1
|
Igamberdiev AU. Reflexive neural circuits and the origin of language and music codes. Biosystems 2024; 246:105346. [PMID: 39349135 DOI: 10.1016/j.biosystems.2024.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Conscious activity is grounded in the reflexive self-awareness in sense perception, through which the codes signifying sensual perceptive events operate and constrain human behavior. These codes grow via the creative generation of hypertextual statements. We apply the model of Vladimir Lefebvre (Lefebvre, V.A., 1987, J. Soc. Biol. Struct. 10, 129-175) to reveal the underlying structures on which the perception and creative development of language and music codes are based. According to this model, the reflexive structure of conscious subject is grounded in three thermodynamic cycles united by the control of the basic functional cycle by the second one, and resulting in the internal action that it turn is perceived by the third cycle evaluating this action. In this arrangement, the generative language structures are formed and the frequencies of sounds that form musical phrases and patterns are selected. We discuss the participation of certain neural brain structures and the establishment of reflexive neural circuits in the ad hoc transformation of perceptive signals, and show the similarities between the processes of perception and of biological self-maintenance and morphogenesis. We trace the peculiarities of the temporal encoding of emotions in music and musical creativity, as well as the principles of sharing musical information between the performing and the perceiving individuals.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
2
|
Rhodes LJ, Borghetti L, Morris MB. Multiscale entropy in a 10-minute vigilance task. Int J Psychophysiol 2024; 198:112323. [PMID: 38428744 DOI: 10.1016/j.ijpsycho.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Research has shown multiscale entropy, brain signal behavior across time scales, to reliably increase at lower time scales with time-on-task fatigue. However, multiscale entropy has not been examined in short vigilance tasks (i.e., ≤ 10 min). Addressing this gap, we examine multiscale entropy during a 10-minute Psychomotor Vigilance Test (PVT). Thirty-four participants provided neural data while completing the PVT. We compared the first 2 min of the task to the 7th and 8th minutes to avoid end-spurt effects. Results suggested increased multiscale entropy at lower time scales later compared to earlier in the task, suggesting multiscale entropy is a strong marker of time-on-task fatigue onset during short vigils. Separate analyses for Fast and Slow performers reveal differential entropy patterns, particularly over visual cortices. Here, observed brain-behavior linkage between entropy and reaction time for slow performers suggests that entropy assays over sensory cortices might have predictive value for fatigue onset or shifts from on- to off-task states.
Collapse
Affiliation(s)
- L Jack Rhodes
- Ball Aerospace at Wright-Patterson Air Force Base, OH, United States of America.
| | - Lorraine Borghetti
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, United States of America
| | - Megan B Morris
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, United States of America
| |
Collapse
|
3
|
Balasundaram H. Impact of thermodynamical rotational flow of cerebrospinal fluid in the presence of elasticity. BMC Res Notes 2023; 16:355. [PMID: 38031131 PMCID: PMC10688068 DOI: 10.1186/s13104-023-06602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVE To explore the experimental justification of cerebrospinal fluid (CSF) amplitude and elastic fluctuations of ventricles, we extend our previous computational study to models with rotational flow and suitable boundary conditions. In the present study, we include an elastic effect due to the interaction with the thermal solutal model which accounts for CSF motion which flows rotationally due to hydrocephalus flows within the spinal canal. METHODS Using an analytical pertubation method, we have attempted a new model to justify CSF flow movement using the influences of wall temperature difference. RESULTS This paper presents results from a computational study of the biomechanics of hydrocephalus, with special emphasis on a reassessment of the parenchymal elastic module. CSF amplitude in hydrocephalus patients is 2.7 times greater than that of normal subjects. CONCLUSIONS This finding suggests a non-linear mechanical system to present the hydrocephalic condition using a numerical model. The results can be useful to relieve the complexities in the mechanism of hydrocephalus and can shed light to support clinically for a convincing simulation.
Collapse
Affiliation(s)
- Hemalatha Balasundaram
- Department of Mathematics, Rajalakshmi Institute of Technology, Chembarambakkam, Chennai, Tamil Nadu, 600124, India.
| |
Collapse
|
4
|
Samima S, Sarma M. Mental workload level assessment based on compounded hysteresis effect. Cogn Neurodyn 2023; 17:357-372. [PMID: 37007201 PMCID: PMC10050634 DOI: 10.1007/s11571-022-09830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022] Open
Abstract
In the domain of neuroergonomics, cognitive workload estimation has taken a significant concern among the researchers. This is because the knowledge gathered from its estimation is useful for distributing tasks among the operators, understanding human capability and intervening operators at times of havoc. Brain signals give a promising prospective for understanding cognitive workload. For this, electroencephalography (EEG) is by far the most efficient modality in interpreting the covert information arising in the brain. The present work explores the feasibility of EEG rhythms for monitoring continuous change occurring in a person's cognitive workload. This continuous monitoring is achieved by graphicallyinterpreting the cumulative effect of changes in EEG rhythms observed in the current instance and the former instance based on the hysteresis effect. In this work, classification is done to predict the data class label using an artificial neural network (ANN) architecture. The proposed model gives a classification accuracy of 98.66%.
Collapse
Affiliation(s)
- Shabnam Samima
- Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal India
| | - Monalisa Sarma
- Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal India
| |
Collapse
|
5
|
Déli É, Peters JF, Kisvárday Z. How the Brain Becomes the Mind: Can Thermodynamics Explain the Emergence and Nature of Emotions? ENTROPY (BASEL, SWITZERLAND) 2022; 24:1498. [PMID: 37420518 PMCID: PMC9601684 DOI: 10.3390/e24101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 07/09/2023]
Abstract
The neural systems' electric activities are fundamental for the phenomenology of consciousness. Sensory perception triggers an information/energy exchange with the environment, but the brain's recurrent activations maintain a resting state with constant parameters. Therefore, perception forms a closed thermodynamic cycle. In physics, the Carnot engine is an ideal thermodynamic cycle that converts heat from a hot reservoir into work, or inversely, requires work to transfer heat from a low- to a high-temperature reservoir (the reversed Carnot cycle). We analyze the high entropy brain by the endothermic reversed Carnot cycle. Its irreversible activations provide temporal directionality for future orientation. A flexible transfer between neural states inspires openness and creativity. In contrast, the low entropy resting state parallels reversible activations, which impose past focus via repetitive thinking, remorse, and regret. The exothermic Carnot cycle degrades mental energy. Therefore, the brain's energy/information balance formulates motivation, sensed as position or negative emotions. Our work provides an analytical perspective of positive and negative emotions and spontaneous behavior from the free energy principle. Furthermore, electrical activities, thoughts, and beliefs lend themselves to a temporal organization, an orthogonal condition to physical systems. Here, we suggest that an experimental validation of the thermodynamic origin of emotions might inspire better treatment options for mental diseases.
Collapse
Affiliation(s)
- Éva Déli
- Department of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary
| | - James F. Peters
- Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Mathematics, Adiyaman University, Adiyaman 02040, Turkey
| | - Zoltán Kisvárday
- Department of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary
- ELKH Neuroscience Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Zhang T, Zhang X, Lu Z, Zhang Y, Jiang Z, Zhang Y. Feasibility study of personalized speed adaptation method based on mental state for teleoperated robots. Front Neurosci 2022; 16:976437. [PMID: 36117631 PMCID: PMC9479697 DOI: 10.3389/fnins.2022.976437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The teleoperated robotic system can support humans to complete tasks in high-risk, high-precision and difficult special environments. Because this kind of special working environment is easy to cause stress, high mental workload, fatigue and other mental states of the operator, which will reduce the quality of operation and even cause safety accidents, so the mental state of the people in this system has received extensive attention. However, the existence of individual differences and mental state diversity is often ignored, so that most of the existing adjustment strategy is out of a match between mental state and adaptive decision, which cannot effectively improve operational quality and safety. Therefore, a personalized speed adaptation (PSA) method based on policy gradient reinforcement learning was proposed in this paper. It can use electroencephalogram and electro-oculogram to accurately perceive the operator’s mental state, and adjust the speed of the robot individually according to the mental state of different operators, in order to perform teleoperation tasks efficiently and safely. The experimental results showed that the PSA method learns the mapping between the mental state and the robot’s speed regulation action by means of rewards and punishments, and can adjust the speed of the robot individually according to the mental state of different operators, thereby improving the operating quality of the system. And the feasibility and superiority of this method were proved. It is worth noting that the PSA method was validated on 6 real subjects rather than a simulation model. To the best of our knowledge, the PSA method is the first implementation of online reinforcement learning control of teleoperated robots involving human subjects.
Collapse
Affiliation(s)
- Teng Zhang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Zhang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Intelligent Robot, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xiaodong Zhang,
| | - Zhufeng Lu
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yi Zhang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhiming Jiang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yingjie Zhang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Rastmanesh R, Deli E, Roy S, Vogt B. Editorial: Decision making from the perspective of neural thermodynamics and molecular information processing. Front Neurosci 2022; 16:910996. [PMID: 36051641 PMCID: PMC9426355 DOI: 10.3389/fnins.2022.910996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Reza Rastmanesh
- American Physical Society, College Park, MD, United States
- *Correspondence: Reza Rastmanesh
| | - Eva Deli
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Sisir Roy
- National Institute of Advanced Studies, Bangalore, India
| | - Brent Vogt
- Department of Anatomy and Neurobiology, Cingulum Neurosciences Institute, Manlius, NY, United States
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
A new patterns of self-organization activity of brain: Neural energy coding. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Frankle L. Entropy, Amnesia, and Abnormal Déjà Experiences. Front Psychol 2022; 13:794683. [PMID: 35967717 PMCID: PMC9364811 DOI: 10.3389/fpsyg.2022.794683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Previous research has contrasted fleeting erroneous experiences of familiarity with equally convincing, and often more stubborn erroneous experiences of remembering. While a subset of the former category may present as nonpathological “déjà vu,” the latter, termed “déjà vécu” can categorize a delusion-like confabulatory phenomenon first described in elderly dementia patients. Leading explanations for this experience include the dual process view, in which erroneous familiarity and erroneous recollection are elicited by inappropriate activation of the parahippocampal cortex and the hippocampus, respectively, and the more popular encoding-as-retrieval explanation in which normal memory encoding processes are falsely flagged and interpreted as memory retrieval. This paper presents a novel understanding of this recollective confabulation that builds on the encoding-as-retrieval hypothesis but more adequately accounts for the co-occurrence of persistent déjà vécu with both perceptual novelty and memory impairment, the latter of which occurs not only in progressive dementia but also in transient epileptic amnesia (TEA) and psychosis. It makes use of the growing interdisciplinary understanding of the fluidity of time and posits that the functioning of memory and the perception of novelty, long known to influence the subjective experience of time, may have a more fundamental effect on the flow of time.
Collapse
|
10
|
O’Neill J, Schoth A. The Mental Maxwell Relations: A Thermodynamic Allegory for Higher Brain Functions. Front Neurosci 2022; 16:827888. [PMID: 35295094 PMCID: PMC8919724 DOI: 10.3389/fnins.2022.827888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
The theoretical framework of classical thermodynamics unifies vastly diverse natural phenomena and captures once-elusive effects in concrete terms. Neuroscience confronts equally varied, equally ineffable phenomena in the mental realm, but has yet to unite or to apprehend them rigorously, perhaps due to an insufficient theoretical framework. The terms for mental phenomena, the mental variables, typically used in neuroscience are overly numerous and imprecise. Unlike in thermodynamics or other branches of physics, in neuroscience, there are no core mental variables from which all others formally derive and it is unclear which variables are distinct and which overlap. This may be due to the nature of mental variables themselves. Unlike the variables of physics, perhaps they cannot be interpreted as composites of a small number of axioms. However, it is well worth exploring if they can, as that would allow more parsimonious theories of higher brain function. Here we offer a theoretical exercise in the spirit of the National Institutes of Health Research Domain Criteria (NIH RDoC) Initiative and the Cognitive Atlas Project, which aim to remedy this state of affairs. Imitating classical thermodynamics, we construct a formal framework for mental variables, an extended analogy - an allegory - between mental and thermodynamic quantities. Starting with mental correlates of the physical indefinables length, time, mass or force, and charge, we pursue the allegory up to mental versions of the thermodynamic Maxwell Relations. The Maxwell Relations interrelate the thermodynamic quantities volume, pressure, temperature, and entropy and were chosen since they are easy to derive, yet capable of generating nontrivial, nonobvious predictions. Our "Mental Maxwell Relations" interlink the mental variables consciousness, salience, arousal, and distraction and make nontrivial, nonobvious statements about mental phenomena. The mental system thus constructed is internally consistent, in harmony with introspection, and respects the RDoC criteria of employing only psychologically valid constructs with some evidence of a brain basis. We briefly apply these concepts to the problem of decision-making and sketch how some of them might be tested empirically.
Collapse
Affiliation(s)
- Joseph O’Neill
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Andreas Schoth
- IMTEK Department for Process Technology, Institute of Microsystem Technology, Universität Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Deli E, Peters J, Kisvárday Z. The thermodynamics of cognition: A mathematical treatment. Comput Struct Biotechnol J 2021; 19:784-793. [PMID: 33552449 PMCID: PMC7843413 DOI: 10.1016/j.csbj.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 10/26/2022] Open
Abstract
There is a general expectation that the laws of classical physics must apply to biology, particularly the neural system. The evoked cycle represents the brain's energy/information exchange with the physical environment through stimulus. Therefore, the thermodynamics of emotions might elucidate the neurological origin of intellectual evolution, and explain the psychological and health consequences of positive and negative emotional states based on their energy profiles. We utilized the Carnot cycle and Landauer's principle to analyze the energetic consequences of the brain's resting and evoked states during and after various cognitive states. Namely, positive emotional states can be represented by the reversed Carnot cycle, whereas negative emotional reactions trigger the Carnot cycle. The two conditions have contrasting energetic and entropic aftereffects with consequences for mental energy. The mathematics of the Carnot and reversed Carnot cycles, which can explain recent findings in human psychology, might be constructive in the scientific endeavor in turning psychology into hard science.
Collapse
Affiliation(s)
- Eva Deli
- Institute for Consciousness Studies (ICS), Benczur ter 9, Nyiregyhaza 4400, Hungary
| | - James Peters
- Department of Electrical and Computer Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada
- Department of Mathematics Faculty of Arts and Sciences, Adiyaman University, Adiyaman, Turkey
| | - Zoltán Kisvárday
- MTA-Debreceni Egyetem, Neuroscience Research Group, 4032 Debrecen, Nagyerdei krt.98., Hungary
| |
Collapse
|