1
|
Wang S, Wang Y, Li Z, Zhao Y, Zhang Y, Varray F. Investigating the three-dimensional myocardial micro-architecture in the laminar structure using X-ray phase-contrast microtomography. Sci Rep 2024; 14:14329. [PMID: 38907041 PMCID: PMC11192766 DOI: 10.1038/s41598-024-65371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024] Open
Abstract
A comprehensive grasp of the myocardial micro-architecture is essential for understanding diverse heart functions. This study aimed to investigate three-dimensional (3D) cardiomyocyte arrangement in the laminar structure using X-ray phase-contrast microtomography. Using the ID-19 beamline at the European Synchrotron Radiation Facility, we imaged human left ventricular (LV) wall transparietal samples and reconstructed them with an isotropic voxel edge length of 3.5 μm. From the reconstructed volumes, we extracted different regions to analyze the orientation distribution of local cardiomyocyte aggregates, presenting findings in terms of helix and intrusion angles. In regions containing one sheetlet population, we observed cardiomyocyte aggregates running along the local LV wall's radial direction at the border of sheetlets, branching and merging into a complex network around connecting points of different sheetlets, and bending to accommodate vessel passages. In regions with two sheetlet populations, the helix angle of local cardiomyocyte aggregates experiences a nonmonotonic change, and some cardiomyocyte aggregates run along the local radial direction. X-ray phase-contrast microtomography is a valuable technique for investigating the 3D local myocardial architecture at microscopic level. The arrangement of local cardiomyocyte aggregates in the LV wall proves to be both regional and complex, intricately linked to the local laminar structure.
Collapse
Affiliation(s)
- Shunli Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology (HIT), Harbin, 150080, China.
| | - Yan Wang
- Department of Medical Engineering, Strategic Support Force Xingcheng Special Duty Sanatorium, Xingcheng, 125100, China
| | - Zhaorui Li
- School of Instrumentation Science and Engineering, Harbin Institute of Technology (HIT), Harbin, 150080, China
| | - Yifei Zhao
- System Engineering Research Department, Beijing Institute of Aerospace Automatic Controls, Beijing, 100070, China
| | - Ying Zhang
- System Engineering Research Department, Beijing Institute of Aerospace Automatic Controls, Beijing, 100070, China
| | - François Varray
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Université Lyon 1, 69100, Villeurbanne, France
| |
Collapse
|
2
|
Brunet J, Walsh CL, Wagner WL, Bellier A, Werlein C, Marussi S, Jonigk DD, Verleden SE, Ackermann M, Lee PD, Tafforeau P. Preparation of large biological samples for high-resolution, hierarchical, synchrotron phase-contrast tomography with multimodal imaging compatibility. Nat Protoc 2023; 18:1441-1461. [PMID: 36859614 DOI: 10.1038/s41596-023-00804-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/12/2022] [Indexed: 03/03/2023]
Abstract
Imaging across different scales is essential for understanding healthy organ morphology and pathophysiological changes. The macro- and microscale three-dimensional morphology of large samples, including intact human organs, is possible with X-ray microtomography (using laboratory or synchrotron sources). Preparation of large samples for high-resolution imaging, however, is challenging due to limitations such as sample shrinkage, insufficient contrast, movement of the sample and bubble formation during mounting or scanning. Here, we describe the preparation, stabilization, dehydration and mounting of large soft-tissue samples for X-ray microtomography. We detail the protocol applied to whole human organs and hierarchical phase-contrast tomography at the European Synchrotron Radiation Facility, yet it is applicable to a range of biological samples, including complete organisms. The protocol enhances the contrast when using X-ray imaging, while preventing sample motion during the scan, even with different sample orientations. Bubbles trapped during mounting and those formed during scanning (in the case of synchrotron X-ray imaging) are mitigated by multiple degassing steps. The sample preparation is also compatible with magnetic resonance imaging, computed tomography and histological observation. The sample preparation and mounting require 24-36 d for a large organ such as a whole human brain or heart. The preparation time varies depending on the composition, size and fragility of the tissue. Use of the protocol enables scanning of intact organs with a diameter of 150 mm with a local voxel size of 1 μm. The protocol requires users with expertise in handling human or animal organs, laboratory operation and X-ray imaging.
Collapse
Affiliation(s)
- J Brunet
- Department of Mechanical Engineering, University College London, London, UK.
- European Synchrotron Radiation Facility, Grenoble, France.
| | - C L Walsh
- Department of Mechanical Engineering, University College London, London, UK.
| | - W L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), Heidelberg, Germany
| | - A Bellier
- Laboratoire d'Anatomie des Alpes Françaises (LADAF), Université Grenoble Alpes, Grenoble, France
| | - C Werlein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - S Marussi
- Department of Mechanical Engineering, University College London, London, UK
| | - D D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Lung Research Centre (DZL), Hannover, Germany
| | - S E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Antwerp, Belgium
| | - M Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London, UK.
- Research Complex at Harwell, Didcot, UK.
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| |
Collapse
|
3
|
Xian RP, Walsh CL, Verleden SE, Wagner WL, Bellier A, Marussi S, Ackermann M, Jonigk DD, Jacob J, Lee PD, Tafforeau P. A multiscale X-ray phase-contrast tomography dataset of a whole human left lung. Sci Data 2022; 9:264. [PMID: 35654864 PMCID: PMC9163096 DOI: 10.1038/s41597-022-01353-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Technological advancements in X-ray imaging using bright and coherent synchrotron sources now allows the decoupling of sample size and resolution while maintaining high sensitivity to the microstructures of soft, partially dehydrated tissues. The continuous developments in multiscale X-ray imaging resulted in hierarchical phase-contrast tomography, a comprehensive approach to address the challenge of organ-scale (up to tens of centimeters) soft tissue imaging with resolution and sensitivity down to the cellular level. Using this technique, we imaged ex vivo an entire human left lung at an isotropic voxel size of 25.08 μm along with local zooms down to 6.05-6.5 μm and 2.45-2.5 μm in voxel size. The high tissue contrast offered by the fourth-generation synchrotron source at the European Synchrotron Radiation Facility reveals the complex multiscale anatomical constitution of the human lung from the macroscopic (centimeter) down to the microscopic (micrometer) scale. The dataset provides comprehensive organ-scale 3D information of the secondary pulmonary lobules and delineates the microstructure of lung nodules with unprecedented detail.
Collapse
Affiliation(s)
- R Patrick Xian
- Department of Mechanical Engineering, University College London, London, UK.
| | - Claire L Walsh
- Department of Mechanical Engineering, University College London, London, UK
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), Heidelberg, Germany
| | - Alexandre Bellier
- Laboratoire d'Anatomie des Alpes Françaises (LADAF), Université Grenoble Alpes, Grenoble, France
| | - Sebastian Marussi
- Department of Mechanical Engineering, University College London, London, UK
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Danny D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Lung Research Centre (DZL), Hannover, Germany
| | - Joseph Jacob
- Centre for Medical Image Computing, University College London, London, UK
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London, UK.
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| |
Collapse
|
4
|
Micro-Computed Tomography Soft Tissue Biological Specimens Image Data Visualization. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Visualization of soft tissues in microCT scanning using X-rays is still a complicated matter. There is no simple tool or methodology on how to set up an optimal look-up-table while respecting the type of soft tissue. A partial solution may be the use of a contrast agent. However, this must be accompanied by an appropriate look-up-table setting that respects the relationship between the soft tissue type and the Hounsfield units. The main aim of the study is to determine experimentally derived look-up-tables and relevant values of the Hounsfield units based on the statistical correlation analysis. These values were obtained from the liver and kidneys of 24 mice in solutions of ethanol as the centroid value of the opacity look-up-table area under this graph. Samples and phantom were scanned by a Bruker SkyScan 1275 micro-CT and Phywe XR 4.0 and processed using CTvox and ORS Dragonfly software. To reconstruct the micro-CT projections, NRecon software was used. The main finding of the study is that there is a statistically significant relationship between the centroid of the area under the look-up-table curve and the number of days for which the animal sample was stored in an ethanol solution. H1 of the first hypothesis, i.e. that suggested the Spearman’s correlation coefficient does not equal zero (r1 ≠ 0) regarding this relationship was confirmed. On the other hand, there is no statistically significant relationship between the centroid of the area under the look-up-table curve and the concentration of the ethanol solution. In this case, H1 of the second hypothesis, i.e. that the Spearman’s correlation coefficient does not equal zero (r2 ≠ 0) regarding this relationship was not confirmed. Spearman’s correlation coefficients were −0.27 for the concentration and −0.87 for the number of days stored in ethanol solution in the case of the livers of 13 mice and 0.06 for the concentration and 0.94 for the number of days stored in ethanol solution in the case of kidneys of 11 mice.
Collapse
|
5
|
Wang S, Varray F, Liu W, Clarysse P, Magnin IE. Measurement of local orientation of cardiomyocyte aggregates in human left ventricle free wall samples using X-ray phase-contrast microtomography. Med Image Anal 2021; 75:102269. [PMID: 34775279 DOI: 10.1016/j.media.2021.102269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022]
Abstract
Most cardiomyocytes in the left ventricle wall are grouped in aggregates of four to five units that are quasi-parallel to each other. When one or more "cardiomyocyte aggregates" are delimited by two cleavage planes, this defines a "sheetlet" that can be considered as a "work unit" that contributes to the thickening of the wall during the cardiac cycle. In this paper, we introduce the skeleton method to measure the local three-dimensional (3D) orientation of cardiomyocyte aggregates in the sheetlets in three steps: data segmentation; extraction of the skeleton of the sheetlets; and calculation of the local orientation of the cardiomyocyte aggregates inside the sheetlets. These data include a series of virtual tissue volumes and five transmural human left ventricle free wall samples, imaged with 3D synchrotron radiation phase-contrast microtomography, and reconstructed with a 3.5×3.5×3.5μm3 voxel size. We computed the local orientation of the cardiomyocyte aggregates inside the sheetlets with a working window of 112×112×112μm3 in size. These data demonstrate that the skeleton method can provide accurate 3D measurements and reliable screening of the 3D evolution of the orientation of cardiomyocyte aggregates within the sheetlets. We showed that in regions that contain one population of quasi-parallel sheetlets, the orientation of the cardiomyocyte aggregates undergo "oscillations" along the perpendicular direction of the sheetlets. In regions that contain two populations of sheetlets with a different angular range, we demonstrate some discontinuity of the helix angle of the cardiomyocyte aggregates at the interface between the two populations.
Collapse
Affiliation(s)
- Shunli Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France.
| | - François Varray
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France.
| | - Wanyu Liu
- Sino European School of Technology, Shanghai University, Shanghai 200444, China.
| | - Patrick Clarysse
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France.
| | - Isabelle E Magnin
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France.
| |
Collapse
|
6
|
Reichardt M, Frohn J, Khan A, Alves F, Salditt T. Multi-scale X-ray phase-contrast tomography of murine heart tissue. BIOMEDICAL OPTICS EXPRESS 2020; 11:2633-2651. [PMID: 32499949 PMCID: PMC7249829 DOI: 10.1364/boe.386576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 05/07/2023]
Abstract
The spatial organization of cardiac muscle tissue exhibits a complex structure on multiple length scales, from the sarcomeric unit to the whole organ. Here we demonstrate a multi-scale three-dimensional imaging (3d) approach with three levels of magnification, based on synchrotron X-ray phase contrast tomography. Whole mouse hearts are scanned in an undulator beam, which is first focused and then broadened by divergence. Regions-of-interest of the hearts are scanned in parallel beam as well as a biopsy by magnified cone beam geometry using a X-ray waveguide optic. Data is analyzed in terms of orientation, anisotropy and the sarcomeric periodicity via a local Fourier transformation.
Collapse
Affiliation(s)
- Marius Reichardt
- Gerorg-August-University, Institute for x-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jasper Frohn
- Gerorg-August-University, Institute for x-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Amara Khan
- Max Planck Institute for Experimental Medicine, Group of Translational Molecular Imaging, German Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Max Planck Institute for Experimental Medicine, Group of Translational Molecular Imaging, German Hermann-Rein-Straße 3, 37075 Göttingen, Germany
- University Medical Center Göttingen, Clinic of Hematology and Medical Oncology, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Tim Salditt
- Gerorg-August-University, Institute for x-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Reichardt M, Töpperwien M, Khan A, Alves F, Salditt T. Fiber orientation in a whole mouse heart reconstructed by laboratory phase-contrast micro-CT. J Med Imaging (Bellingham) 2020; 7:023501. [PMID: 32206684 PMCID: PMC7055497 DOI: 10.1117/1.jmi.7.2.023501] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose: We present a phase-contrast x-ray tomography study of wild type C57BL/6 mouse hearts as a nondestructive approach to the microanatomy on the scale of the entire excised organ. Based on the partial coherence at a home-built phase-contrast μ-CT setup installed at a liquid metal jet source, we exploit phase retrieval and hence achieve superior image quality for heart tissue, almost comparable to previous synchrotron data on the whole organ scale. Approach: In our work, different embedding methods and heavy metal-based stains have been explored. From the tomographic reconstructions, quantitative structural parameters describing the three-dimensional (3-D) architecture have been derived by two different fiber tracking algorithms. The first algorithm is based on the local gradient of the reconstructed electron density. By performing a principal component analysis on the local structure-tensor of small subvolumes, the dominant direction inside the volume can be determined. In addition to this approach, which is already well established for heart tissue, we have implemented and tested an algorithm that is based on a local 3-D Fourier transform. Results: We showed that the choice of sample preparation influences the 3-D structure of the tissue, not only in terms of contrast but also with respect to the structural preservation. A heart prepared with the evaporation-of-solvent method was used to compare both algorithms. The results of structural orientation were very similar for both approaches. In addition to the determination of the fiber orientation, the degree of filament alignment and local thickness of single muscle fiber bundles were obtained using the Fourier-based approach. Conclusions: Phase-contrast x-ray tomography allows for investigating the structure of heart tissue with an isotropic resolution below 10 μm. The fact that this is possible with compact laboratory instrumentation opens up new opportunities for screening samples and optimizing sample preparation, also prior to synchrotron beamtimes. Further, results from the structural analysis can help in understanding cardiovascular diseases or can be used to improve computational models of the heart.
Collapse
Affiliation(s)
- Marius Reichardt
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Mareike Töpperwien
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Amara Khan
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Frauke Alves
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.,University of Göttingen, Department of Hematology and Oncology, Göttingen, Germany
| | - Tim Salditt
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| |
Collapse
|
8
|
Reichardt M, Töpperwien M, Khan A, Alves F, Salditt T. Fiber orientation in a whole mouse heart reconstructed by laboratory phase-contrast micro-CT. J Med Imaging (Bellingham) 2020; 7:023501. [PMID: 32206684 DOI: 10.1117/12.2527744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/18/2020] [Indexed: 05/23/2023] Open
Abstract
Purpose: We present a phase-contrast x-ray tomography study of wild type C57BL/6 mouse hearts as a nondestructive approach to the microanatomy on the scale of the entire excised organ. Based on the partial coherence at a home-built phase-contrast μ - CT setup installed at a liquid metal jet source, we exploit phase retrieval and hence achieve superior image quality for heart tissue, almost comparable to previous synchrotron data on the whole organ scale. Approach: In our work, different embedding methods and heavy metal-based stains have been explored. From the tomographic reconstructions, quantitative structural parameters describing the three-dimensional (3-D) architecture have been derived by two different fiber tracking algorithms. The first algorithm is based on the local gradient of the reconstructed electron density. By performing a principal component analysis on the local structure-tensor of small subvolumes, the dominant direction inside the volume can be determined. In addition to this approach, which is already well established for heart tissue, we have implemented and tested an algorithm that is based on a local 3-D Fourier transform. Results: We showed that the choice of sample preparation influences the 3-D structure of the tissue, not only in terms of contrast but also with respect to the structural preservation. A heart prepared with the evaporation-of-solvent method was used to compare both algorithms. The results of structural orientation were very similar for both approaches. In addition to the determination of the fiber orientation, the degree of filament alignment and local thickness of single muscle fiber bundles were obtained using the Fourier-based approach. Conclusions: Phase-contrast x-ray tomography allows for investigating the structure of heart tissue with an isotropic resolution below 10 μ m . The fact that this is possible with compact laboratory instrumentation opens up new opportunities for screening samples and optimizing sample preparation, also prior to synchrotron beamtimes. Further, results from the structural analysis can help in understanding cardiovascular diseases or can be used to improve computational models of the heart.
Collapse
Affiliation(s)
- Marius Reichardt
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Mareike Töpperwien
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Amara Khan
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Frauke Alves
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- University of Göttingen, Department of Hematology and Oncology, Göttingen, Germany
| | - Tim Salditt
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| |
Collapse
|
9
|
Mrzilkova J, Michenka P, Seremeta M, Kremen J, Dudak J, Zemlicka J, Musil V, Minnich B, Zach P. Morphology of the Vasculature and Blood Supply of the Brown Adipose Tissue Examined in an Animal Model by Micro-CT. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7502578. [PMID: 32190678 PMCID: PMC7064829 DOI: 10.1155/2020/7502578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/18/2020] [Indexed: 01/28/2023]
Abstract
We performed micro-CT imaging of the vascular blood supply in the interscapular area of the brown adipose tissue in three mice with the use of intravascular contrast agent Aurovist™. Resulting 3D data rendering was then adapted into 2D resolution with visualization using false color system and grayscale images. These were then studied for the automatic quantification of the blood vessel density within this area. We found the highest most occurring density within arterioles or venules representing smaller blood vessels whereas with the increase of the vessel diameters a lower percentage rate of their presence was observed in the sample. Our study shows that micro-CT scanning in combination with Aurovist™ contrast is suitable for anatomical studies of interscapular area of brown adipose tissue blood vessel supply.
Collapse
Affiliation(s)
- J. Mrzilkova
- Specialized Laboratory of Experimental Imaging of the Third Faculty of Medicine, Charles University and the Institute of Experimental and Applied Physics and Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P. Michenka
- Specialized Laboratory of Experimental Imaging of the Third Faculty of Medicine, Charles University and the Institute of Experimental and Applied Physics and Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M. Seremeta
- Specialized Laboratory of Experimental Imaging of the Third Faculty of Medicine, Charles University and the Institute of Experimental and Applied Physics and Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J. Kremen
- Specialized Laboratory of Experimental Imaging of the Third Faculty of Medicine, Charles University and the Institute of Experimental and Applied Physics and Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - J. Dudak
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - J. Zemlicka
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czech Republic
| | - V. Musil
- Centre of Scientific Information, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - B. Minnich
- Department of Biosciences, Vascular & Exercise Biology Unit, University of Salzburg, Austria
| | - P. Zach
- Specialized Laboratory of Experimental Imaging of the Third Faculty of Medicine, Charles University and the Institute of Experimental and Applied Physics and Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Norvik C, Westöö CK, Peruzzi N, Lovric G, van der Have O, Mokso R, Jeremiasen I, Brunnström H, Galambos C, Bech M, Tran-Lundmark K. Synchrotron-based phase-contrast micro-CT as a tool for understanding pulmonary vascular pathobiology and the 3-D microanatomy of alveolar capillary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 318:L65-L75. [PMID: 31596108 DOI: 10.1152/ajplung.00103.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore the value of synchrotron-based phase-contrast microcomputed tomography (micro-CT) in pulmonary vascular pathobiology. The microanatomy of the lung is complex with intricate branching patterns. Tissue sections are therefore difficult to interpret. Recruited intrapulmonary bronchopulmonary anastomoses (IBAs) have been described in several forms of pulmonary hypertension, including alveolar capillary dysplasia with misaligned pulmonary veins (ACD/MPV). Here, we examine paraffin-embedded tissue using this nondestructive method for high-resolution three-dimensional imaging. Blocks of healthy and ACD/MPV lung tissue were used. Pulmonary and bronchial arteries in the ACD/MPV block had been preinjected with dye. One section per block was stained, and areas of interest were marked to allow precise beam-alignment during image acquisition at the X02DA TOMCAT beamline (Swiss Light Source). A ×4 magnifying objective coupled to a 20-µm thick scintillating material and a sCMOS detector yielded the best trade-off between spatial resolution and field-of-view. A phase retrieval algorithm was applied and virtual tomographic slices and video clips of the imaged volumes were produced. Dye injections generated a distinct attenuation difference between vessels and surrounding tissue, facilitating segmentation and three-dimensional rendering. Histology and immunohistochemistry post-imaging offered complementary information. IBAs were confirmed in ACD/MPV, and the MPVs were positioned like bronchial veins/venules. We demonstrate the advantages of using synchrotron-based phase-contrast micro-CT for three-dimensional characterization of pulmonary microvascular anatomy in paraffin-embedded tissue. Vascular dye injections add additional value. We confirm intrapulmonary shunting in ACD/MPV and provide support for the hypothesis that MPVs are dilated bronchial veins/venules.
Collapse
Affiliation(s)
- Christian Norvik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Niccolò Peruzzi
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Goran Lovric
- Centre d'Imagerie BioMédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Oscar van der Have
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Ida Jeremiasen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hans Brunnström
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Csaba Galambos
- Children's Hospital Colorado, Department of Pathology and Laboratory Medicine, Aurora, Colorado
| | - Martin Bech
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | |
Collapse
|