 2021; 15:698555. [PMID: 34421553 PMCID: PMC8374331 DOI: 10.3389/fnbeh.2021.698555] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
According to the neural efficiency hypothesis (NEH), professionals have more effective cortical functions in cognitive tasks. This study is focusing on providing a systematic review of sport-related NEH studies with functional neuroimaging or brain stimulation while performing a sport-specific task, with the aim to answer the question: How does long-term specialized training change an athlete's brain and improve efficiency? A total of 28 studies (N = 829, Experimental Group n = 430) from 2001 to 2020 (Median = 2014, SD = 5.43) were analyzed and results were organized into four different sections: expert-novice samples, perceptual-cognitive tasks and neuroimaging technologies, efficiency paradox, and the cluster analysis. Researchers examined a wide range of sport-specific videos and multiple object tracking (MOT) specific to 18 different sports and utilized blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), and electroencephalogram (EEG). Expert-novice comparisons were often adopted into investigations about the variations in general about optimal-controlled performance, neurophysiology, and behavioral brain research. Experts tended to perform at faster speeds, more accurate motor behavior, and with greater efficiency than novices. Experts report lower activity levels in the sensory and motor cortex with less energy expenditure, experts will possibly be more productive. These findings generally supported the NEH across the studies reviewed. However, an efficiency paradox and proficient brain functioning were revealed as the complementary hypothesis of the NEH. The discussion concentrates on strengths and key limitations. The conclusion highlights additional concerns and recommendations for prospective researchers aiming to investigate a broader range of populations and sports.
Collapse
Affiliation(s)
- Longxi Li
- Department of Physical Education and Health Education, Springfield College, Springfield, MA, United States
| | - Daniel M Smith
- Department of Physical Education and Health Education, Springfield College, Springfield, MA, United States
| |
Collapse
|
14
|
Budnik-Przybylska D, Kastrau A, Jasik P, Kaźmierczak M, Doliński Ł, Syty P, Łabuda M, Przybylski J, di Fronso S, Bertollo M. Neural Oscillation During Mental Imagery in Sport: An Olympic Sailor Case Study. Front Hum Neurosci 2021; 15:669422. [PMID: 34140884 PMCID: PMC8205149 DOI: 10.3389/fnhum.2021.669422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022] Open
Abstract
The purpose of the current study was to examine the cortical correlates of imagery depending on instructional modality (guided vs. self-produced) using various sports-related scripts. According to the expert-performance approach, we took an idiosyncratic perspective analyzing the mental imagery of an experienced two-time Olympic athlete to verify whether different instructional modalities of imagery (i.e., guided vs. self-produced) and different scripts (e.g., training or competition environment) could differently involve brain activity. The subject listened to each previously recorded script taken from two existing questionnaires concerning imagery ability in sport and then was asked to imagine the scene for a minute. During the task, brain waves were monitored using EEG (32-channel g. Nautilus). Our findings indicate that guided imagery might induce higher high alpha and SMR (usually associated with selective attention), whereas self-produced imagery might facilitate higher low alpha (associated with global resting state and relaxation). Results are discussed in light of the neural efficiency hypothesis as a marker of optimal performance and transient hypofrontality as a marker of flow state. Practical mental training recommendations are presented.
Collapse
Affiliation(s)
- Dagmara Budnik-Przybylska
- Department of Sport Psychology, Institute of Psychology, Faculty of Social Science, University of Gdańsk, Gdańsk, Poland
| | - Adrian Kastrau
- Department of Theoretical Physics and Quantum Information, Institute of Physics and Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Patryk Jasik
- Department of Theoretical Physics and Quantum Information, Institute of Physics and Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Maria Kaźmierczak
- Department of Family Studies and Quality of Life, Institute of Psychology, Faculty of Social Sciences, University of Gdańsk, Gdańsk, Poland
| | - Łukasz Doliński
- Department of Mechatronics and High Voltage Engineering, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, Gdańsk, Poland.,BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Paweł Syty
- Department of Theoretical Physics and Quantum Information, Institute of Physics and Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Marta Łabuda
- Department of Theoretical Physics and Quantum Information, Institute of Physics and Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland.,BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Przybylski
- Department of Sport Psychology, Institute of Psychology, Faculty of Social Science, University of Gdańsk, Gdańsk, Poland
| | - Selenia di Fronso
- Department of Medicine and Aging Sciences, Behavioral Imaging and Neural Dynamics (BIND) Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maurizio Bertollo
- Department of Medicine and Aging Sciences, Behavioral Imaging and Neural Dynamics (BIND) Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
15
|
Nakano H, Rosario MAM, de Dios C. Experience Affects EEG Event-Related Synchronization in Dancers and Non-dancers While Listening to Preferred Music. Front Psychol 2021; 12:611355. [PMID: 33912101 PMCID: PMC8071982 DOI: 10.3389/fpsyg.2021.611355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
EEGs were analyzed to investigate the effect of experiences in listening to preferred music in dancers and non-dancers. Participants passively listened to instrumental music of their preferred genre for 2 min (Argentine tango for dancers, classical, or jazz for non-dancers), alternate genres, and silence. Both groups showed increased activity for their preferred music compared to non-preferred music in the gamma, beta, and alpha frequency bands. The results suggest all participants' conscious recognition of and affective responses to their familiar music (gamma), appreciation of the tempo embedded in their preferred music and emotional arousal (beta), and enhanced attention mechanism for cognitive operations such as memory retrieval (alpha). The observed alpha activity is considered in the framework of the alpha functional inhibition hypothesis, in that years of experience listening to their favorite type of music may have honed the cerebral responses to achieve efficient cortical processes. Analyses of the electroencephalogram (EEG) activity over 100s-long music pieces revealed a difference between dancers and non-dancers in the magnitude of an initial alpha event-related desynchronization (ERD) and the later development of an alpha event-related synchronization (ERS) for their preferred music. Dancers exhibited augmented alpha ERD, as well as augmented and uninterrupted alpha ERS over the remaining 80s. This augmentation in dancers is hypothesized to be derived from creative cognition or motor imagery operations developed through their dance experiences.
Collapse
Affiliation(s)
- Hiroko Nakano
- Department of Psychology, Saint Mary's College of California, Moraga, CA, United States
| | - Mari-Anne M. Rosario
- Department of Physics and Astronomy, Saint Mary's College of California, Moraga, CA, United States
| | - Constanza de Dios
- Center for Neurobehavioral Research on Addiction, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
16
|
Path Planning of Unmanned Autonomous Helicopter Based on Human-Computer Hybrid Augmented Intelligence. Neural Plast 2021; 2021:6639664. [PMID: 33519928 PMCID: PMC7817272 DOI: 10.1155/2021/6639664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Unmanned autonomous helicopter (UAH) path planning problem is an important component of the UAH mission planning system. The performance of the automatic path planner determines the quality of the UAH flight path. Aiming to produce a high-quality flight path, a path planning system is designed based on human-computer hybrid augmented intelligence framework for the UAH in this paper. Firstly, an improved artificial bee colony (I-ABC) algorithm is proposed based on the dynamic evaluation selection strategy and the complex optimization method. In the I-ABC algorithm, the following way of on-looker bees and the update strategy of nectar source are optimized to accelerate the convergence rate and retain the exploration ability of the population. In addition, a space clipping operation is proposed based on the attention mechanism for constructing a new spatial search area. The search time can be further reduced by the space clipping operation under the path planning result within acceptable changes. Moreover, the entire optimization process and results can be feeded back to the knowledge database by the human-computer hybrid augmented intelligence framework to guide subsequent path planning issues. Finally, the simulation results confirm that a feasible and effective flight path can be quickly generated by the UAH path planning system based on human-computer hybrid augmented intelligence.
Collapse
|
17
|
Mohamed AMA, Uçan ON, Bayat O, Duru AD. Classification of Resting-State Status Based on Sample Entropy and Power Spectrum of Electroencephalography (EEG). Appl Bionics Biomech 2020; 2020:8853238. [PMID: 33224269 PMCID: PMC7673949 DOI: 10.1155/2020/8853238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023] Open
Abstract
An electroencephalogram (EEG) is a significant source of diagnosing brain issues. It is also a mediator between the external world and the brain, especially in the case of any mental illness; however, it has been widely used to monitor the dynamics of the brain in healthy subjects. This paper discusses the resting state of the brain with eyes open (EO) and eyes closed (EC) by using sixteen channels by the use of conventional frequency bands and entropy of the EEG signal. The Fast Fourier Transform (FFT) and sample entropy (SE) of each sensor are computed as methods of feature extraction. Six classifiers, including logistic regression (LR), K-Nearest Neighbors (KNN), linear discriminant (LD), decision tree (DT), support vector machine (SVM), and Gaussian Naive Bayes (GNB) are used to discriminate the resting states of the brain based on the extracted features. EEG data were epoched with one-second-length windows, and they were used to compute the features to classify EO and EC conditions. Results showed that the LR and SVM classifiers had the highest average classification accuracy (97%). Accuracies of LD, KNN, and DT were 95%, 93%, and 92%, respectively. GNB gained the least accuracy (86%) when conventional frequency bands were used. On the other hand, when SE was used, the average accuracies of SVM, LD, LR, GNB, KNN, and DT algorithms were 92% 90%, 89%, 89%, 86%, and 86%, respectively.
Collapse
Affiliation(s)
- Ahmed M. A. Mohamed
- School of Engineering and Natural Sciences, Altinbas University, 34217, Turkey
- Department of Computer Science, The Libyan Academy, 16063 Benghazi, Libya
| | - Osman N. Uçan
- School of Engineering and Natural Sciences, Altinbas University, 34217, Turkey
| | - Oğuz Bayat
- School of Engineering and Natural Sciences, Altinbas University, 34217, Turkey
| | | |
Collapse
|
18
|
Prior cortical activity differences during an action observation plus motor imagery task related to motor adaptation performance of a coordinated multi-limb complex task. Cogn Neurodyn 2020; 14:769-779. [PMID: 33101530 DOI: 10.1007/s11571-020-09633-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Motor adaptation is the ability to develop new motor skills that makes performing a consolidated motor task under different psychophysical conditions possible. There exists a proven relationship between prior brain activity at rest and motor adaptation. However, the brain activity at rest is highly variable both between and within subjects. Here we hypothesize that the cortical activity during the original task to be later adapted is a more reliable and stronger determinant of motor adaptation. Consequently, we present a study to find cortical areas whose activity, both at rest and during first-person virtual reality simulation of bicycle riding, characterizes the subjects who did and did not adapt to ride a reverse steering bicycle, a complex motor adaptation task involving all limbs and balance. The results showed that cortical activity differences during the simulated task were higher, more significant, spatially larger, and spectrally wider than at rest for good performers. In this sense, the activity of the left anterior insula, left dorsolateral and ventrolateral inferior prefrontal areas, and left inferior premotor cortex (action understanding hub of the mirror neuron circuit) during simulated bicycle riding are the areas with the most descriptive power for the ability of adapting the motor task. Trials registration Trial was registered with the NIH Clinical Trials Registry (clinicaltrials.gov), with the registration number NCT02999516 (21/12/2016).
Collapse
|
19
|
Krizman J, Lindley T, Bonacina S, Colegrove D, White-Schwoch T, Kraus N. Play Sports for a Quieter Brain: Evidence From Division I Collegiate Athletes. Sports Health 2019; 12:154-158. [PMID: 31813316 DOI: 10.1177/1941738119892275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Playing sports has many benefits, including boosting physical, cardiovascular, and mental fitness. We tested whether athletic benefits extend to sensory processing-specifically auditory processing-as measured by the frequency-following response (FFR), a scalp-recorded electrophysiological potential that captures neural activity predominately from the auditory midbrain to complex sounds. HYPOTHESIS Given that FFR amplitude is sensitive to experience, with enrichment enhancing FFRs and injury reducing them, we hypothesized that playing sports is a form of enrichment that results in greater FFR amplitude. STUDY DESIGN Cross-sectional study. LEVEL OF EVIDENCE Level 3. METHODS We measured FFRs to the speech syllable "da" in 495 student-athletes across 19 Division I teams and 493 age- and sex-matched controls and compared them on 3 measures of FFR amplitude: amplitude of the response, amplitude of the background noise, and the ratio of these 2 measures. RESULTS Athletes have larger responses to sound than nonathletes, driven by a reduction in their level of background neural noise. CONCLUSION These findings suggest that playing sports increases the gain of an auditory signal by turning down the background noise. This mode of enhancement may be tied to the overall fitness level of athletes and/or the heightened need of an athlete to engage with and respond to auditory stimuli during competition. CLINICAL RELEVANCE These results motivate athletics overall and engagement in athletic interventions for populations that struggle with sensory processing, such as individuals with language disorders. Also, because head injuries can disrupt these same auditory processes, it is important to consider how auditory processing enhancements may offset injury.
Collapse
Affiliation(s)
- Jennifer Krizman
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| | - Tory Lindley
- Department of Athletics, Sports Medicine Unit, Northwestern University, Evanston, Illinois
| | - Silvia Bonacina
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| | - Danielle Colegrove
- Department of Athletics, Sports Medicine Unit, Northwestern University, Evanston, Illinois
| | - Travis White-Schwoch
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois.,Department of Neurobiology, Northwestern University, Evanston, Illinois.,Department of Otolaryngology, Northwestern University, Evanston, Illinois.,Institute for Neuroscience, Northwestern University, Evanston, Illinois
| |
Collapse
|
20
|
Ibáñez‐Marcelo E, Campioni L, Manzoni D, Santarcangelo EL, Petri G. Spectral and topological analyses of the cortical representation of the head position: Does hypnotizability matter? Brain Behav 2019; 9:e01277. [PMID: 31001933 PMCID: PMC6576149 DOI: 10.1002/brb3.1277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The aim of this exploratory study was to assess the EEG correlates of head positions (which have never been studied in humans) in participants with different psychophysiological characteristics, as encoded by their hypnotizability scores. This choice is motivated by earlier studies suggesting different processing of vestibular/neck proprioceptive information in subjects with high (highs) and low (lows) hypnotizability scores maintaining their head rotated toward one side (RH). METHODS We analyzed EEG signals recorded in 20 highs and 19 lows in basal conditions (head forward) and during RH using spectral analysis, which captures changes localized to specific recording sites, and topological data analysis (TDA), which instead describes large-scale differences in processing and representing sensorimotor information. RESULTS Spectral analysis revealed significant differences related to head position for alpha 1, beta 2, beta 3, and gamma bands, but not to hypnotizability. TDA instead revealed global hypnotizability-related differences in the strengths of the correlations among recording sites during RH. Significant changes were observed in lows on the left parieto-occipital side and in highs in right frontoparietal region. Significant differences between the two groups were found in the occipital region, where changes were larger in lows than in highs. CONCLUSIONS This study reports finding of the EEG correlates of changes in the head posture for the first time, indicating that hypnotizability is related to the head posture representation/processing on large-scale networks and that spectral and topological data analyses provide complementary results.
Collapse
Affiliation(s)
| | - Lisa Campioni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Diego Manzoni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Enrica L. Santarcangelo
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Giovanni Petri
- ISI FoundationTurinItaly
- ISI Global Science FoundationNew YorkNYUSA
| |
Collapse
|
21
|
Del Percio C, Franzetti M, De Matti AJ, Noce G, Lizio R, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Rizzo M, Triggiani AI, Stocchi F, Limatola C, Babiloni C. Football Players Do Not Show "Neural Efficiency" in Cortical Activity Related to Visuospatial Information Processing During Football Scenes: An EEG Mapping Study. Front Psychol 2019; 10:890. [PMID: 31080423 PMCID: PMC6497783 DOI: 10.3389/fpsyg.2019.00890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/03/2019] [Indexed: 01/28/2023] Open
Abstract
This study tested the hypothesis of cortical neural efficiency (i.e., reduced brain activation in experts) in the visuospatial information processing related to football (soccer) scenes in football players. Electroencephalographic data were recorded from 56 scalp electrodes in 13 football players and eight matched non-players during the observation of 70 videos with football actions lasting 2.5 s each. During these videos, the central fixation target changed color from red to blue or vice versa. The videos were watched two times. One time, the subjects were asked to estimate the distance between players during each action (FOOTBALL condition, visuospatial). Another time, they had to estimate if the fixation target was colored for a longer time in red or blue color (CONTROL condition, non-visuospatial). The order of the two conditions was pseudo-randomized across the subjects. Cortical activity was estimated as the percent reduction in power of scalp alpha rhythms (about 8-12 Hz) during the videos compared with a pre-video baseline (event-related desynchronization, ERD). In the FOOTBALL condition, a prominent and bilateral parietal alpha ERD (i.e., cortical activation) was greater in the football players than non-players (p < 0.05) in contrast with the neural efficiency hypothesis. In the CONTROL condition, no significant alpha ERD difference was observed. No difference in behavioral response time and accuracy was found between the two groups in any condition. In conclusion, a prominent parietal cortical activity related to visuospatial processes during football scenes was greater in the football players over controls in contrast with the neural efficiency hypothesis.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Mauro Franzetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Adelaide Josy De Matti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | | | - Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | | | - Marco Rizzo
- Oasi Research Institute – IRCCS, Troina, Italy
| | | | | | - Cristina Limatola
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino, Italy
| |
Collapse
|
22
|
Goshvarpour A, Goshvarpour A. EEG spectral powers and source localization in depressing, sad, and fun music videos focusing on gender differences. Cogn Neurodyn 2018; 13:161-173. [PMID: 30956720 DOI: 10.1007/s11571-018-9516-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
Previously, gender-specific affective responses have been shown using neurophysiological signals. The present study intended to compare the differences in electroencephalographic (EEG) power spectra and EEG brain sources between men and women during the exposure of affective music video stimuli. The multi-channel EEG signals of 15 males and 15 females available in the database for emotion analysis using physiological signals were studied, while subjects were watching sad, depressing, and fun music videos. Seven EEG frequency bands were computed using average Fourier cross-spectral matrices. Then, standardized low-resolution electromagnetic tomography (sLORETA) was used to localize regions involved specifically in these emotional responses. To evaluate gender differences, independent sample t test was calculated for the sLORETA source powers. Our results showed that (1) the mean EEG power for all frequency bands in the women's group was significantly higher than that of the men's group; (2) spatial distribution differentiation between men and women was detected in all EEG frequency bands. (3) This difference has been related to the emotional stimuli, which was more evident for negative emotions. Taken together, our results showed that men and women recruited dissimilar brain networks for processing sad, depressing, and fun audio-visual stimuli.
Collapse
Affiliation(s)
- Atefeh Goshvarpour
- 1Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Ateke Goshvarpour
- 2Department of Biomedical Engineering, Imam Reza International University, Mashhad, Razavi Khorasan Iran
| |
Collapse
|
23
|
Teng C, Cheng Y, Wang C, Ren Y, Xu W, Xu J. Aging-related changes of EEG synchronization during a visual working memory task. Cogn Neurodyn 2018; 12:561-568. [PMID: 30483364 DOI: 10.1007/s11571-018-9500-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/12/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
Differences of EEG synchronization between normal old and young people during a working memory (WM) task were investigated. The synchronization likelihood (SL) is a novel method to assessed synchronization in multivariate time series for non-stationary systems. To evaluate this method to study the mechanisms of WM, we calculated the SL values in brain electrical activity for both resting state and task state. EEG signals were recorded from 14 young adults and 12 old adults during two different states, respectively. SL was used to measure EEG synchronization between 19 electrodes in delta, theta, alpha1, alpha2 and beta frequency bands. Bad task performance and significantly decreased EEG synchronization were found in old group compared to young group in alpha1, alpha2 and beta frequency bands during the WM task. Moreover, significantly decreased EEG synchronization in beta band in the elder was also detected during the resting state. The findings suggested that reduced EEG synchronization may be one of causes for WM capacity decline along with healthy aging.
Collapse
Affiliation(s)
- Chaolin Teng
- 1The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi Province People's Republic of China
| | - Yao Cheng
- 1The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi Province People's Republic of China
| | - Chao Wang
- 1The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi Province People's Republic of China
| | - Yijing Ren
- 2Beijing University of Posts and Telecommunications, Beijing, China
| | - Weiyong Xu
- 1The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi Province People's Republic of China.,3Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Jin Xu
- 1The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi Province People's Republic of China
| |
Collapse
|