1
|
Bekhelifi O, Berrached NE, Bendahmane A. Effects of the presentation order of stimulations in sequential ERP/SSVEP Hybrid Brain-Computer Interface. Biomed Phys Eng Express 2024; 10:035009. [PMID: 38430561 DOI: 10.1088/2057-1976/ad2f58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/01/2024] [Indexed: 03/04/2024]
Abstract
Hybrid Brain-Computer Interface (hBCI) combines multiple neurophysiology modalities or paradigms to speed up the output of a single command or produce multiple ones simultaneously. Concurrent hBCIs that employ endogenous and exogenous paradigms are limited by the reduced set of possible commands. Conversely, the fusion of different exogenous visual evoked potentials demonstrated impressive performances; however, they suffer from limited portability. Yet, sequential hBCIs did not receive much attention mainly due to slower transfer rate and user fatigue during prolonged BCI use (Lorenz et al 2014 J. Neural Eng. 11 035007). Moreover, the crucial factors for optimizing the hybridization remain under-explored. In this paper, we test the feasibility of sequential Event Related-Potentials (ERP) and Steady-State Visual Evoked Potentials (SSVEP) hBCI and study the effect of stimulus order presentation between ERP-SSVEP and SSVEP-ERP for the control of directions and speed of powered wheelchairs or mobile robots with 15 commands. Exploiting the fast single trial face stimulus ERP, SSVEP and modern efficient convolutional neural networks, the configuration with SSVEP presented at first achieved significantly (p < 0.05) higher average accuracy rate with 76.39% ( ± 7.30 standard deviation) hybrid command accuracy and an average Information Transfer Rate (ITR) of 25.05 ( ± 5.32 standard deviation) bits per minute (bpm). The results of the study demonstrate the suitability of a sequential SSVEP-ERP hBCI with challenging dry electroencephalography (EEG) electrodes and low-compute capacity. Although it presents lower ITR than concurrent hBCIs, our system presents an alternative in small screen settings when the conditions for concurrent hBCIs are difficult to satisfy.
Collapse
Affiliation(s)
- Okba Bekhelifi
- Intelligent Systems Research Laboratory (LARESI), Electronics Department, University of Sciences and Technology of Oran-Mohamed Boudiaf (USTO-MB), El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
| | - Nasr-Eddine Berrached
- Intelligent Systems Research Laboratory (LARESI), Electronics Department, University of Sciences and Technology of Oran-Mohamed Boudiaf (USTO-MB), El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
| | - Amine Bendahmane
- Signal-Image-Parole (SIMPA) Laboratory, Computer Science Department, University of Sciences and Technology of Oran-Mohamed Boudiaf (USTO-MB), El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
| |
Collapse
|
2
|
Liang W, Jin J, Xu R, Wang X, Cichocki A. Variance characteristic preserving common spatial pattern for motor imagery BCI. Front Hum Neurosci 2023; 17:1243750. [PMID: 38021234 PMCID: PMC10666778 DOI: 10.3389/fnhum.2023.1243750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The common spatial patterns (CSP) algorithm is the most popular technique for extracting electroencephalogram (EEG) features in motor imagery based brain-computer interface (BCI) systems. CSP algorithm embeds the dimensionality of multichannel EEG data to extract features of motor imagery tasks. Most previous studies focused on the optimization of the time domain and the spectrum domain of EEG signal to improve the effectiveness of CSP, whereas ignoring the constraint on the projected feature space. Methods This study proposed a variance characteristic preserving CSP (VPCSP) that is modified by a regularization item based on graph theory. Specifically, we calculated the loss of abnormalities of the projected data while preserving the variance characteristic locally. Then the loss could be rewritten as a matrix with the introduction of the Laplace matrix, which turned it into a generalized eigenvalue problem equivalent to CSP. This study evaluated the proposed method on two public EEG datasets from the BCI competition. The modified method could extract robust and distinguishable features that provided higher classification performance. Experimental results showed that the proposed regularization improved the effectiveness of CSP significantly and achieved superior performance compared with reported modified CSP algorithms significantly. Results The classification accuracy of the proposed method achieved 87.88 %, 90.07 %, and 76.06 % on public dataset IV part I, III part IVa and the self-collected dataset, respectively. Comparative experiments are conducted on two public datasets and one self-collected dataset. Results showed that the proposed method outperformed the reported algorithm. Discussion The proposed method can extract robust features to increase the performance of BCI systems. And the proposal still has expandability. These results show that our proposal is a promising candidate for the performance improvement of MI-BCI.
Collapse
Affiliation(s)
- Wei Liang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Jing Jin
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
- Shenzhen Research Institute of East China University of Science and Technology, Shenzhen, China
| | - Ren Xu
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Xingyu Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Andrzej Cichocki
- Systems Research Institute of Polish Academy of Science, Warsaw, Poland
- Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
3
|
Liang W, Jin J, Daly I, Sun H, Wang X, Cichocki A. Novel channel selection model based on graph convolutional network for motor imagery. Cogn Neurodyn 2023; 17:1283-1296. [PMID: 37786654 PMCID: PMC10542066 DOI: 10.1007/s11571-022-09892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
Multi-channel electroencephalography (EEG) is used to capture features associated with motor imagery (MI) based brain-computer interface (BCI) with a wide spatial coverage across the scalp. However, redundant EEG channels are not conducive to improving BCI performance. Therefore, removing irrelevant channels can help improve the classification performance of BCI systems. We present a new method for identifying relevant EEG channels. Our method is based on the assumption that useful channels share related information and that this can be measured by inter-channel connectivity. Specifically, we treat all candidate EEG channels as a graph and define channel selection as the problem of node classification on a graph. Then we design a graph convolutional neural network (GCN) model for channels classification. Channels are selected based on the outputs of our GCN model. We evaluate our proposed GCN-based channel selection (GCN-CS) method on three MI datasets. On three datasets, GCN-CS achieves performance improvements by reducing the number of channels. Specifically, we achieve classification accuracies of 79.76% on Dataset 1, 89.14% on Dataset 2 and 87.96% on Dataset 3, which outperform competing methods significantly.
Collapse
Affiliation(s)
- Wei Liang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
| | - Jing Jin
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
- Shenzhen Research Institute of East China University of Technology, Shenzhen, 518063 China
| | - Ian Daly
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Hao Sun
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
| | - Xingyu Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
| | - Andrzej Cichocki
- Skolkovo Institute of Science and Technology, Moscow, Russia 143026
- Systems Research Institute of Polish Academy of Science, Warsaw, Poland
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
4
|
Fernández-Rodríguez Á, Ron-Angevin R, Velasco-Álvarez F, Diaz-Pineda J, Letouzé T, André JM. Evaluation of Single-Trial Classification to Control a Visual ERP-BCI under a Situation Awareness Scenario. Brain Sci 2023; 13:886. [PMID: 37371365 DOI: 10.3390/brainsci13060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
An event-related potential (ERP)-based brain-computer interface (BCI) can be used to monitor a user's cognitive state during a surveillance task in a situational awareness context. The present study explores the use of an ERP-BCI for detecting new planes in an air traffic controller (ATC). Two experiments were conducted to evaluate the impact of different visual factors on target detection. Experiment 1 validated the type of stimulus used and the effect of not knowing its appearance location in an ERP-BCI scenario. Experiment 2 evaluated the effect of the size of the target stimulus appearance area and the stimulus salience in an ATC scenario. The main results demonstrate that the size of the plane appearance area had a negative impact on the detection performance and on the amplitude of the P300 component. Future studies should address this issue to improve the performance of an ATC in stimulus detection using an ERP-BCI.
Collapse
Affiliation(s)
- Álvaro Fernández-Rodríguez
- Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Telecomunicación de la Universidad de Málaga (TELMA), Universidad de Málaga, 29071 Malaga, Spain
| | - Ricardo Ron-Angevin
- Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Telecomunicación de la Universidad de Málaga (TELMA), Universidad de Málaga, 29071 Malaga, Spain
| | - Francisco Velasco-Álvarez
- Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Telecomunicación de la Universidad de Málaga (TELMA), Universidad de Málaga, 29071 Malaga, Spain
| | | | - Théodore Letouzé
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France
| | - Jean-Marc André
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France
| |
Collapse
|
5
|
Jia FQ, Luo FL, Xiong YH, Cheng LL, Dang ZQ, Liu JH. Forensic Study on Objective Evaluation of Visual Acuity of Ametropia with the Event-related Potential P3. Curr Med Sci 2023:10.1007/s11596-023-2735-4. [PMID: 37115402 DOI: 10.1007/s11596-023-2735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 04/29/2023]
Abstract
OBJECTIVE In this study, we aimed to assess the characteristics of the P3 component from an event-related potential (ERP) that was induced by visual acuity (VA) processing. Furthermore, we sought to provide electrophysiological evidence for the objective evaluation of VA. METHODS We recruited 32 participants with myopia-related ametropia. They reported no other ocular diseases and had an uncorrected VA of 4.0 in both eyes. We used the block letter "E" at different visual angles and orientations as the graphic stimuli. The oddball paradigm, consisting of 4 modules, was used for ERP analysis. The standard stimuli of each module were identical, with a visual angle of 1°15'. The visual angles of the target stimuli were 1°15', 55', 24', and 15'. The VA test was performed on each eye separately for all participants, and all characteristics of the P3 component were analyzed. RESULTS There was no significant difference in the P3 peak letencies between the target stimulation angle 1°15' group and the 55' group, or between the target stimulation angle 24' group and the 15' group. There was a significant difference in the P3 peak letencies between the target stimulation angle 1°15' group and the 24' group as well as the 15' group. There was a significant difference in the P3 peak letencies between the target stimulation angle 55' group and the 24' group as well as the 15' group. No significant differences were observed in the P3 amplitude between modules. CONCLUSION In the oddball paradigm, P3 elicitation indicated a cognitive response to the target stimuli. These data showed that the characteristics of P3 can be used as an objective evaluation of VA.
Collapse
Affiliation(s)
- Fu-Quan Jia
- Department of Forensic Medicine, Inner Mongolia Medical University, Hohhot, 010059, China
| | - Fang-Liang Luo
- Judicial Authentication Research Institute, Liaoning University, Shenyang, 110036, China
| | - Yan-He Xiong
- Shanghai Love Nursing Station, Shanghai, 200030, China
| | - Long-Long Cheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Zhi-Qiang Dang
- Dian Regional Forensic Science Institute (Nei Mongol), Hohhot, 010041, China
| | - Ji-Hui Liu
- Judicial Authentication Research Institute, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
6
|
Korkmaz OE, Aydemir O, Oral EA, Ozbek IY. A novel probabilistic and 3D column P300 stimulus presentation paradigm for EEG-based spelling systems. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
7
|
Ron-Angevin R, Fernández-Rodríguez Á, Dupont C, Maigrot J, Meunier J, Tavard H, Lespinet-Najib V, André JM. Comparison of Two Paradigms Based on Stimulation with Images in a Spelling Brain-Computer Interface. SENSORS (BASEL, SWITZERLAND) 2023; 23:1304. [PMID: 36772343 PMCID: PMC9920351 DOI: 10.3390/s23031304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
A P300-based speller can be used to control a home automation system via brain activity. Evaluation of the visual stimuli used in a P300-based speller is a common topic in the field of brain-computer interfaces (BCIs). The aim of the present work is to compare, using the usability approach, two types of stimuli that have provided high performance in previous studies. Twelve participants controlled a BCI under two conditions, which varied in terms of the type of stimulus employed: a red famous face surrounded by a white rectangle (RFW) and a range of neutral pictures (NPs). The usability approach included variables related to effectiveness (accuracy and information transfer rate), efficiency (stress and fatigue), and satisfaction (pleasantness and System Usability Scale and Affect Grid questionnaires). The results indicated that there were no significant differences in effectiveness, but the system that used NPs was reported as significantly more pleasant. Hence, since satisfaction variables should also be considered in systems that potential users are likely to employ regularly, the use of different NPs may be a more suitable option than the use of a single RFW for the development of a home automation system based on a visual P300-based speller.
Collapse
Affiliation(s)
- Ricardo Ron-Angevin
- Departamento de Tecnología Electrónica, Universidad de Málaga, 29071 Malaga, Spain
| | | | | | | | | | | | | | - Jean-Marc André
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France
| |
Collapse
|
8
|
Pan J, Chen X, Ban N, He J, Chen J, Huang H. Advances in P300 brain-computer interface spellers: toward paradigm design and performance evaluation. Front Hum Neurosci 2022; 16:1077717. [PMID: 36618996 PMCID: PMC9810759 DOI: 10.3389/fnhum.2022.1077717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
A brain-computer interface (BCI) is a non-muscular communication technology that provides an information exchange channel for our brains and external devices. During the decades, BCI has made noticeable progress and has been applied in many fields. One of the most traditional BCI applications is the BCI speller. This article primarily discusses the progress of research into P300 BCI spellers and reviews four types of P300 spellers: single-modal P300 spellers, P300 spellers based on multiple brain patterns, P300 spellers with multisensory stimuli, and P300 spellers with multiple intelligent techniques. For each type of P300 speller, we further review several representative P300 spellers, including their design principles, paradigms, algorithms, experimental performance, and corresponding advantages. We particularly emphasized the paradigm design ideas, including the overall layout, individual symbol shapes and stimulus forms. Furthermore, several important issues and research guidance for the P300 speller were identified. We hope that this review can assist researchers in learning the new ideas of these novel P300 spellers and enhance their practical application capability.
Collapse
Affiliation(s)
- Jiahui Pan
- School of Software, South China Normal University, Guangzhou, China
| | - XueNing Chen
- School of Software, South China Normal University, Guangzhou, China
| | - Nianming Ban
- School of Software, South China Normal University, Guangzhou, China
| | - JiaShao He
- School of Software, South China Normal University, Guangzhou, China
| | - Jiayi Chen
- School of Software, South China Normal University, Guangzhou, China
| | - Haiyun Huang
- School of Software, South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Pitt KM, Mansouri A, Wang Y, Zosky J. Toward P300-brain-computer interface access to contextual scene displays for AAC: An initial exploration of context and asymmetry processing in healthy adults. Neuropsychologia 2022; 173:108289. [PMID: 35690117 DOI: 10.1016/j.neuropsychologia.2022.108289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
Brain-computer interfaces for augmentative and alternative communication (BCI-AAC) may help overcome physical barriers to AAC access. Traditionally, visually based P300-BCI-AAC displays utilize a symmetrical grid layout. Contextual scene displays are composed of context-rich images (e.g., photographs) and may support AAC success. However, contextual scene displays contrast starkly with the standard P300-grid approach. Understanding the neurological processes from which BCI-AAC devices function is crucial to human-centered computing for BCI-AAC. Therefore, the aim of this multidisciplinary investigation is to provide an initial exploration of contextual scene use for BCI-AAC. METHODS Participants completed three experimental conditions to evaluate the effects of item arrangement asymmetry and context on P300-based BCI-AAC signals and offline BCI-AAC accuracy, including 1) the full contextual scene condition, 2) asymmetrical item arraignment without context condition and 3) the grid condition. Following each condition, participants completed task-evaluation ratings (e.g., engagement). Offline BCI-AAC accuracy for each condition was evaluated using cross-validation. RESULTS Display asymmetry significantly decreased P300 latency in the centro-parietal cluster. P300 amplitudes in the frontal cluster were decreased, though nonsignificantly. Display context significantly increased N170 amplitudes in the occipital cluster, and N400 amplitudes in the centro-parietal and occipital clusters. Scenes were rated as more visually appealing and engaging, and offline BCI-AAC performance for the scene condition was not statistically different from the grid standard. CONCLUSION Findings support the feasibility of incorporating scene-based displays for P300-BCI-AAC development to help provide communication for individuals with minimal or emerging language and literacy skills.
Collapse
Affiliation(s)
- Kevin M Pitt
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Amirsalar Mansouri
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yingying Wang
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Joshua Zosky
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
10
|
Liu Y, Xu X, Zhou Y, Xu J, Dong X, Li X, Yin S, Wen D. Coupling feature extraction method of resting state EEG Signals from amnestic mild cognitive impairment with type 2 diabetes mellitus based on weight permutation conditional mutual information. Cogn Neurodyn 2021; 15:987-997. [PMID: 34790266 PMCID: PMC8572246 DOI: 10.1007/s11571-021-09682-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/28/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
This study aimed to find a good coupling feature extraction method to effectively analyze resting state EEG signals (rsEEG) of amnestic mild cognitive impairment(aMCI) with type 2 diabetes mellitus(T2DM) and normal control (NC) with T2DM. A method of EEG signal coupling feature extraction based on weight permutation conditional mutual information (WPCMI) was proposed in this research. With the WPCMI method, coupling feature strength of two time series in Alpha1, Alpha2, Beta1, Beta2 and Gamma bands for aMCI with T2DM and NC with T2DM could be extracted respectively. Then selected three frequency bands coupling feature matrix with the help of multi-spectral image transformation method to map it as spectral image characteristics. And finally classified these characteristics through the convolution neural network method(CNN). For aMCI with T2DM and NC with T2DM, the highest classification accuracy of 96%, 95%, 95% could be achieved respectively in the combination of three frequency bands (Alpha1, Alpha2, Gamma), (Beta1, Beta2 and Gamma) and (Alpha2, Beta1, Beta2). This WPCMI method highlighted the coupling dynamic characteristics of EEG signals, and its classification performance was better than all previous methods in aMCI with T2DM diagnosis field. WPCMI method could be used as an effective biomarker to distinguish EEG signals of aMCI with T2DM and NC with T2DM. The coupling feature extraction method used in this paper provided a new perspective for the EEG analysis of aMCI with T2DM.
Collapse
Affiliation(s)
- Yijun Liu
- School of Science, Yanshan University, Qinhuangdao, China
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaodong Xu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Yanhong Zhou
- School of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jian Xu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Xianling Dong
- Department of Biomedical Engineering, Chengde Medical University, Chengde, China
| | - Xiaoli Li
- The National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Shimin Yin
- Department of Neurology, The Rocket Force Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Dong Wen
- Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|