1
|
Yan D, Lv M, Kong X, Feng L, Ying Y, Liu W, Wang X, Ma X. FXR controls insulin content by regulating Foxa2-mediated insulin transcription. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119655. [PMID: 38135007 DOI: 10.1016/j.bbamcr.2023.119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Farnesoid X receptor (FXR) is a nuclear ligand-activated receptor of bile acids that plays a role in the modulation of insulin content. However, the underlying molecular mechanisms remain unclear. Forkhead box a2 (Foxa2) is an important nuclear transcription factor in pancreatic β-cells and is involved in β-cell function. We aimed to explore the signaling mechanism downstream of FXR to regulate insulin content and underscore its association with Foxa2 and insulin gene (Ins) transcription. All experiments were conducted on FXR transgenic mice, INS-1 823/13 cells, and diabetic Goto-Kakizaki (GK) rats undergoing sham or Roux-en-Y gastric bypass (RYGB) surgery. Islets from FXR knockout mice and INS-1823/13 cells with FXR knockdown exhibited substantially lower insulin levels than that of controls. This was accompanied by decreased Foxa2 expression and Ins transcription. Conversely, FXR overexpression increased insulin content, concomitant with enhanced Foxa2 expression and Ins transcription in INS-1 823/13 cells. Moreover, FXR knockdown reduced FXR recruitment and H3K27 trimethylation in the Foxa2 promoter. Importantly, Foxa2 overexpression abrogated the adverse effects of FXR knockdown on Ins transcription and insulin content in INS-1 823/13 cells. Notably, RYGB surgery led to improved insulin content in diabetic GK rats, which was accompanied by upregulated FXR and Foxa2 expression and Ins transcription. Collectively, these data suggest that Foxa2 serves as the target gene of FXR in β-cells and mediates FXR-enhanced Ins transcription. Additionally, the upregulated FXR/Foxa2 signaling cascade could contribute to the enhanced insulin content in diabetic GK rats after RYGB.
Collapse
Affiliation(s)
- Dan Yan
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Xiangchen Kong
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Linxian Feng
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Ying Ying
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Wenjuan Liu
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xin Wang
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaosong Ma
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
2
|
Ye J, Gong M, Zhang Y, Xu Q, Zhao J. Effects of Fermented Extracts of Wuniuzao Dark Loose Tea on Hepatic Sterol Regulatory Element-Binding Protein Pathway and Gut Microbiota Disorder in Obese Mice. J Nutr 2024; 154:626-637. [PMID: 38110182 DOI: 10.1016/j.tjnut.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Artificially fermented dark loose tea is a type of novel dark tea prepared via fermentation by Eurotium cristatum. The effects of artificially fermented dark loose tea on lipid metabolism are still unclear. OBJECTIVES This study aimed to explore if artificially fermented dark loose tea has the same effects as naturally fermented dark loose tea in regulating hepatic lipid metabolism. METHODS Thirty-six 8-wk-old male C57BL/6 mice were randomly divided into 6 treatment groups, including normal control (NC), high-fat diet (HFD), positive control (PC), Wuniuzao dark raw tea (WDT), Wuniuzao naturally fermented dark loose tea (NFLT), and Wuniuzao artificially fermented dark loose tea (AFLT) groups. The HFD, PC, WDT, NFLT, and AFLT groups were fed a HFD. The PC group was supplemented with atorvastatin (10 mg/kg). The WDT group was supplemented with WDT (300 mg/kg), the NFLT group with NFLT (300 mg/kg), and the AFLT group with AFLT (300 mg/kg). RESULTS The study compared the effect of WDT, NFLT, and AFLT on liver steatosis and gut microbiota disorder in obese mice. All 3 tea extracts reduced body weight, glucose tolerance, and serum lipid concentrations. Via sterol-regulatory element binding protein (SREBP)-mediated lipid metabolism, all 3 tea extracts alleviated hepatic steatosis in mice with obesity. Furthermore, NFLT and AFLT intervened in the abundance of Firmicutes, Bacteroidetes, Clostridia, Muribaculaceae, and Lachnospiraceae. CONCLUSION In mice with obesity induced by a HFD, WDT, NFLT, and AFLT may improve hepatic steatosis through an SREBP-mediated lipid metabolism. Moreover, NFLT and AFLT improved the composition of gut microbiota.
Collapse
Affiliation(s)
- Jiangcheng Ye
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Mingxiu Gong
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yifan Zhang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianqian Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jin Zhao
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
3
|
Sandoval DA, Patti ME. Glucose metabolism after bariatric surgery: implications for T2DM remission and hypoglycaemia. Nat Rev Endocrinol 2023; 19:164-176. [PMID: 36289368 PMCID: PMC10805109 DOI: 10.1038/s41574-022-00757-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Although promising therapeutics are in the pipeline, bariatric surgery (also known as metabolic surgery) remains our most effective strategy for the treatment of obesity and type 2 diabetes mellitus (T2DM). Of the many available options, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are currently the most widely used procedures. RYGB and VSG have very different anatomical restructuring but both surgeries are effective, to varying degrees, at inducing weight loss and T2DM remission. Both weight loss-dependent and weight loss-independent alterations in multiple tissues (such as the intestine, liver, pancreas, adipose tissue and skeletal muscle) yield net improvements in insulin resistance, insulin secretion and insulin-independent glucose metabolism. In a subset of patients, post-bariatric hypoglycaemia can develop months to years after surgery, potentially reflecting the extreme effects of potent glucose reduction after surgery. This Review addresses the effects of bariatric surgery on glucose regulation and the potential mechanisms responsible for both the resolution of T2DM and the induction of hypoglycaemia.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Department of Paediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | | |
Collapse
|
4
|
Berk KA, Borgeraas H, Narverud I, Mulder MT, Øyri LKL, Verhoeven AJM, Småstuen MC, Bogsrud MP, Omland T, Hertel JK, Gjevestad E, Nordstrand N, Holven KB, Hjelmesæth J. Differential effects of bariatric surgery and lifestyle interventions on plasma levels of Lp(a) and fatty acids. Lipids Health Dis 2022; 21:145. [PMID: 36577984 PMCID: PMC9795629 DOI: 10.1186/s12944-022-01756-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Limited evidence suggests that surgical and non-surgical obesity treatment differentially influence plasma Lipoprotein (a) [Lp(a)] levels. Further, a novel association between plasma arachidonic acid and Lp(a) has recently been shown, suggesting that fatty acids are a possible target to influence Lp(a). Here, the effects of bariatric surgery and lifestyle interventions on plasma levels of Lp(a) were compared, and it was examined whether the effects were mediated by changes in plasma fatty acid (FA) levels. METHODS The study includes two independent trials of patients with overweight or obesity. Trial 1: Two-armed intervention study including 82 patients who underwent a 7-week low energy diet (LED), followed by Roux-en-Y gastric bypass and 52-week follow-up (surgery-group), and 77 patients who underwent a 59-week energy restricted diet- and exercise-program (lifestyle-group). Trial 2: A clinical study including 134 patients who underwent a 20-week very-LED/LED (lifestyle-cohort). RESULTS In the surgery-group, Lp(a) levels [median (interquartile range)] tended to increase in the pre-surgical LED-phase [17(7-68)-21(7-81)nmol/L, P = 0.05], but decreased by 48% after surgery [21(7-81)-11(7-56)nmol/L, P < 0.001]. In the lifestyle-group and lifestyle-cohort, Lp(a) increased by 36%[14(7-77)-19(7-94)nmol/L, P < 0.001] and 14%[50(14-160)-57(19-208)nmol/L, P < 0.001], respectively. Changes in Lp(a) were independent of weight loss. Plasma levels of total saturated FAs remained unchanged after surgery, but decreased after lifestyle interventions. Arachidonic acid and total n-3 FAs decreased after surgery, but increased after lifestyle interventions. Plasma FAs did not mediate the effects on Lp(a). CONCLUSION Bariatric surgery reduced, whereas lifestyle interventions increased plasma Lp(a), independent of weight loss. The interventions differentially influenced changes in plasma FAs, but these changes did not mediate changes in Lp(a). TRIAL REGISTRATION Trial 1: Clinicaltrials.gov NCT00626964. Trial 2: Netherlands Trial Register NL2140 (NTR2264).
Collapse
Affiliation(s)
- Kirsten A. Berk
- grid.5645.2000000040459992XDepartment of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Internal Medicine, Division of Dietetics, Erasmus Medical Center, Rotterdam, The Netherlands, Erasmus University MC, Rotterdam, The Netherlands
| | - Heidi Borgeraas
- grid.417292.b0000 0004 0627 3659Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ingunn Narverud
- grid.55325.340000 0004 0389 8485Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Monique T. Mulder
- grid.5645.2000000040459992XDepartment of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Linn K. L. Øyri
- grid.5510.10000 0004 1936 8921Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Adrie J. M. Verhoeven
- grid.5645.2000000040459992XDepartment of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Milada Cvancarova Småstuen
- grid.417292.b0000 0004 0627 3659Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway ,grid.412414.60000 0000 9151 4445Department of Nutrition and Management, Oslo Metropolitan University, Oslo, Norway
| | - Martin P. Bogsrud
- grid.55325.340000 0004 0389 8485Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - Torbjørn Omland
- grid.411279.80000 0000 9637 455XDepartment of Cardiology, Akershus University Hospital, Lørenskog, Norway ,grid.5510.10000 0004 1936 8921K.G. Jebsen Center of Cardiac Biomarkers, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jens Kristoffer Hertel
- grid.417292.b0000 0004 0627 3659Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Espen Gjevestad
- grid.417292.b0000 0004 0627 3659Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway ,grid.417292.b0000 0004 0627 3659Division of Physical Medicine and Rehabilitation, Vestfold Hospital Trust, Stavern, Norway ,grid.446099.60000 0004 0448 0013Norwegian Police University College, Stavern, Norway
| | - Njord Nordstrand
- grid.411279.80000 0000 9637 455XDepartment of Cardiology, Akershus University Hospital, Lørenskog, Norway
| | - Kirsten B. Holven
- grid.55325.340000 0004 0389 8485Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jøran Hjelmesæth
- grid.417292.b0000 0004 0627 3659Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway ,grid.5510.10000 0004 1936 8921Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|
6
|
Xia Y, Ren M, Yang J, Cai C, Cheng W, Zhou X, Lu D, Ji F. Gut microbiome and microbial metabolites in NAFLD and after bariatric surgery: Correlation and causality. Front Microbiol 2022; 13:1003755. [PMID: 36204626 PMCID: PMC9531827 DOI: 10.3389/fmicb.2022.1003755] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently related to a heavy socioeconomic burden and increased incidence. Since obesity is the most prevalent risk factor for NAFLD, weight loss is an effective therapeutic solution. Bariatric surgery (BS), which can achieve long-term weight loss, improves the overall health of patients with NAFLD. The two most common surgeries are the Roux-en-Y gastric bypass and sleeve gastrectomy. The gut-liver axis is the complex network of cross-talking between the gut, its microbiome, and the liver. The gut microbiome, involved in the homeostasis of the gut-liver axis, is believed to play a significant role in the pathogenesis of NAFLD and the metabolic improvement after BS. Alterations in the gut microbiome in NAFLD have been confirmed compared to that in healthy individuals. The mechanisms linking the gut microbiome to NAFLD have been proposed, including increased intestinal permeability, higher energy intake, and other pathophysiological alterations. Interestingly, several correlation studies suggested that the gut microbial signatures after BS become more similar to those of lean, healthy controls than that of patients with NAFLD. The resolution of NAFLD after BS is related to changes in the gut microbiome and its metabolites. However, confirming a causal link remains challenging. This review summarizes characteristics of the gut microbiome in patients with NAFLD before and after BS and accumulates existing evidence about the underlying mechanisms of the gut microbiome.
Collapse
Affiliation(s)
- Yi Xia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengting Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changzhou Cai
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixin Cheng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Lu
- Department of Endoscopy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Feng Ji,
| |
Collapse
|
7
|
Zhou S, You H, Qiu S, Yu D, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. A new perspective on NAFLD: Focusing on the crosstalk between peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR). Biomed Pharmacother 2022; 154:113577. [PMID: 35988420 DOI: 10.1016/j.biopha.2022.113577] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is primarily caused by abnormal lipid metabolism and the accumulation of triglycerides in the liver. NAFLD is also associated with hepatic steatosis and nutritional and energy imbalances and is a chronic liver disease associated with a number of factors. Nuclear receptors play a key role in balancing energy and nutrient metabolism, and the peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR) regulate lipid metabolism genes, controlling hepatocyte lipid utilization and regulating bile acid (BA) synthesis and transport. They play an important role in lipid metabolism and BA homeostasis. At present, PPARα and FXR are the most promising targets for the treatment of NAFLD among nuclear receptors. This review focuses on the crosstalk mechanisms and transcriptional regulation of PPARα and FXR in the pathogenesis of NAFLD and summarizes PPARα and FXR drugs in clinical trials, laying a theoretical foundation for the targeted treatment of NAFLD and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Reversal of NAFLD After VSG Is Independent of Weight-Loss but RYGB Offers More Efficacy When Maintained on a High-Fat Diet. Obes Surg 2022; 32:2010-2022. [PMID: 35419698 DOI: 10.1007/s11695-022-06053-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Bariatric surgery is emerging as an effective treatment for obesity and the metabolic syndrome. Recently, we demonstrated that Roux-en-Y gastric bypass (RYGB), but not vertical sleeve gastrectomy (VSG), resulted in improvements to white adipose physiology and enhanced brown adipose functioning. Since beneficial alterations to liver health are also expected after bariatric surgery, comparing the post-operative effects of RYGB and VSG on liver physiology is essential to their application in the treatment of non-alcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS The effects of RYGB and VSG on liver physiology were compared using diet induced mouse model of obesity. High-fat diet (HFD) was administered for 12 weeks after surgery and alterations to liver physiology were assessed. RESULTS Both RYGB and VSG showed decreased liver weight as well as reductions to hepatic cholesterol and triglyceride levels. There were demonstrable improvements to NAFLD activity score (NAS) and fibrosis stage scoring after both surgeries. In RYGB, these beneficial changes to liver function resulted from the downregulation of pro-fibrotic and upregulation anti-fibrotic genes, as well as increased fatty acid oxidation and bile acid flux. For VSG, though similar alterations were observed, they were less potent. However, VSG did significantly downregulate pro-fibrotic genes and showed increased glycogen content paralleled by decreased glycogenolysis which may have contributed to the resolution of NAFLD. CONCLUSION RYGB and VSG improve liver physiology and function, but RYGB is more efficacious. Resolutions of NAFLD in RYGB and VSG are achieved through different processes, independent of weight loss.
Collapse
|
9
|
Mazzini GS, Augustin T, Noria S, Romero-Marrero C, Li N, Hameed B, Eisenberg D, Azagury DE, Ikramuddin S. ASMBS Position Statement on the Impact of Metabolic and Bariatric Surgery on Nonalcoholic Steatohepatitis. Surg Obes Relat Dis 2021; 18:314-325. [PMID: 34953742 DOI: 10.1016/j.soard.2021.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 10/25/2022]
Affiliation(s)
- Guilherme S Mazzini
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Toms Augustin
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sabrena Noria
- Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio state University, Wexner Medical Center, Columbus, Ohio
| | - Carlos Romero-Marrero
- South Florida Transplant Center, Broward Health Medical Center, Fort Lauderdale, Florida
| | - Na Li
- Division of Gastroenterology, Hepatology, & Nutrition, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bilal Hameed
- Department of Medicine, University of California, San Francisco, California
| | - Dan Eisenberg
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Dan E Azagury
- Section of Minimally Invasive & Bariatric Surgery, Stanford University School of Medicine, Stanford, California
| | - Sayeed Ikramuddin
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
10
|
Hoozemans J, de Brauw M, Nieuwdorp M, Gerdes V. Gut Microbiome and Metabolites in Patients with NAFLD and after Bariatric Surgery: A Comprehensive Review. Metabolites 2021; 11:353. [PMID: 34072995 PMCID: PMC8227414 DOI: 10.3390/metabo11060353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing, as are other manifestations of metabolic syndrome such as obesity and type 2 diabetes. NAFLD is currently the number one cause of chronic liver disease worldwide. The pathophysiology of NAFLD and disease progression is poorly understood. A potential contributing role for gut microbiome and metabolites in NAFLD is proposed. Currently, bariatric surgery is an effective therapy to prevent the progression of NAFLD and other manifestations of metabolic syndrome such as obesity and type 2 diabetes. This review provides an overview of gut microbiome composition and related metabolites in individuals with NAFLD and after bariatric surgery. Causality remains to be proven. Furthermore, the clinical effects of bariatric surgery on NAFLD are illustrated. Whether the gut microbiome and metabolites contribute to the metabolic improvement and improvement of NAFLD seen after bariatric surgery has not yet been proven. Future microbiome and metabolome research is necessary for elucidating the pathophysiology and underlying metabolic pathways and phenotypes and providing better methods for diagnostics, prognostics and surveillance to optimize clinical care.
Collapse
Affiliation(s)
- Jacqueline Hoozemans
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
- Department of Bariatric and General Surgery, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands;
| | - Maurits de Brauw
- Department of Bariatric and General Surgery, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands;
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
| | - Victor Gerdes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
- Department of Internal Medicine, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands
| |
Collapse
|