1
|
Pan Y, Chen M, Pan L, Tong Q, Cheng Z, Lin S, Pan R, Chen M, Zhi Y. Shisandra Decoction Alleviates Parkinson's Disease Symptoms in a Mouse Model Through PI3K/AKT/mTOR Signalling Pathway. Neuropsychiatr Dis Treat 2024; 20:2011-2027. [PMID: 39464379 PMCID: PMC11512783 DOI: 10.2147/ndt.s476969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose The present study aimed to characterize neuroprotective effects of Schisandra Decoction (Sch D) treatment in a mouse model of Parkinson's disease (PD), and to explore underlying mechanisms focused on the mammalian target of rapamycin (mTOR) signaling pathway. Materials and Methods 50 male C57 BL/6 mice were randomly assigned to either control (n = 10) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model (n = 40) groups. PD mice were further divided into four groups of ten mice each: MPTP group, LY294002 group, Sch D group, and LY2940002 + Sch D group. Mice from each group were assessed in pole climbing, rotary rod and open field tests. Brain Tyrosine hydroxylase (TH) protein was observed using immunohistochemistry. mRNA levels of PTEN, PI3K and LC3 in brain tissue were measured using RT-PCR. Protein levels of PTEN, PI3K, Akt, p-Akt, mTOR, p-mTOR, p70s6K, p62, LC3II / I, α-synuclein (α-syn), TH in brain tissue were assessed by Western blotting (WB). Results In behavioral tests, PD mice treated with Sch D showed reduced pole climbing time, longer rotarod duration, and greater distance traveled. In terms of neuroprotection, PD mice in the Sch D group exhibited higher levels of TH protein and enhanced α-syn clearance. Regarding autophagy, compared to the control group, mice in the MPTP group had elevated PTEN protein expression, which inhibited PI3K, p-AKT/AKT, and p-mTOR/mTOR protein levels, decreased LC3II/I protein expression, and increased P62 protein expression. Treatment with Sch D reversed these effects. Conclusion Sch D reduces α-syn aggregation in the brains of MPTP-induced PD model mice, exerts neuroprotective effects, and improves motor function. Additionally, Sch D inhibits autophagy through the PI3K/AKT/mTOR pathway. The neuroprotective effect of Sch D may involve the suppression of abnormal autophagy and its antioxidant properties, which indirectly reduces α-syn accumulation. Future studies should assess the impact of Sch D on oxidative stress markers to evaluate its antioxidant effects.
Collapse
Affiliation(s)
- Yawen Pan
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Mojinzi Chen
- Physician,Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, People’s Republic of China
| | - Lulu Pan
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Qiuling Tong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Zhiqing Cheng
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Sujin Lin
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Rongrong Pan
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Mengyuan Chen
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yinghao Zhi
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, People’s Republic of China
| |
Collapse
|
2
|
He QK, Wang XY, Hu W, Cai J, Chen P, Liu MW, Wu YH. Therapeutic potential of Canna edulis RS3-resistant starch in alleviating neuroinflammation and apoptosis in a Parkinson's disease rat model. Heliyon 2024; 10:e38072. [PMID: 39347419 PMCID: PMC11438014 DOI: 10.1016/j.heliyon.2024.e38072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
This study aimed to investigate the effects of Miao medicinal Canna edulis RS3-resistant starch on behavioral performance and substantia nigra neuron apoptosis-related indicators in a rat model of Parkinson's disease (PD). Among the experimental groups, except for the control group, we induced PD rat models by subcutaneous injection of rotenone in the neck and back. After model induction, a 28-day drug intervention was conducted. Various techniques have been employed, including behavioral analysis, Real-time Polymerase Chain Reaction (RT-PCR), western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and terminal deoxynucleotidyltransferase-mediated UTP nick-ends. labeling (TUNEL) and Nissl staining to investigate the effect of Canna edulis RS3-resistant starch on the substantia nigra and neuronal apoptosis-related markers in the brains of PD model rats. Our study revealed that Canna edulis RS3, a resistant starch, significantly reduced the climbing time of PD model rats, prolonged their hanging time, lowered the expression levels of the inflammatory factors IL-1β, IL-6, and TNF-α, increased the number of TH-positive neurons in the substantia nigra, and decreased the levels of IL-1β, IL-6, and TNF-α. Furthermore, Canna edulis RS3 elevated the protein expression levels of tyrosine hydroxylase (TH) and Bcl-2 while reducing those of Bax, TLR4, NLRP3,and p-P65, and mitigated apoptosis and morphological changes in dopaminergic neurons in the substantia nigra region. Our results suggest that Canna edulis RS3-resistant starch may offer therapeutic benefits for PD patients with PD by potentially influencing inflammation and apoptosis in the dopaminergic system.
Collapse
Affiliation(s)
- Qian-Kun He
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
- Department of Neurology, Traditional Chinese Medicine Hospital of Yuxi City, Yuxi, Yunnan, 6527000, China
| | - Xue-Yong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jing Cai
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Peng Chen
- Department of Basic Clinical Teaching and Research of Traditional Chinese Medicine, School of Basic Medicine, Guizhou University of Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Ming-Wei Liu
- Department of Emergency Medicine, Dali Bai Autonomous Prefecture People's Hospital, Dali, 671000, China
| | - Yuan-Hua Wu
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| |
Collapse
|
3
|
Miyahara Y, Phokaewvarangkul O, Kerr S, Anan C, Toriumi H, Bhidayasiri R. Comparing the efficacy of therapeutic Thai acupressure on plantar acupoints and laser cane therapy on freezing of gait in Parkinson's disease: a randomized non-inferiority trial. Front Neurol 2024; 15:1327448. [PMID: 38348165 PMCID: PMC10859456 DOI: 10.3389/fneur.2024.1327448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Background ON-freezing of gait (ON-FOG) in Parkinson's disease (PD), often resistant to medication, is linked to sensory deficits and proprioceptive impairment, and results in falls and reduced life quality. While visual cues from a laser cane (LC), which rapidly accesses the motor cortex, are commonly used to compensate for proprioceptive impairment, increased visual reliance may be affected by disease progression. Emerging evidence suggests that modulation of peripheral sensory processing may alleviate ON-FOG, and therapeutic Thai acupressure (TTA) may be a solution. This study aims to evaluate the effect of TTA in alleviating ON-FOG and compare its effectiveness to LC in patients with PD. Methods This open-label, non-inferiority trial randomized 90 PD patients with ON-FOG equally into three arms: TTA for plantar nerve stimulation for 96 s, LC for visual cueing, and sham control (SC). Stride length was the primary non-inferiority endpoint [non-inferiority margin: lower limit of 95% confidence interval (CI) above -10 cm in mean change difference in pre- and immediately post-intervention in TTA versus LC (one-sided)]. Secondary outcomes included FOG episodes, double support time, velocity, cadence, step length, timed up and go (TUG) test, and visual analog scale (VAS) score. Results TTA showed non-inferiority to LC in stride length (mean = -0.7 cm; 95% CI: -6.55; 5.15) (one-sided). The improvements with TTA and LC versus SC were comparable between (mean = 13.11 cm; 95% CI: 7.26; 18.96) and (mean = 13.8 cm; 95% CI: 7.96; 19.65) (one-sided). Secondary outcomes favored TTA and LC over SC with improved FOG, velocity, step length, and VAS scores, while only TTA resulted in improved double support time, cadence, and TUG test results. No complications occurred. Conclusion The efficacy of TTA, which improves stride length, is non-inferior to that of LC and consequently alleviates FOG comparable to LC. TTA might enhance proprioceptive function and reduce visual dependence. Therefore, TTA, characterized by its non-invasive, simple, and safe techniques, is a potential non-pharmacological alternative for ON-FOG treatment and might enhance overall quality of life. However, further research into the mechanism, efficacy, and utilization of TTA is essential. Clinical trial registration https://www.thaiclinicaltrials.org/show/TCTR20200317001, identifier TCTR20200317001.
Collapse
Affiliation(s)
- Yuka Miyahara
- Doctor of Philosophy Program in Medical Sciences (International Program), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Wat Pho Thai Traditional Medical School, Bangkok, Thailand
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Stephen Kerr
- Biostatistics Excellence Centre, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Chanawat Anan
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Haruki Toriumi
- Department of Acupuncture, Shonan Keiiku Hospital, Fujisawa, Japan
- Toriumi Acupuncture Clinic, Tokyo, Japan
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
4
|
Pan B, Niu B, He Y, Zhou C, Xia C. Integrative multilevel exploration of the mechanism by which Er-Zhi-Wan alleviates the Parkinson's disease (PD)-like phenotype in the MPTP-induced PD mouse model. Biomed Pharmacother 2023; 165:115021. [PMID: 37348406 DOI: 10.1016/j.biopha.2023.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
The neuroprotective effects of Er-Zhi-Wan (EZW), a well-known traditional Chinese formulation, in MPTP-induced Parkinson's disease (PD) models are poorly understood and require evaluation. A model of PD induced by MPTP was used to evaluate the neuroprotective effects of EZW in mice. The underlying pharmacological mechanisms of EZW for the prevention and treatment of PD were then explored using a combination of multilevel databases, network pharmacology, biological experiments, and LCMS/MS. In vivo data showed that pretreatment with EZW can be neuroprotective against MPTP-induced motor dysfunction and can effectively rescue dopaminergic neurons from MPTP-induced degeneration in mice. Furthermore, data from combined multilevel databases and network pharmacology analysis strategies suggested that the neuroprotective activity of EZW in the treatment of PD is mediated by a complicated multicomponent, multitarget network. Genes such as Grm2, Grm5, Drd2, and Grik2 were identified as important therapeutic targets. Subsequent experimental validation showed that EZW can broadly regulate the mRNA levels of these receptor genes as well as BDNF, and consequently increase the phosphorylation levels of CREB to stimulate CREB signaling. These targets and signaling systems may be responsible for the reversal of neuronal death by EZW after MPTP exposure. The LC-MS/MS results also identified a wide range of chemical components of EZW, including at least 53 precise compounds, further demonstrating the complexity of the network in which EZW exerts its neuroprotective activity. Our work provides evidence for the mechanism of EZW in MPTP-PD models and supports the neuroprotective function of EZW in neurodegenerative diseases.
Collapse
Affiliation(s)
- Botao Pan
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Bo Niu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Yanjun He
- Emergency Department, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Cankun Zhou
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 515150, China.
| |
Collapse
|
5
|
Ding L, Liu T, Ma J. Neuroprotective mechanisms of Asiatic acid. Heliyon 2023; 9:e15853. [PMID: 37180926 PMCID: PMC10172897 DOI: 10.1016/j.heliyon.2023.e15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Asiatic acid (AA) is the most crucial component of Asiaticoside in many edible and medicinal plants. It has diverse biological activities such as anti-inflammatory, antioxidant, anti-infective, and anti-tumor. Additionally, AA has been intensively studied in the last decades. It has shown great potential in the treatment of various neurological diseases such as spinal cord injury (SCI), cerebral ischemia, epilepsy, traumatic brain injury (TBI), neural tumors, Alzheimer's disease (AD), and Parkinson's disease (PD). Moreover, AA provides pertinent data for neuroprotective signaling pathways, and its substantial neuroprotective ability makes it a novel candidate for developing drugs that target the central nervous system.
Collapse
Affiliation(s)
- Liuyun Ding
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Tiantian Liu
- Shanghai Seventh's People's Hospital, An Affiliate of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Jin Ma
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
- Corresponding author. Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 91 Qianjin West Road, Kunshan, 215300, China.
| |
Collapse
|
6
|
Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 2023; 12:8. [PMID: 36782262 PMCID: PMC9926748 DOI: 10.1186/s40035-023-00340-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
Collapse
|
7
|
Wen B, Zhou K, Hu C, Chen J, Xu K, Liang T, He B, Chen L, Chen J. Salidroside Ameliorates Ischemia-Induced Neuronal Injury through AMPK Dependent and Independent Pathways to Maintain Mitochondrial Quality Control. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1133-1153. [PMID: 35543160 DOI: 10.1142/s0192415x2250046x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salidroside, an active ingredient in Rhodiola rosea, has potent protective activity against cerebral ischemia. However, the mechanisms underlying its pharmacological actions are poorly understood. In this study, we employed a mouse middle cerebral artery occlusion (MCAO) and cellular oxygen and glucose deprivation (OGD) models to test the hypothesis that salidroside may restore mitochondrial quality control in neurons by modulating the relevant signaling. The results indicated that salidroside mitigated almost 40% the ischemia-induced brain infarct volumes in mice and the OGD-decreased viability of neurons to ameliorate the mitochondrial functions. Furthermore, salidroside treatment alleviated the OGD- or ischemia-induced imbalance of mitochondrial fission and fusion, mitophagy and promoted mitochondrial biogenesis in neurons by attenuating the AMPK activity. Moreover, salidroside alleviated 50% the OGD-promoted mitochondrial calcium fluorescence intensity and 5% mitochondria-associated membrane (MAM) area by down-regulating GRP75 expression independent of the AMPK signaling. Finally, similar findings were achieved in primary mouse neurons. Collectively, these data indicate that salidroside effectively restores the mitochondria dynamics, facilitates mitochondrial biogenesis by attenuating the AMPK signaling, and maintains calcium homeostasis in neurons independent of the AMPK activity.
Collapse
Affiliation(s)
- Bin Wen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Keru Zhou
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Caiyin Hu
- Department of Cardiology, Wuhan Red Cross Hospital, Wuhan 430015, P. R. China
| | - Jiehui Chen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Kai Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan 445400, Hubei, P. R. China
| | - Ling Chen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
8
|
Wang Q, Liu Y. Cryptotanshinone ameliorates MPP +-induced oxidative stress and apoptosis of SH-SY5Y neuroblastoma cells: the role of STAT3 in Parkinson's disease. Metab Brain Dis 2022; 37:1477-1485. [PMID: 35396628 DOI: 10.1007/s11011-022-00905-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022]
Abstract
Cryptotanshinone (CTN) has shown its neuroprotective and anti-inflammatory qualities in non-genetic mouse model of Alzheimer's disease. According to bioinformatics analysis, CTN and Signal Transducer and Activator of Transcription 3 (STAT3) may interact to form a drug-target network. This study was conducted to identify the role of CTN-STAT3 interaction in Parkinson's disease (PD). PD model was established with MMP+-stimulated SH-SY5Y cells. After pre-treatment with CTN or co-treatment with CTN and STAT3 agonist, MTT assay was performed to observe cell viability; ELISA kit was used to measure the expression level of pro-inflammatory cytokines; DCFH-DA and corresponding assay kits were employed to determine the production of ROS, SOD, CAT and GSH-px; TUNEL assay and western blot were performed to detect cell apoptosis. STAT3 activity was also detected by western blot. Treatment with CTN alone had no impact on SH-SY5Y cell viability, but CTN pre-treatment effectively improved MPP+-induced loss of viability in SH-SY5Y cells. Moreover, pre-treatment with CTN inhibited MPP+-induced oxidative stress, apoptosis and STAT3 activity in SH-SY5Y cells, whereas this inhibitory effect was diminished after additional treatment with STAT3 agonist. CTN ameliorates MPP+-induced oxidative stress and apoptosis of SH-SY5Y neuroblastoma cells by inhibiting the expression of STAT3. Therefore, CTN could be a promising therapeutic agent, and STAT3 could be a potential target for PD treatment.
Collapse
Affiliation(s)
- Quanzhe Wang
- Department of Pharmacy, The Third Affiliated Hospital of Baotou Medical College, No.16 Tuanjie Street, Qingshan District, Baotou City, 014030, Inner Mongolia, China
| | - Yan Liu
- Department of Pharmacy, The Third Affiliated Hospital of Baotou Medical College, No.16 Tuanjie Street, Qingshan District, Baotou City, 014030, Inner Mongolia, China.
| |
Collapse
|
9
|
Muhammad F, Liu Y, Zhou Y, Yang H, Li H. Antioxidative role of Traditional Chinese Medicine in Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114821. [PMID: 34838943 DOI: 10.1016/j.jep.2021.114821] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neuroprotective Traditional Chinese Medicine (TCM) has been practiced in alternative medicine from early days. TCM-derived neuroprotective compounds, such as Chrysin, Cannabidiol, Toonasinoids, and β-asaron, exert significant effectiveness's towards Parkinson's disease (PD). Further, these neuroprotective TCM showed antioxidative, anti-inflammatory, anti-tumor, anti-septic, analgesic properties. Recent research showed that the reduction in the reactive oxygen species (ROS) decreased the α-synuclein (α-syn) toxicity and enhanced the dopaminergic neuron regenerations, the main hallmarks of PD. Therefore, the neuroprotective effects of novel TCM due to its antiradical activities needed deep investigations. AIMS OF THE STUDY This review aims to enlighten the neuroprotective TCM and its components with their antioxidative properties to the scientific community for future research. METHOD The relevant information on the neuroprotective TCM was gathered from scientific databases (PubMed, Web of Science, Google Scholar, ScienceDirect, SciFinder, Wiley Online Library, ACS Publications, and CNKI). Information was also gained from MS and Ph.D. thesis, books, and online databases. The literature cited in this review dates from 2001 to June 2, 0201. RESULTS Novel therapies for PD are accessible, mostly rely on Rivastigmine and Donepezil, offers to slow down the progression of disease at an early stage but embraces lots of disadvantages. Researchers are trying to find a potential drug against PD, which is proficient at preventing or curing the disease progress, but still needed to be further identified. Oxidative insult and mitochondrial dysfunction are thought to be the main culprit of neurodegenerations. Reactive oxygen species (ROS) are the only causative agent in all interactions, leading to PD, from mitochondrial dysfunctions, α-syn aggregative toxicity, and DA neurons degenerations. It is evident from the redox balance, which seems an imperative therapeutic approach against PD and was necessary for the significant neuronal activities. CONCLUSION Our study is explaining the newly discovered TCM and their neuroprotective and antioxidative properties. But also bring up the possible treatment approaches against PD for future researchers.
Collapse
Affiliation(s)
- Fahim Muhammad
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China
| | - Hui Yang
- Instiute of Biology Gansu Academy of Sciences, China.
| | - Hongyu Li
- College of Life Sciences, Lanzhou University, Lanzhou, China; School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, China.
| |
Collapse
|
10
|
Fan J, Zhou J, Qu Z, Peng H, Meng S, Peng Y, Liu T, Luo Q, Dai L. Network Pharmacology and Molecular Docking Elucidate the Pharmacological Mechanism of the OSTEOWONDER Capsule for Treating Osteoporosis. Front Genet 2022; 13:833027. [PMID: 35295951 PMCID: PMC8918533 DOI: 10.3389/fgene.2022.833027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Osteoporosis (OP) is a serious and common bone metabolic disease with bone mass loss and bone microarchitectural deterioration. The OSTEOWONDER capsule is clinically used to treat OP. However, the potential regulatory mechanism of the OSTEOWONDER capsule in treatment of OP remains largely unknown.Methods: The bioactive compounds of herbs and their targets were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The speculative targets of OP were screened out based on GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. The gene modules and hub genes of OP were identified using a weighted gene co-expression network analysis (WGCNA). Then, an herb-compound-target network was constructed based on the above analyses. The biological function of targets was subsequently investigated, and a protein–protein interaction (PPI) network was constructed to identify hub targets of OP. Finally, molecular docking was performed to explore the interaction between compounds and targets.Results: A total of 148 compounds of eight herbs and the corresponding 273 targets were identified based on the TCMSP database. A total of 4,929 targets of OP were obtained based on GeneCards, DisGeNET, and OMIM databases. In addition, six gene modules and 4,235 hub genes of OP were screened out based on WGCNA. Generally, an herb-compound-target network, including eight herbs, 84 compounds, and 58 targets, was constructed to investigate the therapeutic mechanism of the OSTEOWONDER capsule for OP. The biofunction analysis indicated 58 targets mainly associated with the bone metabolism, stimulation response, and immune response. EGFR, HIF1A, MAPK8, IL6, and PPARG were identified as the hub therapeutic targets in OP. Moreover, the interaction between EGFR, HIF1A, MAPK8, IL6, PPARG, and the corresponding compounds (quercetin and nobiletin) was analyzed using molecular docking.Conclusion: Our finding discovered the possible therapeutic mechanisms of the OSTEOWONDER capsule and supplied the potential therapeutic targets for OP.
Collapse
Affiliation(s)
- Jiashuang Fan
- Department of Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianli Zhou
- Department of Internal Medicine, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Zhuan Qu
- Department of Internal Medicine, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Hangya Peng
- Department of Internal Medicine, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Shuhui Meng
- Department of Internal Medicine, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Yaping Peng
- Medical School, Kunming Medical University, Kunming, China
| | - Tengyan Liu
- Medical School, Kunming Medical University, Kunming, China
| | - Qiu Luo
- Department of Internal Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
- *Correspondence: Qiu Luo, ; Lifen Dai,
| | - Lifen Dai
- Department of Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Internal Medicine, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
- *Correspondence: Qiu Luo, ; Lifen Dai,
| |
Collapse
|
11
|
Cai M, Zhuang W, Lv E, Liu Z, Wang Y, Zhang W, Fu W. Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinson's disease via inhibiting p38MAPK/NF-κB signaling pathway. Neurochem Int 2022; 152:105221. [PMID: 34780806 DOI: 10.1016/j.neuint.2021.105221] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023]
Abstract
The study aims to investigate whether kaemperfol (KAE) inhibits microglia pyroptosis and subsequent neuroinflammatory response to exert neuroprotective effects, along with the underlying mechanisms. The results showed KAE could ameliorate the behavioral deficits of Parkinson's disease (PD) rats, inhibit the activation of microglia and astrocytes, reduce the loss of TH-positive neurons, down-regulate levels of pyroptosis-related NOD-like receptor family pyrin domain containing 3 (NLRP3), GasderminD-N Term (GSDMD-NT), caspase1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), interleukin (IL)-1β, and IL-18, and decrease the levels of inflammatory molecules (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)) and p38 mitogen-activated protein kinase/nuclear factor-kappaB (p38MAPK/NF-κB) signaling pathway molecules (p38MAPK, p-p38MAPK, NF-κB, and p-NF-κB) in the substantia nigra of PD rats. Further in vitro study indicated that KAE reversed the activation of BV2 cells and down-regulated the expressions of pyrolytic proteins, inflammatory mediators and key molecules in p38MAPK/NF-κB signaling pathway. Collectively, KAE inhibits the microglia pyroptosis and subsequent neuroinflammatory response to exert neuroprotective effects on 6-hydroxydopamine (6-OHDA)-induced PD rats and lipopolysaccharide (LPS)-induced BV2 inflammatory cells through inhibiting p38MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Meiyun Cai
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenxin Zhuang
- Center for Experimental Medical Research, Weifang Medical University, Weifang, 261053, Shandong, China
| | - E Lv
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Zhan Liu
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yanqiang Wang
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenyi Zhang
- Department of Biotechnology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenyu Fu
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
12
|
Fan H, Li Y, Sun M, Xiao W, Song L, Wang Q, Zhang B, Yu J, Jin X, Ma C, Chai Z. Hyperoside Reduces Rotenone-induced Neuronal Injury by Suppressing Autophagy. Neurochem Res 2021; 46:3149-3158. [PMID: 34415495 DOI: 10.1007/s11064-021-03404-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023]
Abstract
Hyperoside has a variety of pharmacological activities, including anti-liver injury, anti-depression, anti-inflammatory, and anti-cancer activities. However, the effect of hyperoside on Parkinson's disease (PD) is still unclear. Therefore, we tried to study the therapeutic effect and mechanism of hyperoside on PD in vivo and in vitro models. Rotenone was used to induce PD rat model and SH-SY5Y cell injury model, and hyperoside was used for intervention. Immunohistochemistry, animal behavior assays, TUNEL and Western blot were constructed to observe the protective effect and related mechanisms of hyperoside in vivo. Cell counting kit-8 (CCK-8), flow cytometry, Rh123 staining and Western blot were used for in vitro assays. Rapamycin (RAP) pretreatment was used in rescue experiments to verify the relationship between hyperoside and autophagy in rotenone-induced SH-SY5Y cells. Hyperoside promoted the number of tyrosine hydroxylase (TH)-positive cells, improved the behavioral defects of rats, and inhibited cell apoptosis in vivo. Different concentrations of hyperoside had no significant effect on SH-SY5Y cell viability, but dramatically reversed the rotenone-induced decrease in cell viability, increased apoptosis and loss of cell mitochondrial membrane potential in vitro. Additionally, hyperoside reversed the regulation of rotenone on the Beclin1, LC3II, Bax, cleaved caspase 3, Cyc and Bcl-2 expressions in rat SNpc tissues and SH-SY5Y cells, while promoted the regulation of rotenone on the P62 and α-synuclcin. Furthermore, RAP reversed the effect of hyperoside on rotenone-induced SH-SY5Y cells. Hyperoside may play a neuroprotective effect in rotenone-induced PD rat model and SH-SY5Y cell model by affecting autophagy.
Collapse
Affiliation(s)
- Huijie Fan
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Yanrong Li
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Mengying Sun
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Wushuai Xiao
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Lijuan Song
- Neurobiology Research Center, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qing Wang
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Bo Zhang
- Health Commission of Shanxi Province, Taiyuan, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Xiaoming Jin
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indiana University, Bloomington, USA
| | - Cungen Ma
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China.
| | - Zhi Chai
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China.
| |
Collapse
|
13
|
Dong H, Zhang J, Rong H, Zhang X, Dong M. Paeoniflorin and Plycyrrhetinic Acid Synergistically Alleviate MPP +/MPTP-Induced Oxidative Stress through Nrf2-Dependent Glutathione Biosynthesis Mechanisms. ACS Chem Neurosci 2021; 12:1100-1111. [PMID: 33724802 DOI: 10.1021/acschemneuro.0c00544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, combination therapy has proven to be an effective strategy for treating polygenic/multifactorial/complex disorder such as Parkinson's disease (PD). Here, we hypothesized that dual up-regulation of glutamate cysteine ligase (GCL) catalytic subunit (GCLc) and GCL modifier subunit (GCLm) via nuclear factor E2-related factor (Nrf2) contribute to the antioxidant effect of paeoniflorin (PF) synergistically with glycyrrhetinic acid (GA) (henceforth called PF/GA) in the context of MPP+/MPTP neurotoxicity. Expectedly, CompuSyn synergism/antagonism analysis showed that PF/GA exerts synergistic neuroprotection. Moreover, the antioxidant effect of PF was significantly enhanced by the combined administration of GA, although GA alone did not confer the effect. Mechanistically, PF triggered extracellular signal-regulated kinase (ERK1/2) phosphorylation, resulting in Nrf2 nuclear translocation from cytoplasmic pool via de novo synthesis in MPP+-challenged SH-SY5Y cells. Concomitantly, GA activates Akt which in turn induces nuclear accumulation of Nrf2. Especially, PF/GA up-regulated glutamate-cysteine ligase catalytic subunit (Gclc) and glutamate-cysteine ligase modifier subunit (Gclm) are formed via two separate pathways. Furthermore, these results were confirmed through pathway blockade assays using PD98059 (ERK1/2 inhibitor), LY294002 (phosphatidylinositol-3-kinase inhibitor), and shRNA-induced Nrf2 knockdown. Additionally, using a mouse MPTP-induced model of PD, we demonstrated that PF/GA synergistically ameliorates both motor deficits and oxidative stress in the ventral midbrain. In parallel, PF/GA also up-regulated both GCLc and GCLm expression at levels of transcription and translation. Conversely, antiparkinsonism and antioxidant effects of PF/GA were not observed in Nrf2-knockout MPTP-mice. Collectively, these results show that ERK1/2 and Akt activation contribute to the synergistic antioxidant effect of PF/GA. Hence, PF/GA regimen warrants further preclinical and possible clinical study for PD.
Collapse
Affiliation(s)
- Haiying Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Jing Zhang
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hua Rong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Xiaojie Zhang
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
14
|
Lin CH, Chiu HE, Wu SY, Tseng ST, Wu TC, Hung YC, Hsu CY, Chen HJ, Hsu SF, Kuo CE, Hu WL. Chinese Herbal Products for Non-Motor Symptoms of Parkinson's Disease in Taiwan: A Population-Based Study. Front Pharmacol 2021; 11:615657. [PMID: 33584294 PMCID: PMC7873047 DOI: 10.3389/fphar.2020.615657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Objective: Combinations of Chinese herbal products (CHPs) are widely used for Parkinson’s disease (PD) in Taiwan. Thereby, we investigated the use of CHPs in patients with PD. Methods: This study was a population-based cohort study that analyzed the data of patients with PD from the National Health Insurance Research Database. A total of 9,117 patients were selected from a random sample of one million individuals included in this database. We used multiple logistic regression models to estimate the adjusted odds ratios of the demographic factors and analyzed the formula and single CHPs commonly used for PD. Results: Traditional Chinese medicine users were more commonly female, younger, of white-collar status, and residents of Central Taiwan. Chaihu-Jia-Longgu-Muli-Tang was the most commonly used formula, followed by Ma-Zi-Ren-Wan and then Shao-Yao-Gan-Cao-Tang. The most commonly used single herb was Uncaria tomentosa (Willd. ex Schult.) DC., followed by Gastrodia elata Blume and then Radix et Rhizoma Rhei (Rheum palmatum L., Rheum tanguticum Maxim. ex Balf., and Rheum officinale Baill.). Chaihu-Jia-Longgu-Muli-Tang and U. tomentosa (Willd. ex Schult.) DC. have shown neuroprotective effects in previous studies, and they have been used for managing non-motor symptoms of PD. Conclusion: Chaihu-Jia-Longgu-Muli-Tang and U. tomentosa (Willd. ex Schult.) DC. are the most commonly used CHPs for PD in Taiwan. Our results revealed the preferences in medication prescriptions for PD. Further studies are warranted to determine the effectiveness of these CHPs for ameliorating the various symptoms of PD, their adverse effects, and the mechanisms underlying their associated neuroprotective effects.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsienhsueh Elley Chiu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Szu-Ying Wu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan.,Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Ting Tseng
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Chan Wu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Chiang Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Chung Y Hsu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Hsuan-Ju Chen
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Feng Hsu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taipei, Taiwan
| | - Chun-En Kuo
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Wen-Long Hu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan.,Fooyin University College of Nursing, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Ma H, Guo Z, Gai C, Cheng C, Zhang J, Zhang Y, Yang L, Feng W, Gao Y, Sun H. Protective effects of Buyinqianzheng Formula on mitochondrial morphology by PINK1/Parkin pathway in SH-SY5Y cells induced by MPP+. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Botanical Therapeutics for Parkinson’s Disease. Chin J Integr Med 2020; 26:405-411. [DOI: 10.1007/s11655-020-3096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
|
17
|
Li L, Yang D, Li J, Niu L, Chen Y, Zhao X, Oduro PK, Wei C, Xu Z, Wang Q, Li Y. Investigation of cardiovascular protective effect of Shenmai injection by network pharmacology and pharmacological evaluation. BMC Complement Med Ther 2020; 20:112. [PMID: 32293408 PMCID: PMC7158159 DOI: 10.1186/s12906-020-02905-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Shenmai injection (SMI) has been used in the treatment of cardiovascular disease (CVD), such as heart failure, myocardial ischemia and coronary heart disease. It has been found to have efficacy on doxorubicin (DOX)-induced cardiomyopathy. The aims of this study were to explore the underlying molecular mechanisms of SMI treatment on CVD by using network pharmacology and its protective effect on DOX-induced cardiotoxicity by in vitro and in vivo experiment based on network pharmacology prediction. METHODS Network pharmacology method was used to reveal the relationship between ingredient-target-disease and function-pathway of SMI on the treatment of CVD. Chemical ingredients of SMI were collected form TCMSP, BATMAN-TCM and HIT Database. Drugbank, DisGeNET and OMIM Database were used to obtain potential targets for CVD. Networks were visualized utilizing Cytoscape software, and the enrichment analysis was performed using IPA system. Finally, cardioprotective effects and predictive mechanism confirmation of SMI were investigated in H9c2 rat cardiomyocytes and DOX-injured C57BL/6 mice. RESULTS An ingredient-target-disease & function-pathway network demonstrated that 28 ingredients derived from SMI modulated 132 common targets shared by SMI and CVD. The analysis of diseases & functions, top pathways and upstream regulators indicated that the cardioprotective effects of SMI might be associated with 28 potential ingredients, which regulated the 132 targets in cardiovascular disease through regulation of G protein-coupled receptor signaling. In DOX-injured H9c2 cardiomyocytes, SMI increased cardiomyocytes viability, prevented cell apoptosis and increased PI3K and p-Akt expression. This protective effect was markedly weakened by PI3K inhibitor LY294002. In DOX-treated mice, SMI treatment improved cardiac function, including enhancement of ejection fraction and fractional shortening. CONCLUSIONS Collectively, the protective effects of SMI on DOX-induced cardiotoxicity are possibly related to the activation of the PI3K/Akt pathway, as the downstream of G protein-coupled receptor signaling pathway.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dongli Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinghao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chun Wei
- Tianjin Medical University Cancer Hospital, Tianjin, 300060, China
| | - Zongpei Xu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|