1
|
Xia T, Yu J, Du M, Chen X, Wang C, Li R. Vascular endothelial cell injury: causes, molecular mechanisms, and treatments. MedComm (Beijing) 2025; 6:e70057. [PMID: 39931738 PMCID: PMC11809559 DOI: 10.1002/mco2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
Vascular endothelial cells form a single layer of flat cells that line the inner surface of blood vessels, extending from large vessels to the microvasculature of various organs. These cells are crucial metabolic and endocrine components of the body, playing vital roles in maintaining circulatory stability, regulating vascular tone, and preventing coagulation and thrombosis. Endothelial cell injury is regarded as a pivotal initiating factor in the pathogenesis of various diseases, triggered by multiple factors, including infection, inflammation, and hemodynamic changes, which significantly compromise vascular integrity and function. This review examines the causes, underlying molecular mechanisms, and potential therapeutic approaches for endothelial cell injury, focusing specifically on endothelial damage in cardiac ischemia/reperfusion (I/R) injury, sepsis, and diabetes. It delves into the intricate signaling pathways involved in endothelial cell injury, emphasizing the roles of oxidative stress, mitochondrial dysfunction, inflammatory mediators, and barrier damage. Current treatment strategies-ranging from pharmacological interventions to regenerative approaches and lifestyle modifications-face ongoing challenges and limitations. Overall, this review highlights the importance of understanding endothelial cell injury within the context of various diseases and the necessity for innovative therapeutic methods to improve patient outcomes.
Collapse
Affiliation(s)
- Tian Xia
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Jiachi Yu
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Meng Du
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Clinical LaboratoryHuaian Hospital of Huaian CityHuaianJiangsuChina
| | - Ximeng Chen
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Chengbin Wang
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Ruibing Li
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| |
Collapse
|
2
|
Lu C, Ouyang J, Zhang J. Core-shell upconversion nanoparticles with suitable surface modification to overcome endothelial barrier. DISCOVER NANO 2024; 19:181. [PMID: 39532756 PMCID: PMC11557796 DOI: 10.1186/s11671-024-04139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Upconversion nanoparticles (UCNPs), capable of converting near-infrared (NIR) light into high-energy emission, hold significant promise for bioimaging applications. However, the presence of tissue barriers poses a challenge to the effective delivery of nanoparticles (NPs) to target organs. In this study, we demonstrate the core-shell UCNPs modified with cationic biopolymer, i.e., N, N-trimethyl chitosan (TMC), can overcome endothelial barriers. The core-shell UCNP is composed of NaGdF4: Yb3+,Tm3+ (16.7 ± 2.7 nm) as core materials and silica (SiO2) shell. The average particle size of UCNPs@SiO2 is estimated at 26.1 ± 3.7 nm. X-ray diffraction (XRD), transmission electron microscopy (TEM) and element mapping shows the formation of hexagonal crystal structure of β-NaGdF4 and elements doping. The surface of UCNPs@SiO2 has been modified with poly(ethylene glycol) (PEG) to enhance water dispersibility and colloidal stability, and further modified with TMC with the zeta potential increasing from -2.1 ± 0.96 mV to 26.9 ± 12.6 mV. No significant toxic effect is imposed to HUVECs when the cells are treated with core-shell UCNPs with surface modification up to 250 µg/mL. The transport ability of the core-shell UCNPs has been evaluated by using the in vitro endothelial barrier model. Transepithelial electrical resistance (TEER) and immunofluorescence staining of tight junction proteins have been employed to verify the integrity of the in vitro endothelial barrier model. The results indicate that the transport percentage of the UCNPs@SiO2 with PEG and TMC through the model is up to 4.56%, which is twice higher than that of the UCNPs@SiO2 with PEG but without TMC and six times that of the UCNPs@SiO2.
Collapse
Affiliation(s)
- Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Jianying Ouyang
- Quantum and Nanotechnologies Research Center, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
- School of Biomedical Engineering, University of Western Ontario, London, ON, 6A 5B9, Canada.
| |
Collapse
|
3
|
Dubey N, Rahimnejad M, Swanson WB, Xu J, de Ruijter M, Malda J, Squarize CH, Castilho RM, Bottino MC. Integration of Melt Electrowritten Polymeric Scaffolds and Bioprinting for Epithelial Healing via Localized Periostin Delivery. ACS Macro Lett 2024; 13:959-965. [PMID: 39024469 DOI: 10.1021/acsmacrolett.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Management of skin injuries imposes a substantial financial burden on patients and hospitals, leading to diminished quality of life. Periostin (rhOSF), an extracellular matrix component, regulates cell function, including a proliferative healing phase, representing a key protein to promote wound healing. Despite its proven efficacy in vitro, there is a lack of scaffolds that facilitate the in situ delivery of rhOSF. In addition, there is a need for a scaffold to not only support cell growth, but also to resist the mechanical forces involved in wound healing. In this work, we synthesized rhOSF-loaded mesoporous nanoparticles (MSNs) and incorporated them into a cell-laden gelatin methacryloyl (GelMA) ink that was bioprinted into melt electrowritten poly(ε-caprolactone) (PCL) microfibrous (MF-PCL) meshes to develop mechanically competent constructs. Diffraction light scattering (DLS) analysis showed a narrow nanoparticle size distribution with an average size of 82.7 ± 13.2 nm. The rhOSF-loaded hydrogels showed a steady and controlled release of rhOSF over 16 days at a daily dose of ∼40 ng/mL. Compared with blank MSNs, the incorporation of rhOSF markedly augmented cell proliferation, underscoring its contribution to cellular performance. Our findings suggest a promising approach to address challenges such as prolonged healing, offering a potential solution for developing robust, biocompatible, and cell-laden grafts for burn wound healing applications.
Collapse
Affiliation(s)
- Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, 119077 Singapore
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - W Benton Swanson
- Department of Biologic and Materials Science, Division of Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mylène de Ruijter
- Regenerative Medicine Center Utrecht, 3584 Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, 3584 Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Cristiane H Squarize
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan Ann Arbor, Michigan 48109, United States
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan Ann Arbor, Michigan 48109, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Gándara Z, Rubio N, Castillo RR. Delivery of Therapeutic Biopolymers Employing Silica-Based Nanosystems. Pharmaceutics 2023; 15:pharmaceutics15020351. [PMID: 36839672 PMCID: PMC9963032 DOI: 10.3390/pharmaceutics15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The use of nanoparticles is crucial for the development of a new generation of nanodevices for clinical applications. Silica-based nanoparticles can be tailored with a wide range of functional biopolymers with unique physicochemical properties thus providing several advantages: (1) limitation of interparticle interaction, (2) preservation of cargo and particle integrity, (3) reduction of immune response, (4) additional therapeutic effects and (5) cell targeting. Therefore, the engineering of advanced functional coatings is of utmost importance to enhance the biocompatibility of existing biomaterials. Herein we will focus on the most recent advances reported on the delivery and therapeutic use of silica-based nanoparticles containing biopolymers (proteins, nucleotides, and polysaccharides) with proven biological effects.
Collapse
Affiliation(s)
- Zoila Gándara
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| | - Noelia Rubio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| | - Rafael R. Castillo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| |
Collapse
|
5
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Weng T, Wang J, Yang M, Zhang W, Wu P, You C, Han C, Wang X. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing. BURNS & TRAUMA 2022; 10:tkab049. [PMID: 36960274 PMCID: PMC8944711 DOI: 10.1093/burnst/tkab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/14/2021] [Indexed: 11/14/2022]
Abstract
Dermal substitutes provide a template for dermal regeneration and reconstruction. They constitutes an ideal clinical treatment for deep skin defects. However, rapid vascularization remains as a major hurdle to the development and application of dermal substitutes. Several bioactive factors play an important regulatory role in the process of angiogenesis and an understanding of the mechanism of achieving their effective delivery and sustained function is vital. Nanomaterials have great potential for tissue engineering. Effective delivery of bioactive factors (including growth factors, peptides and nucleic acids) by nanomaterials is of increasing research interest. This paper discusses the process of dermal substitute angiogenesis and the roles of related bioactive factors in this process. The application of nanomaterials for the delivery of bioactive factors to enhance angiogenesis and accelerate wound healing is also reviewed. We focus on new systems and approaches for delivering bioactive factors for enhancing angiogenesis in dermal substitutes.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Min Yang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Pan Wu
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chuangang You
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | | |
Collapse
|
7
|
Garibay-Alvarado JA, Herrera-Ríos EB, Vargas-Requena CL, de Jesús Ruíz-Baltazar Á, Reyes-López SY. Cell behavior on silica-hydroxyapatite coaxial composite. PLoS One 2021; 16:e0246256. [PMID: 33974626 PMCID: PMC8112647 DOI: 10.1371/journal.pone.0246256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Progress in the manufacture of scaffolds in tissue engineering lies in the successful combination of materials such as bioceramics having properties as porosity, biocompatibility, water retention, protein adsorption, mechanical strength and biomineralization. Hydroxyapatite (HA) is a ceramic material with lots of potential in tissue regeneration, however, its structural characteristics need to be improved for better performance. In this study, silica-hydroxyapatite (SiO2-HA) non-woven ceramic electrospunned membranes were prepared through the sol-gel method. Infrared spectra, scanning electron microscopy and XRD confirmed the structure and composition of composite. The obtained SiO2-HA polymeric fibers had approximately 230±20 nm in diameter and were then sintered at 800°C average diameter decreased to 110±17 nm. Three configurations of the membranes were obtained and tested in vitro, showing that the composite of SiO2-HA fibers showed a high percentage of viability on a fibroblast cell line. It is concluded that the fibers of SiO2-HA set in a coaxial configuration may be helpful to develop materials for bone regeneration.
Collapse
Affiliation(s)
| | - Ericka Berenice Herrera-Ríos
- Departamento de Estudios de Posgrado e Investigación, Tecnológico Nacional de México campus Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| | | | - Álvaro de Jesús Ruíz-Baltazar
- CONACYT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Simón Yobanny Reyes-López
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
- * E-mail:
| |
Collapse
|
8
|
Abstract
Nanotechnology could offer a new complementary strategy for the treatment of vascular diseases including coronary, carotid, or peripheral arterial disease due to narrowing or blockage of the artery caused by atherosclerosis. These arterial diseases manifest correspondingly as angina and myocardial infarction, stroke, and intermittent claudication of leg muscles during exercise. The pathogenesis of atherosclerosis involves biological events at the cellular and molecular level, thus targeting these using nanomaterials precisely and effectively could result in a better outcome. Nanotechnology can mitigate the pathological events by enhancing the therapeutic efficacy of the therapeutic agent by delivering it at the point of a lesion in a controlled and efficacious manner. Further, combining therapeutics with imaging will enhance the theranostic ability in atherosclerosis. Additionally, nanoparticles can provide a range of delivery systems for genes, proteins, cells, and drugs, which individually or in combination can address various problems within the arteries. Imaging studies combined with nanoparticles helps in evaluating the disease progression as well as the response to the treatment because imaging and diagnostic agents can be delivered precisely to the targeted destinations via nanocarriers. This review focuses on the use of nanotechnology in theranostics of coronary artery and peripheral arterial disease.
Collapse
|
9
|
Castillo RR, Lozano D, Vallet-Regí M. Mesoporous Silica Nanoparticles as Carriers for Therapeutic Biomolecules. Pharmaceutics 2020; 12:E432. [PMID: 32392811 PMCID: PMC7284475 DOI: 10.3390/pharmaceutics12050432] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
The enormous versatility of mesoporous silica nanoparticles permits the creation of a large number of nanotherapeutic systems for the treatment of cancer and many other pathologies. In addition to the controlled release of small drugs, these materials allow a broad number of molecules of a very different nature and sizes. In this review, we focus on biogenic species with therapeutic abilities (proteins, peptides, nucleic acids, and glycans), as well as how nanotechnology, in particular silica-based materials, can help in establishing new and more efficient routes for their administration. Indeed, since the applicability of those combinations of mesoporous silica with bio(macro)molecules goes beyond cancer treatment, we address a classification based on the type of therapeutic action. Likewise, as illustrative content, we highlight the most typical issues and problems found in the preparation of those hybrid nanotherapeutic materials.
Collapse
Affiliation(s)
- Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| |
Collapse
|
10
|
Arriagada F, Nonell S, Morales J. Silica-based nanosystems for therapeutic applications in the skin. Nanomedicine (Lond) 2019; 14:2243-2267. [PMID: 31411537 DOI: 10.2217/nnm-2019-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging, exposure to oxidants, infectious pathogens, inflammogens, ultraviolet radiation and other environmental and genetic factors can result in the development of various skin disorders. Despite immense progress being made in dermatological treatments, many skin-associated problems still remain difficult to treat and various therapies have limitations. Progress in silica-based nanomaterials research provides an opportunity to overcome these drawbacks and improve therapies and is a promising tool for inclusion in clinical practice to treat skin diseases. This review focuses on the use of various types of silica nanoparticles with therapeutic applications in various skin disorders. These nanosystems improve treatment efficacy by maintaining or enhancing the effect of several drugs and are useful tools for nanomedicine, pharmaceutical sciences and future clinical applications.
Collapse
Affiliation(s)
- Francisco Arriagada
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Santi Nonell
- Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| |
Collapse
|
11
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 524] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
12
|
Yang S, Tse WH, Zhang J. Deposition of Antibody Modified Upconversion Nanoparticles on Glass by a Laser-Assisted Method to Improve the Performance of Cell Culture. NANOSCALE RESEARCH LETTERS 2019; 14:101. [PMID: 30877399 PMCID: PMC6420592 DOI: 10.1186/s11671-019-2918-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/03/2023]
Abstract
A suitable surface is vital for maintaining or even promoting cells' function and communication. Recently, studies show that nanostructured coatings could have a potential in improving cell adhesion. However, it hardly minimizes the contamination by using traditional solution-coating technology. Matrix-assisted pulsed laser evaporation (MAPLE) technique is a contamination-free process and demonstrates an efficient process to deposit biopolymer without damaging their backbone on the surface of various substrates. Here, upconversion nanoparticles (NaGdF4: Yb3+, Er3+) with/without immunoglobulin G (IgG) modification were produced by a one-pot synthesis method. The average size of the upconversion nanoparticles (UCNPs) is 50 ± 8 nm. IgG bio-conjugated on the surface of UCNPs can be directly observed by transmission electron microscope (TEM). MAPLE system utilizing a Nd:YAG laser (λ = 532 nm, ν = 10 Hz) is applied to deposit UCNPs with/without IgG modification on the glass bottom of culture dish. In addition, the behaviors of human umbilical vein endothelial cells (HUVECs) cultured on the culture dishes coated with UCNPs with/without IgG have been studied as compared to the control sample, glass coated with gelatin. No toxic effect is imposed on cells. The results of this work indicate that the deposition of UCNPs with/without antibody by the MAPLE technique could enhance the adhesion and proliferation of cells.
Collapse
Affiliation(s)
- Songlin Yang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9 Canada
| | - Wai Hei Tse
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7 Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9 Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7 Canada
| |
Collapse
|
13
|
Piludu M, Medda L, Monduzzi M, Salis A. Gold Nanoparticles: A Powerful Tool to Visualize Proteins on Ordered Mesoporous Silica and for the Realization of Theranostic Nanobioconjugates. Int J Mol Sci 2018; 19:E1991. [PMID: 29986530 PMCID: PMC6073571 DOI: 10.3390/ijms19071991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Ordered mesoporous silica (OMS) is a very interesting nanostructured material for the design and engineering of new target and controlled drug-delivery systems. Particularly relevant is the interaction between OMS and proteins. Large pores (6–9 nm) micrometric particles can be used for the realization of a drug depot system where therapeutic proteins are adsorbed either inside the mesopores or on the external surface. Small pores (1–2 nm) mesoporous silica nanoparticles (MSNs), can be injected in the blood stream. In the latter case, therapeutic proteins are mainly adsorbed on the MSNs’ external surface. Whenever a protein-OMS conjugate is prepared, a diagnostic method to locate the protein either on the internal or the external silica surface is of utmost importance. To visualize the fine localization of proteins adsorbed in mesoporous silica micro- and nanoparticles, we have employed specific transmission electron microscopy (TEM) analytical strategies based on the use of gold nanoparticles (GNPs) conjugates. GNPs are gaining in popularity, representing a fundamental tool to design future applications of MSNs in nanomedicine by realizing theranostic nanobioconjugates. It may be pointed out that we are at the very beginning of a new age of the nanomaterial science: the “mesoporous golden age„.
Collapse
Affiliation(s)
- Marco Piludu
- Department of Biomedical Science, University of Cagliari, Monserrato, CA 09042, Italy.
| | - Luca Medda
- Department of Chemistry, CSGI, University of Florence, Sesto Fiorentino, FI 50019, Italy.
| | - Maura Monduzzi
- Department of Chemical and Geological Sciences, CSGI, University of Cagliari, Monserrato, CA 90042, Italy.
| | - Andrea Salis
- Department of Chemical and Geological Sciences, CSGI, University of Cagliari, Monserrato, CA 90042, Italy.
| |
Collapse
|
14
|
Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:245-269. [PMID: 30357627 DOI: 10.1007/978-981-13-0950-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Growth factors (GFs) are often a key component in tissue engineering and regenerative medicine approaches. In order to fully exploit the therapeutic potential of GFs, GF delivery vehicles have to meet a number of key design criteria such as providing localized delivery and mimicking the dynamic native GF expression levels and patterns. The use of biomaterials as delivery systems is the most successful strategy for controlled delivery and has been translated into different commercially available systems. However, the risk of side effects remains an issue, which is mainly attributed to insufficient control over the release profile. This book chapter reviews the current strategies, chemistries, materials and delivery vehicles employed to overcome the current limitations associated with GF therapies.
Collapse
|
15
|
Abstract
Microparticles with controlled size and morphology are of significant interest in the field of drug delivery. Although advanced nanoparticles have been the object of a substantial number of reviews, fewer have focused on microparticles, especially for the delivery of drugs and growth factors to the wound site. Microparticles show distinct advantages, including ease of production and characterization, extended release properties, high drug loading and little concern about the toxicity as compared with the nanosized systems. This review presents an introduction to the pathophysiology of wound healing and provides an overview of some of the recent advances in microparticle-based drugs and growth factors delivery to wound sites.
Collapse
|
16
|
Quignard S, Coradin T, Powell JJ, Jugdaohsingh R. Silica nanoparticles as sources of silicic acid favoring wound healing in vitro. Colloids Surf B Biointerfaces 2017; 155:530-537. [PMID: 28494431 DOI: 10.1016/j.colsurfb.2017.04.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 12/22/2022]
Abstract
There is good evidence that certain silicon-containing materials promote would healing and their common feature is the delivery of orthosilicic acid (Si(OH)4) either directly or following metabolism. In this respect, amorphous silica nanoparticles (NP), which dissolve in aqueous environments releasing up to 2mM orthosilicic acid, may be appropriate 'slow release' vehicles for bioactive silicon. Here we studied the impact of silica NP suspensions (primary particles∼10nm) in undersaturated conditions (below 2mM Si) with differing degrees of surface charge and dissolution rate on human dermal fibroblasts (CCD-25SK cells) viability, proliferation and migration in a cellular wound model. Silica was shown to be non-toxic for all forms and concentrations tested and whilst the anticipated stimulatory effect of orthosilicic acid was observed, the silica NPs also stimulated fibroblast proliferation and migration. In particular, the amine-functionalized particles promoted wound closure more rapidly than soluble orthosilicic acid alone. We suggest that this effect is related to easy cellular internalization of these particles followed by their intracellular dissolution releasing silicic acid at a faster rate than its direct uptake from the medium. Our findings indicate that amorphous silica-based NPs may favour the delivery and release of bioactive silicic acid to cells, promoting wound healing.
Collapse
Affiliation(s)
- Sandrine Quignard
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Collège de France, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France; Biomineral Research Group, MRC Elsie Widdowson Laboratory, Cambridge CB1 9NL, UK.
| | - Thibaud Coradin
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Collège de France, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Jonathan J Powell
- Biomineral Research Group, MRC Elsie Widdowson Laboratory, Cambridge CB1 9NL, UK; Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Ravin Jugdaohsingh
- Biomineral Research Group, MRC Elsie Widdowson Laboratory, Cambridge CB1 9NL, UK; Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| |
Collapse
|
17
|
Parani M, Lokhande G, Singh A, Gaharwar AK. Engineered Nanomaterials for Infection Control and Healing Acute and Chronic Wounds. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10049-69. [PMID: 27043006 DOI: 10.1021/acsami.6b00291] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoengineered biomaterials have dramatically expanded the range of tools used for infection control and to accelerate wound healing. This review thoroughly describes the developments that are shaping this emerging field and evaluates the potential wound healing applications of recently developed engineered nanomaterials for both acute and chronic wounds. Specifically, we will assess the unique characteristics of engineered nanomaterials that render them applicable for wound healing and infection control. A range of engineered nanomaterials, including polymeric-, metallic- and ceramic-based nanomaterials, that could be used as therapeutic delivery agents to accelerate regeneration of damaged dermal and epidermal tissues are also detailed. Finally, we will detail the current state of engineered nanomaterials for wound regeneration and will identify promising new research directions in infection control.
Collapse
Affiliation(s)
- Madasamy Parani
- Genomics Laboratory, Department of Genetic Engineering, SRM University , Chennai, Tamil Nadu 603 203, India
| | | | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, United States
| | | |
Collapse
|
18
|
Qu H, Bhattacharyya S, Ducheyne P. Silicon oxide based materials for controlled release in orthopedic procedures. Adv Drug Deliv Rev 2015; 94:96-115. [PMID: 26032046 DOI: 10.1016/j.addr.2015.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022]
Abstract
By virtue of excellent tissue responses in bone tissue, silicon oxide (silica) based materials have been used for bone tissue engineering. Creating nanoscale porosity within silica based materials expands their applications into the realm of controlled release area. This additional benefit of silica based materials widens their application in the orthopedic fields in a major way. This review discusses the various chemical and physical forms of silica based controlled release materials, the release mechanisms, the applications in orthopedic procedures and their overall biocompatibility.
Collapse
|
19
|
Yin P, Huang GB, Tse WH, Bao YG, Denstedt J, Zhang J. Nanocomposited silicone hydrogels with a laser-assisted surface modification for inhibiting the growth of bacterial biofilm. J Mater Chem B 2015; 3:3234-3241. [DOI: 10.1039/c4tb01871k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared to the commercial silicone catheters, the nanocomposited silicone hydrogel with a laser-assisted surface modification can reduce the growth of bacteria from 1.20 × 106 CFU cm−2 to 3.69 × 105 CFU cm−2, almost an order of magnitude.
Collapse
Affiliation(s)
- P. Yin
- Department of Chemical and Biochemical Engineering
- University of Western Ontario
- London
- Canada
| | - G. B. Huang
- Department of Chemical and Biochemical Engineering
- University of Western Ontario
- London
- Canada
| | - W. H. Tse
- Department of Medical Biophysics
- University of Western Ontario
- London
- Canada
| | - Y. G. Bao
- Department of Surgery in the Schulich School of Medicine & Dentistry
- University of Western Ontario
- London
- Canada
| | - J. Denstedt
- Department of Surgery in the Schulich School of Medicine & Dentistry
- University of Western Ontario
- London
- Canada
| | - J. Zhang
- Department of Chemical and Biochemical Engineering
- University of Western Ontario
- London
- Canada
- Department of Medical Biophysics
| |
Collapse
|
20
|
Tu C, Das S, Baker AB, Zoldan J, Suggs LJ. Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia. ACS NANO 2015; 9:3436-52. [PMID: 25844518 PMCID: PMC5494973 DOI: 10.1021/nn507269g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Peripheral vascular disease (PVD) is one of the most prevalent vascular diseases in the U.S. afflicting an estimated 8 million people. Obstruction of peripheral arteries leads to insufficient nutrients and oxygen supply to extremities, which, if not treated properly, can potentially give rise to a severe condition called critical limb ischemia (CLI). CLI is associated with extremely high morbidities and mortalities. Conventional treatments such as angioplasty, atherectomy, stent implantation and bypass surgery have achieved some success in treating localized macrovascular disease but are limited by their invasiveness. An emerging alternative is the use of growth factor (delivered as genes or proteins) and cell therapy for PVD treatment. By delivering growth factors or cells to the ischemic tissue, one can stimulate the regeneration of functional vasculature network locally, re-perfuse the ischemic tissue, and thus salvage the limb. Here we review recent advance in nanomaterials, and discuss how their application can improve and facilitate growth factor or cell therapies. Specifically, nanoparticles (NPs) can serve as drug carrier and target to ischemic tissues and achieve localized and sustained release of pro-angiogenic proteins. As nonviral vectors, NPs can greatly enhance the transfection of target cells with pro-angiogenic genes with relatively fewer safety concern. Further, NPs may also be used in combination with cell therapy to enhance cell retention, cell survival and secretion of angiogenic factors. Lastly, nano/micro fibrous vascular grafts can be engineered to better mimic the structure and composition of native vessels, and hopefully overcome many complications/limitations associated with conventional synthetic grafts.
Collapse
|
21
|
Wang J, Shah ZH, Zhang S, Lu R. Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. NANOSCALE 2014; 6:4418-37. [PMID: 24562100 DOI: 10.1039/c3nr06025j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Silica-based nanocomposites with amorphous silica as the matrix or carrier along with a functional component have been extensively investigated. These nanocomposites combine the advantages of both silica and the functional components, demonstrating great potential for various applications. To synthesize such composites, one of the most frequently used methods is reverse microemulsion due to its convenient control over the size, shape, and structures. The structures of the composites have a decisive significance for their properties and applications. In this review, we tried to categorize the silica-based nanocomposites via reverse microemulsions based on their structures, discussed the syntheses individually for each structure, summarized their applications, and made some perspectives based on the current progress of this field.
Collapse
Affiliation(s)
- Jiasheng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | | | | | | |
Collapse
|
22
|
Perez RA, El-Fiqi A, Park JH, Kim TH, Kim JH, Kim HW. Therapeutic bioactive microcarriers: co-delivery of growth factors and stem cells for bone tissue engineering. Acta Biomater 2014; 10:520-30. [PMID: 24121192 DOI: 10.1016/j.actbio.2013.09.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/14/2013] [Accepted: 09/30/2013] [Indexed: 01/27/2023]
Abstract
Novel microcarriers made of sol-gel-derived bioactive glasses were developed for delivering therapeutic molecules effectively while cultivating stem cells for bone tissue engineering. Silica sols with varying concentration of Ca (0-30 mol.%) were formulated into microspheres ranging from 200 to 300 μm under optimized conditions. A highly mesoporous structure was created, with mesopore sizes of 2.5-6.3 nm and specific surface areas of 420-710 m(2)g(-1), which was highly dependent on the Ca concentration. Therapeutic molecules could be effectively loaded within the mesoporous microcarriers during microsphere formulation. Cytochrome C (cyt C), used as a model protein for the release study, was released in a highly sustainable manner, with an almost zero-order kinetics over a period of months; the amount released was ~2% at 9 days, and 15% at 40 days. A slight increase in the release rate was observed in the microcarrier containing Ca, which was related to the dissolution rate and pore size. The presence of Ca accelerated the formation of hydroxyapatite on the surface of the microcarriers. Cells cultured on the bioactive microcarriers were well adhered and distributed, and proliferated actively, confirming the three-dimensional substrate role of the microcarriers. An in vivo study performed in a rat subcutaneous model demonstrated the satisfactory biocompatibility of the prepared microspheres. As a therapeutic target molecule, basic fibroblast growth factor (bFGF) was incorporated into the microcarriers. A slow release pattern similar to that of cyt C was observed for bFGF. Cells adhered and proliferated to significantly higher levels on the bFGF-loaded microcarriers, demonstrating the effective role of bFGF in cell proliferative potential. It is believed that the developed mesoporous bioactive glass microspheres represent a new class of therapeutic cell delivery carrier, potentially useful in the sustainable delivery of therapeutic molecules such as growth factors, as well as in the support of stem cell proliferation and osteogenesis for bone tissue engineering.
Collapse
Affiliation(s)
- R A Perez
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea
| | | | | | | | | | | |
Collapse
|
23
|
Formiga FR, Tamayo E, Simón-Yarza T, Pelacho B, Prósper F, Blanco-Prieto MJ. Angiogenic therapy for cardiac repair based on protein delivery systems. Heart Fail Rev 2013; 17:449-73. [PMID: 21979836 DOI: 10.1007/s10741-011-9285-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cardiovascular diseases remain the first cause of morbidity and mortality in the developed countries and are a major problem not only in the western nations but also in developing countries. Current standard approaches for treating patients with ischemic heart disease include angioplasty or bypass surgery. However, a large number of patients cannot be treated using these procedures. Novel curative approaches under investigation include gene, cell, and protein therapy. This review focuses on potential growth factors for cardiac repair. The role of these growth factors in the angiogenic process and the therapeutic implications are reviewed. Issues including aspects of growth factor delivery are presented in relation to protein stability, dosage, routes, and safety matters. Finally, different approaches for controlled growth factor delivery are discussed as novel protein delivery platforms for cardiac regeneration.
Collapse
Affiliation(s)
- F R Formiga
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Zhang J, Wang X, Chen L, Li J, Luzak K. Harnessing a nanostructured fluorescence energy transfer sensor for quick detection of extremely small amounts of glucose. J Diabetes Sci Technol 2013; 7:45-52. [PMID: 23439159 PMCID: PMC3692215 DOI: 10.1177/193229681300700106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluorescence technique is one of the major solutions for achieving the continuous and noninvasive glucose sensor for diabetes. In this article, a highly sensitive nanostructured sensor is developed to detect extremely small amounts of aqueous glucose by applying fluorescence energy transfer (FRET). A one-pot method is applied to produce the dextran-fluorescein isothiocyanate (FITC)-conjugating mesoporous silica nanoparticles (MSNs), which afterward interact with the tetramethylrhodamine isothiocyanate (TRITC)-labeled concanavalin A (Con A) to form the FRET nanoparticles (FITC-dextran-Con A-TRITC@MSNs). The nanostructured glucose sensor is then formed via the self-assembly of the FRET nanoparticles on a transparent, flexible, and biocompatible substrate, e.g., poly(dimethylsiloxane). Our results indicate the diameter of the MSNs is 60 ± 5 nm. The difference in the images before and after adding 20 μl of glucose (0.10 mmol/liter) on the FRET sensor can be detected in less than 2 min by the laser confocal laser scanning microscope. The correlation between the ratio of fluorescence intensity, I(donor)/I(acceptor), of the FRET sensor and the concentration of aqueous glucose in the range of 0.04-4 mmol/liter has been investigated; a linear relationship is found. Furthermore, the durability of the nanostructured FRET sensor is evaluated for 5 days. In addition, the recorded images can be converted to digital images by obtaining the pixels from the resulting matrix using Matlab image processing functions. We have also studied the in vitro cytotoxicity of the device. The nanostructured FRET sensor may provide an alternative method to help patients manage the disease continuously.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
25
|
Chung E, Ricles LM, Stowers RS, Nam SY, Emelianov SY, Suggs LJ. Multifunctional nanoscale strategies for enhancing and monitoring blood vessel regeneration. NANO TODAY 2012; 7:514-531. [PMID: 28989343 PMCID: PMC5630157 DOI: 10.1016/j.nantod.2012.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanomedicine has great potential in biomedical applications, and specifically in regenerative medicine and vascular tissue engineering. Designing nanometer-sized therapeutic and diagnostic devices for tissue engineering applications is critical because cells experience and respond to stimuli on this spatial scale. For example, nanoscaffolds, including nanoscalestructured or nanoscale surface-modified vascular scaffolds, can influence cell alignment, adhesion, and differentiation to promote better endothelization. Furthermore, nanoscale contrast agents can be extended to the field of biomedical imaging to monitor and track stem cells to better understand the process of neovascularization. In addition, nanoscale systems capable of delivering biomolecules (e.g. peptides and angiogenic genes/proteins) can influence cell behavior, function, and phenotype to promote blood vessel regeneration. This review will focus on nanomedicine and nanoscale strategies applied to vascular tissue engineering. In particular, some of the latest research and potential applications pertaining to nanoscaffolds, biomedical imaging and cell tracking using nanoscale contrast agents, and nanodelivery systems of bioactive molecules applied to blood vessel regeneration will be discussed. In addition, the overlap between these three areas and their synergistic effects will be examined as related to vascular tissue engineering.
Collapse
Affiliation(s)
- Eunna Chung
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| | - Laura M. Ricles
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| | - Ryan S. Stowers
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| | - Seung Yun Nam
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712-0238, USA
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712-0238, USA
| | - Laura J. Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| |
Collapse
|
26
|
Abstract
Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.
Collapse
Affiliation(s)
- Piyush Koria
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
27
|
Zhai W, He C, Wu L, Zhou Y, Chen H, Chang J, Zhang H. Degradation of hollow mesoporous silica nanoparticles in human umbilical vein endothelial cells. J Biomed Mater Res B Appl Biomater 2012; 100:1397-403. [DOI: 10.1002/jbm.b.32711] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/20/2012] [Accepted: 03/11/2012] [Indexed: 12/14/2022]
|
28
|
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1504-34. [PMID: 22378538 DOI: 10.1002/adma.201104763] [Citation(s) in RCA: 1812] [Impact Index Per Article: 139.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 05/18/2023]
Abstract
In the past decade, mesoporous silica nanoparticles (MSNs) have attracted more and more attention for their potential biomedical applications. With their tailored mesoporous structure and high surface area, MSNs as drug delivery systems (DDSs) show significant advantages over traditional drug nanocarriers. In this review, we overview the recent progress in the synthesis of MSNs for drug delivery applications. First, we provide an overview of synthesis strategies for fabricating ordered MSNs and hollow/rattle-type MSNs. Then, the in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure. The review also highlights the significant achievements in drug delivery using mesoporous silica nanoparticles and their multifunctional counterparts as drug carriers. In particular, the biological barriers for nano-based targeted cancer therapy and MSN-based targeting strategies are discussed. We conclude with our personal perspectives on the directions in which future work in this field might be focused.
Collapse
Affiliation(s)
- Fangqiong Tang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China .
| | | | | |
Collapse
|
29
|
Skaat H, Ziv-Polat O, Shahar A, Margel S. Enhancement of the growth and differentiation of nasal olfactory mucosa cells by the conjugation of growth factors to functional nanoparticles. Bioconjug Chem 2011; 22:2600-10. [PMID: 22029397 DOI: 10.1021/bc200454k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Growth factors are critical components in the tissue engineering approach. Basic fibroblast growth factor (bFGF), a representative growth factor, stimulates the cellular functions of various cells and has been used extensively for the repair and regeneration of tissues. The in vivo half-life time of free bFGF is short, about 3-10 min, due to rapid enzymatic degradation. Stabilization of the bFGF was accomplished by the covalent or physical conjugation of this factor to fluorescent maghemite (γ-Fe(2)O(3)) nanoparticles. In the present study, nasal olfactory mucosa (NOM) cells from adult rats were cultured in suspension on chitosan microcarriers (MCs) in the presence of the nonconjugated or bFGF-conjugated nanoparticles, or the free factor. The floating cells/nonconjugated, conjugated, or free bFGF/MCs aggregates were then seeded in a viscous gel. In this manuscript, we are the first to report that the stabilization of the factor by its conjugation to these nanoparticles significantly improved NOM cell-proliferation properties (migration, growth, and differentiation), compared to the same concentration, or even five times higher, of the free factor. This novel approach may significantly contribute to the advancement of the tissue engineering field.
Collapse
Affiliation(s)
- Hadas Skaat
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan, Israel
| | | | | | | |
Collapse
|
30
|
Mumin AM, Barrett JW, Dekaban GA, Zhang J. Dendritic cell internalization of foam-structured fluorescent mesoporous silica nanoparticles. J Colloid Interface Sci 2011; 353:156-62. [DOI: 10.1016/j.jcis.2010.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 12/23/2022]
|
31
|
Effects of excipient formulation on the morphology and aqueous re-dispersibility of dry-powder silica nano-aggregates. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.01.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|