1
|
De S, Ghosh A, Mandal D, Sarkar K, Samanta AP, Basak M, Saha A, Bhattacharya D, Nandi S, Sarkar J, Mandal M, Acharya K, Ghosh P, Chattopadhyay D. Lysine-Mediated Yttrium Oxide Nanoparticle-Incorporated Nanofibrous Scaffolds with Tunable Cell Adhesion, Proliferation, and Antimicrobial Potency for In Vitro Wound-Healing Applications. ACS APPLIED BIO MATERIALS 2024; 7:6414-6429. [PMID: 39287553 DOI: 10.1021/acsabm.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The intricate healing mechanism of chronic wounds and their multitude of healing-related obstacles, such as infections, compromised cellular processes, and impediments to the healing process, pose a significant healthcare problem. Exploration of metal oxide nanoparticles, such as yttrium oxide (Y2O3) nanoparticles, can lead to innovative discoveries in the field of chronic wound healing by offering cues that promote cell proliferation in the scaffolds. To achieve this, Y2O3 nanoparticles were synthesized and incorporated within poly(vinyl alcohol) (PVA) nanofibrous scaffolds. Moreover, lysine was infused in the nanofibrous scaffolds to tune its cell adhesion and antimicrobial property. The structure and morphology of the synthesized nanofibers were confirmed through various physicochemical characterizations. Notably, all the fabricated scaffolds have remarkably tuned WVTR values within the range of 2000-2500 g/m2/day, favorable for removing the wound exudate, which facilitate the healing process. The scaffolds exhibited substantial antimicrobial property of approximately 68% and 72.2% against both E. coli and S. aureus at optimized Y2O3 loading. They further prevented the formation of biofilm by 68.6% for S. aureus and 51.2% for P. aeruginosa, suggesting the inhibition of recurrent wound infection. The scaffolds illustrated good blood biocompatibility, cytocompatibility, and cell adhesion capabilities. In vitro ROS inhibition study also corroborated the antioxidant property of the scaffold. Similarly, the wound scratching experiment showed high proliferative capability of a yttria-loaded PVA/lysine (S3) sample through the development of an extracellular matrix support. Molecular insight of wound healing was also validated through flow cytometry analysis and immunocytochemistry imaging studies. The findings revealed increased collagen I (Col-I) expression of approximately 19.48% in cultured fibrocytes. The findings are validated from immunocytochemistry imaging. In summary, the results furnish a captivating paradigm for the use of these scaffolds as a therapeutic biomaterial and to foster their potential efficacy toward wound care management.
Collapse
Affiliation(s)
- Sriparna De
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata, West Bengal 700125, India
| | - Adrija Ghosh
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Debashmita Mandal
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Kunal Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019, India
| | - Arpita Priyadarshini Samanta
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
- Department of Jute and Fiber Technology, Institute of Jute Technology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700 019, India
| | - Madhurima Basak
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata, West Bengal 700125, India
| | - Abhisek Saha
- Dept. of Clinical Immunology and Rheumatology, SSKM Hospital, Kolkata, West Bengal 700020, India
| | - Dipanjan Bhattacharya
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata, West Bengal 700125, India
| | - Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Jit Sarkar
- Department of Botany, Molecular & Applied Mycology & Plant Pathology Laboratory, University of Calcutta, Kolkata, West Bengal 700 019, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Krishnendu Acharya
- Department of Botany, Molecular & Applied Mycology & Plant Pathology Laboratory, University of Calcutta, Kolkata, West Bengal 700 019, India
| | - Parasar Ghosh
- Dept. of Clinical Immunology and Rheumatology, SSKM Hospital, Kolkata, West Bengal 700020, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| |
Collapse
|
2
|
Peng D, Sun S, Zhao M, Zhan L, Wang X. Current Advances in Nanomaterials Affecting Functions and Morphology of Platelets. J Funct Biomater 2024; 15:188. [PMID: 39057309 PMCID: PMC11278457 DOI: 10.3390/jfb15070188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanomaterials have been extensively used in the biomedical field due to their unique physical and chemical properties. They promise wide applications in the diagnosis, prevention, and treatment of diseases. Nanodrugs are generally transported to target tissues or organs by coupling targeting molecules or enhanced permeability and retention effect (EPR) passively. As intravenous injection is the most common means of administration of nanomedicine, the transport process inevitably involves the interactions between nanoparticles (NPs) and blood cells. Platelets are known to not only play a critical role in normal coagulation by performing adhesion, aggregation, release, and contraction functions, but also be associated with pathological thrombosis, tumor metastasis, inflammation, and immune reactions, making it necessary to investigate the effects of NPs on platelet function during transport, particularly the way in which their physical and chemical properties determine their interaction with platelets and the underlying mechanisms by which they activate and induce platelet aggregation. However, such data are lacking. This review is intended to summarize the effects of NPs on platelet activation, aggregation, release, and apoptosis, as well as their effects on membrane proteins and morphology in order to shed light on such key issues as how to reduce their adverse reactions in the blood system, which should be taken into consideration in NP engineering.
Collapse
Affiliation(s)
| | | | | | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; (D.P.); (S.S.); (M.Z.)
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; (D.P.); (S.S.); (M.Z.)
| |
Collapse
|
3
|
Bakhti A, Shokouhi Z, Mohammadipanah F. Modulation of proteins by rare earth elements as a biotechnological tool. Int J Biol Macromol 2024; 258:129072. [PMID: 38163500 DOI: 10.1016/j.ijbiomac.2023.129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Although rare earth element (REE) complexes are often utilized in bioimaging due to their photo- and redox stability, magnetic and optical characteristics, they are also applied for pharmaceutical applications due to their interaction with macromolecules namely proteins. The possible implications induced by REEs through modification in the function or regulatory activity of the proteins trigger a variety of applications for these elements in biomedicine and biotechnology. Lanthanide complexes have particularly been applied as anti-biofilm agents, cancer inhibitors, potential inflammation inhibitors, metabolic elicitors, and helper agents in the cultivation of unculturable strains, drug delivery, tissue engineering, photodynamic, and radiation therapy. This paper overviews emerging applications of REEs in biotechnology, especially in biomedical imaging, tumor diagnosis, and treatment along with their potential toxic effects. Although significant advances in applying REEs have been made, there is a lack of comprehensive studies to identify the potential of all REEs in biotechnology since only four elements, Eu, Ce, Gd, and La, among 17 REEs have been mostly investigated. However, in depth research on ecotoxicology, environmental behavior, and biological functions of REEs in the health and disease status of living organisms is required to fill the vital gaps in our understanding of REEs applications.
Collapse
Affiliation(s)
- Azam Bakhti
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Zahra Shokouhi
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
4
|
Kamyab H, Chelliapan S, Hayder G, Yusuf M, Taheri MM, Rezania S, Hasan M, Yadav KK, Khorami M, Farajnezhad M, Nouri J. Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: A review of their antimicrobial properties. CHEMOSPHERE 2023; 335:139103. [PMID: 37271472 DOI: 10.1016/j.chemosphere.2023.139103] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Metallic nanoparticles (NPs) are of particular interest as antimicrobial agents in water and wastewater treatment due to their broad suppressive range against bacteria, viruses, and fungi commonly found in these environments. This review explores the potential of different types of metallic NPs, including zinc oxide, gold, copper oxide, and titanium oxide, for use as effective antimicrobial agents in water and wastewater treatment. This is due to the fact that metallic NPs possess a broad suppressive range against bacteria, viruses, as well as fungus. In addition to that, NPs are becoming an increasingly popular alternative to antibiotics for treating bacterial infections. Despite the fact that most research has been focused on silver NPs because of the antibacterial qualities that are known to be associated with them, curiosity about other metallic NPs as potential antimicrobial agents has been growing. Zinc oxide, gold, copper oxide, and titanium oxide NPs are included in this category since it has been demonstrated that these elements have antibacterial properties. Inducing oxidative stress, damage to the cellular membranes, and breakdowns throughout the protein and DNA chains are some of the ways that metallic NPs can have an influence on microbial cells. The purpose of this review was to engage in an in-depth conversation about the current state of the art regarding the utilization of the most important categories of metallic NPs that are used as antimicrobial agents. Several approaches for the synthesis of metal-based NPs were reviewed, including physical and chemical methods as well as "green synthesis" approaches, which are synthesis procedures that do not involve the employment of any chemical agents. Moreover, additional pharmacokinetics, physicochemical properties, and the toxicological hazard associated with the application of silver NPs as antimicrobial agents were discussed.
Collapse
Affiliation(s)
- Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jln Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Gasim Hayder
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Mohammad Mahdi Taheri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Mudassir Hasan
- Department of Chemical Engineering King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Majid Khorami
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuado
| | - Mohammad Farajnezhad
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia
| | - J Nouri
- Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kelpsiene E, Chang T, Khort A, Bernfur K, Odnevall I, Cedervall T, Hua J. The effect of natural biomolecules on yttrium oxide nanoparticles from a Daphnia magna survival rate perspective. Nanotoxicology 2023:1-15. [PMID: 37428876 DOI: 10.1080/17435390.2023.2226712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
The attention to rare earth oxide nanoparticles (NPs), including yttrium oxide (Y2O3), has increased in many fields due to their unique structural characteristics and functional properties. The aim of our study was to investigate the mechanisms by which bio-corona formation on Y2O3 NPs affects their environmental fate and toxicity. The Y2O3 NPs induced toxicity to freshwater filter feeder Daphnia magna at particle concentrations of 1 and 10 mg/L, regardless of particle size. Interactions between naturally excreted biomolecules (e.g. protein, lipids, and polysaccharides) derived from D. magna, and the Y2O3 NPs (30-45 nm) resulted in the formation of an eco-corona, which reduced their toxic effects toward D. magna at a particle concentration of 10 mg/L. No effects were observed at lower concentrations or for the other particle sizes investigated. Copper-zinc (Cu-Zn) superoxide dismutase, apolipophorins, and vitellogenin-1 proteins proved to be the most prominent proteins of the adsorbed corona, and possibly a reason for the reduced toxicity of the 30-45 nm Y2O3 NPs toward D. magna.
Collapse
Affiliation(s)
- Egle Kelpsiene
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Tingru Chang
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Aliaksandr Khort
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Katja Bernfur
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
| | - Inger Odnevall
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tommy Cedervall
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Jing Hua
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Investigation of biocompatible Polyvinylpyrrolidone intercalated yttrium oxide nanocomposites (PVP/Y2O3 NCs) for antibacterial and antitumor applications. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Improvement of Yttrium Oxyfluoride Coating with Modified Precursor Solution for Laser-Induced Hydrothermal Synthesis. COATINGS 2022. [DOI: 10.3390/coatings12060740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the semiconductor manufacturing process, the inner walls of the equipment are coated with yttrium-based oxides for etch resistance against plasma exposure. Yttrium oxyfluoride (YOF) particle synthesis and coating methods have been actively studied owing to their high erosion resistance compared to Y2O3 and Al2O3. Owing to the formation of a rough and porous coating layer by thermal spray-coating, the coating layer disintegrates, as the etching process has been conducted for a long time. Laser-induced synthesis and coating technology offer several advantages, including simplified process steps, ease of handling, and formation of a dense coating layer on the target material. In this study, YOF was coated on an aluminum substrate using a modified precursor solution. The NaF and HMTA were added to the precursor solution, resulting in enhanced synthetic reactivity and stabilizing the oxides. The material coated on the surface was analyzed based on the characteristics of composition, chemical bonding, and phase identification. We found that the coating properties can be improved by using an appropriate combination of modified precursor solutions and laser parameters. Therefore, the findings in this study are expected to be utilized in the field of coating technology.
Collapse
|
8
|
Panda DP, Singh AK, Kundu TK, Athinarayanan S. Visible-light excited polar Dion-Jacobson Rb(Bi1-xEux)2Ti2NbO10 perovskite: Photoluminescence properties and in-vitro bioimaging. J Mater Chem B 2022; 10:935-944. [DOI: 10.1039/d1tb02445k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rare-earth ion-activated oxide phosphors are beneficial to overcome the problems like photobleaching, reduced lifetime, and the blinking of organic dyes and quantum dots for bioimaging applications. In this work, we...
Collapse
|
9
|
Porosnicu I, Butnaru CM, Tiseanu I, Stancu E, Munteanu CVA, Bita BI, Duliu OG, Sima F. Y 2O 3 Nanoparticles and X-ray Radiation-Induced Effects in Melanoma Cells. Molecules 2021; 26:molecules26113403. [PMID: 34199757 PMCID: PMC8200002 DOI: 10.3390/molecules26113403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
The innovative strategy of using nanoparticles in radiotherapy has become an exciting topic due to the possibility of simultaneously improving local efficiency of radiation in tumors and real-time monitoring of the delivered doses. Yttrium oxide (Y2O3) nanoparticles (NPs) are used in material science to prepare phosphors for various applications including X-ray induced photodynamic therapy and in situ nano-dosimetry, but few available reports only addressed the effect induced in cells by combined exposure to different doses of superficial X-ray radiation and nanoparticles. Herein, we analyzed changes induced in melanoma cells by exposure to different doses of X-ray radiation and various concentrations of Y2O3 NPs. By evaluation of cell mitochondrial activity and production of intracellular reactive oxygen species (ROS), we estimated that 2, 4, and 6 Gy X-ray radiation doses are visibly altering the cells by inducing ROS production with increasing the dose while at 6 Gy the mitochondrial activity is also affected. Separately, high-concentrated solutions of 25, 50, and 100 µg/mL Y2O3 NPs were also found to affect the cells by inducing ROS production with the increase of concentration. Additionally, the colony-forming units assay evidenced a rather synergic effect of NPs and radiation. By adding the NPs to cells before irradiation, a decrease of the number of proliferating cell colonies was observed with increase of X-ray dose. DNA damage was evidenced by quantifying the γ-H2AX foci for cells treated with Y2O3 NPs and exposed to superficial X-ray radiation. Proteomic profile confirmed that a combined effect of 50 µg/mL Y2O3 NPs and 6 Gy X-ray dose induced mitochondria alterations and DNA changes in melanoma cells.
Collapse
Affiliation(s)
- Ioana Porosnicu
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
- Faculty of Physics, Doctoral School on Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele-Ilfov, Romania;
| | - Cristian M. Butnaru
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
- Correspondence: (C.M.B.); (F.S.)
| | - Ion Tiseanu
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
| | - Elena Stancu
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
| | - Cristian V. A. Munteanu
- Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Bogdan I. Bita
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
| | - Octavian G. Duliu
- Faculty of Physics, Doctoral School on Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele-Ilfov, Romania;
| | - Felix Sima
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
- Correspondence: (C.M.B.); (F.S.)
| |
Collapse
|
10
|
Kazi GAS, Yamagiwa R. Cytotoxicity and biocompatibility of high mol% yttria containing zirconia. Restor Dent Endod 2020; 45:e52. [PMID: 33294417 PMCID: PMC7691258 DOI: 10.5395/rde.2020.45.e52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/24/2022] Open
Abstract
Objectives Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated. Materials and Methods Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis. Results The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions. Conclusions The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.
Collapse
Affiliation(s)
- Gulsan Ara Sathi Kazi
- Department of Biosystems Engineering, Graduate School of Science and Technology, Yamagata University, Yamagata, Japan
| | - Ryo Yamagiwa
- Department of Biosystems Engineering, Graduate School of Science and Technology, Yamagata University, Yamagata, Japan
| |
Collapse
|
11
|
Guerrero Correa M, Martínez FB, Vidal CP, Streitt C, Escrig J, de Dicastillo CL. Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1450-1469. [PMID: 33029474 PMCID: PMC7522459 DOI: 10.3762/bjnano.11.129] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/24/2020] [Indexed: 05/26/2023]
Abstract
The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and "green synthesis" methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.
Collapse
Affiliation(s)
- Matías Guerrero Correa
- Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
| | - Fernanda B Martínez
- Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
| | - Cristian Patiño Vidal
- Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
| | - Camilo Streitt
- Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
| | - Juan Escrig
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
- Department of Physics, University of Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile
| | - Carol Lopez de Dicastillo
- Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
| |
Collapse
|
12
|
Bassous NJ, Garcia CB, Webster TJ. A Study of the Chemistries, Growth Mechanisms, and Antibacterial Properties of Cerium- and Yttrium-Containing Nanoparticles. ACS Biomater Sci Eng 2020; 7:1787-1807. [PMID: 33966381 DOI: 10.1021/acsbiomaterials.0c00776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Under the current climate, physicians prescribe antibiotics for treating bacterial infections, and such a limitation to a single class of drugs is disadvantageous since antibiotic-resistant bacteria have adapted to withstanding their stresses. Antibiotic alternatives are sought, and herein metal nanoparticles comprised of the rare earth elements cerium and yttrium were determined to invoke toxicity on methicillin-resistant Staphylococcus aureus (MRSA) and a multi-drug-resistant strain of Escherichia coli (MDR E. coli). Ceria nanoparticles, yttrium-doped ceria nanoparticles, and cerium-doped yttria nanoparticles were fabricated by a wet chemical route, homogeneous precipitation in hexamethylenetetramine (HMT). To demonstrate the drastic variations in nanoparticle structure and toxicity that occur when the synthesis method and solvent are substituted, two additional approaches involving solvothermal and hydrothermal reactions were pursued in the production of yttrium-containing nanoparticles. Intrinsic nanoparticle features of size, morphology, and composition were construed by physiochemical characterizations, which aided in the elaboration of chemical reaction and growth mechanisms. It was determined by in vitro plate count assays that ceria nanoparticles which had been doped using the yttrium metal precursor after 30 min of the HMT reaction, at 500 μg/mL, were the most effective at inhibiting MRSA growth without imposing significant cytotoxicity on human dermal fibroblast cells. A total of 500 μg/mL of cerium- and yttrium-containing nanoparticles, prepared in a 1:1 molar ratio, were similarly biocompatible and antimicrobial, in the case of MDR E. coli. Indeed, as this study showed, nanoalternatives to antibiotics are feasible, adaptable, and can be facilely produced. The possible clinical applications of the rare earth metal nanoparticles are variegated, and ceria and yttria nanoparticles are additionally credited in the literature as dynamic antioxidants, regulators of tissue regeneration, and anticancer agents.
Collapse
Affiliation(s)
- Nicole J Bassous
- Department of Chemical Engineering, Northeastern University, Boston Massachusetts 02115, United States
| | - Caterina Bartomeu Garcia
- Department of Chemical Engineering, Northeastern University, Boston Massachusetts 02115, United States
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston Massachusetts 02115, United States
| |
Collapse
|
13
|
Matharu RK, Ciric L, Ren G, Edirisinghe M. Comparative Study of the Antimicrobial Effects of Tungsten Nanoparticles and Tungsten Nanocomposite Fibres on Hospital Acquired Bacterial and Viral Pathogens. NANOMATERIALS 2020; 10:nano10061017. [PMID: 32466574 PMCID: PMC7352352 DOI: 10.3390/nano10061017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
A significant proportion of patients acquire hospital associated infections as a result of care within the NHS each year. Numerous antimicrobial strategies, such as antibiotics and surface modifications to medical facilities and instruments, have been devised in an attempt to reduce the incidence of nosocomial infections, but most have been proven unsuccessful and unsustainable due to antibiotic resistance. Therefore, the need to discover novel materials that can combat pathogenic microorganisms is ongoing. Novel technologies, such as the potential use of nanomaterials and nanocomposites, hold promise for reducing these infections in the fight against antimicrobial resistance. In this study, the antimicrobial activity of tungsten, tungsten carbide and tungsten oxide nanoparticles were tested against Escherichia coli, Staphylococcus aureus and bacteriophage T4 (DNA virus). The most potent nanoparticles, tungsten oxide, were incorporated into polymeric fibres using pressurised gyration and characterised using scanning electron microscopy and energy dispersive X-ray spectroscopy. The antimicrobial activity of tungsten oxide/polymer nanocomposite fibres was also studied. The results suggest the materials in this study promote mediation of the inhibition of microbial growth in suspension.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK;
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK;
| | - Guogang Ren
- School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
- Correspondence:
| |
Collapse
|
14
|
Panyala A, Chinde S, Kumari SI, Rahman MF, Mahboob M, Kumar JM, Grover P. Comparative study of toxicological assessment of yttrium oxide nano- and microparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis 2020; 34:181-201. [PMID: 30753658 DOI: 10.1093/mutage/gey044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/25/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
Despite their enormous advantages, nanoparticles (NPs) have elicited disquiet over their safety. Among the numerous NPs, yttrium oxide (Y2O3) NPs are utilised in many applications. However, knowledge about their toxicity is limited, and it is imperative to investigate their potential adverse effects. Therefore, this study explored the effect of 28 days of repeated oral exposure of Wistar rats to 30, 120 and 480 mg/kg body weight (bw) per day of Y2O3 NPs and microparticles (MPs). Before initiation of the study, characterisation of the particles by transmission electron microscopy, dynamic light scattering, Brunauer-Emmett-Teller and laser Doppler velocimetry was undertaken. Genotoxicity was evaluated using the comet and micronucleus (MN) assays. Biochemical markers aspartate transaminase, alanine transaminase, alkaline phosphatase, malondialdehyde, superoxide dismutase, reduced glutathione, catalase and lactate dehydrogenase in serum, liver and kidney were determined. Bioaccumulation of the particles was analysed by inductively coupled plasma optical emission spectrometry. The results of the comet and MN assays showed significant differences between the control and groups treated with 120 and 480 mg/kg bw/day Y2O3 NPs. Significant biochemical alterations were also observed at 120 and 480 mg/kg bw/day. Haematological and histopathological changes were documented. Yttrium (Y) biodistribution was detected in liver, kidney, blood, intestine, lungs, spleen, heart and brain in a dose- and the organ-dependent manner in both the particles. Further, the highest levels of Y were found in the liver and the lowest in the brain of the treated rats. More of the Y from NPs was excreted in the urine than in the faeces. Furthermore, NP-treated rats exhibited much higher absorption and tissue accumulation. These interpretations furnish rudimentary data of the apparent genotoxicity of NPs and MPs of Y2O3 as well as the biodistribution of Y. A no-observed adverse effect level of 30 mg/kg bw/day was found after oral exposure of rats to Y2O3 NPs.
Collapse
Affiliation(s)
- Archana Panyala
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Srinivas Chinde
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Srinivas Indu Kumari
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Mohammad Fazlur Rahman
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Mohammed Mahboob
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Jerald Mahesh Kumar
- Animal House Facility, CSIR - Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Paramjit Grover
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Akhtar MJ, Ahamed M, Alrokayan SA, Ramamoorthy MM, Alaizeri ZM. High Surface Reactivity and Biocompatibility of Y 2O 3 NPs in Human MCF-7 Epithelial and HT-1080 FibroBlast Cells. Molecules 2020; 25:molecules25051137. [PMID: 32138335 PMCID: PMC7179248 DOI: 10.3390/molecules25051137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 01/16/2023] Open
Abstract
This study aimed to generate a comparative data on biological response of yttrium oxide nanoparticles (Y2O3 NPs) with the antioxidant CeO2 NPs and pro-oxidant ZnO NPs. Sizes of Y2O3 NPs were found to be in the range of 35±10 nm as measured by TEM and were larger from its hydrodynamic sizes in water (1004 ± 134 nm), PBS (3373 ± 249 nm), serum free culture media (1735 ± 305 nm) and complete culture media (542 ± 108 nm). Surface reactivity of Y2O3 NPs with bovine serum albumin (BSA) was found significantly higher than for CeO2 and ZnO NPs. The displacement studies clearly suggested that adsorption to either BSA, filtered serum or serum free media was quite stable, and was dependent on whichever component interacted first with the Y2O3 NPs. Enzyme mimetic activity, like that of CeO2 NPs, was not detected for the NPs of Y2O3 or ZnO. Cell viability measured by MTT and neutral red uptake (NRU) assays suggested Y2O3 NPs were not toxic in human breast carcinoma MCF-7 and fibroblast HT-1080 cells up to the concentration of 200 μg/mL for a 24 h treatment period. Oxidative stress markers suggested Y2O3 NPs to be tolerably non-oxidative and biocompatible. Moreover, mitochondrial potential determined by JC-1 as well as lysosomal activity determined by lysotracker (LTR) remained un-affected and intact due to Y2O3 and CeO2 NPs whereas, as expected, were significantly induced by ZnO NPs. Hoechst-PI dual staining clearly suggested apoptotic potential of only ZnO NPs. With high surface reactivity and biocompatibility, NPs of Y2O3 could be a promising agent in the field of nanomedicine.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia (M.M.R.)
- Correspondence: ; Tel.: +966-146-96075
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia (M.M.R.)
| | - Salman A. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | | | - ZabnAllah M. Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
16
|
Jeevanandam J, Chan YS, Danquah MK, Law MC. Cytotoxicity Analysis of Morphologically Different Sol-Gel-Synthesized MgO Nanoparticles and Their In Vitro Insulin Resistance Reversal Ability in Adipose cells. Appl Biochem Biotechnol 2019; 190:1385-1410. [PMID: 31776944 DOI: 10.1007/s12010-019-03166-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Insulin resistance is one of the major factors that leads to type 2 diabetes. Although insulin therapies have been shown to overcome insulin resistance, overweight and hypoglycemia are still observed in most cases. The disadvantages of insulin therapies have driven the interest in developing novel curative agents with enhanced insulin resistance reversibility. Magnesium deficiency has also been recognized as a common problem which leads to insulin resistance in both type 1 and 2 diabetes. Oxide nanoparticles demonstrate highly tunable physicochemical properties that can be exploited by engineers to develop unique oxide nanoparticles for tailored applications. Magnesium supplements for diabetic cells have been reported to increase the insulin resistance reversibility. Hence, it is hypothesized that magnesium oxide (MgO) nanoparticles could be molecularly engineered to offer enhanced therapeutic efficacy in reversing insulin resistance. In the present work, morphologically different MgO nanoparticles were synthesized and evaluated for biophysical characteristics, biocompatibility, cytotoxicity, and insulin resistance reversibility. MTT assay revealed that hexagonally shaped MgO nanoparticles are less toxic to 3T3-L1 adipose cells (diabetic) compared with spherically and rod-shaped MgO nanoparticles. MTT assays using VERO cells (normal, non-diabetic) showed that 400 μg/ml of hexagonal MgO nanoparticles were less toxic to both diabetic and non-diabetic cells. DNS glucose assay and western blot showed that hexagonally shaped MgO nanoparticles had reversed 29.5% of insulin resistance whilst fluorescence microscopy studies indicated that the insulin resistance reversal is due to the activation of intracellular enzymes. The probable mechanism for MgO nanoparticles to induce cytotoxic effect and insulin resistance reversal is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Yen San Chan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Ming Chiat Law
- Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| |
Collapse
|
17
|
Augustine R, Dalvi YB, Yadu Nath VK, Varghese R, Raghuveeran V, Hasan A, Thomas S, Sandhyarani N. Yttrium oxide nanoparticle loaded scaffolds with enhanced cell adhesion and vascularization for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109801. [PMID: 31349469 DOI: 10.1016/j.msec.2019.109801] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/20/2019] [Accepted: 05/26/2019] [Indexed: 01/31/2023]
Abstract
In situ tissue engineering is emerging as a novel approach in tissue engineering to repair damaged tissues by boosting the natural ability of the body to heal itself. This can be achieved by providing suitable signals and scaffolds that can augment cell migration, cell adhesion on the scaffolds and proliferation of endogenous cells that facilitate the repair. Lack of appropriate cell proliferation and angiogenesis are among the major issues associated with the limited success of in situ tissue engineering during in vivo studies. Exploitation of metal oxide nanoparticles such as yttrium oxide (Y2O3) nanoparticles may open new horizons in in situ tissue engineering by providing cues that facilitate cell proliferation and angiogenesis in the scaffolds. In this context, Y2O3 nanoparticles were synthesized and incorporated in polycaprolactone (PCL) scaffolds to enhance the cell proliferation and angiogenic properties. An optimum amount of Y2O3-containing scaffolds (1% w/w) promoted the proliferation of fibroblasts (L-929) and osteoblast-like cells (UMR-106). Results of chorioallantoic membrane (CAM) assay and the subcutaneous implantation studies in rats demonstrated the angiogenic potential of the scaffolds loaded with Y2O3 nanoparticles. Gene expression study demonstrated that the presence of Y2O3 in the scaffolds can upregulate the expression of cell proliferation and angiogenesis related biomolecules such as VEGF and EGFR. Obtained results demonstrated that Y2O3 nanoparticles can perform a vital role in tissue engineering scaffolds to promote cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Yogesh B Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala 689 101, India
| | - V K Yadu Nath
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Ruby Varghese
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala 689 101, India
| | - Varun Raghuveeran
- MIMS Research Foundation, Malabar Institute of Medical Sciences (Aster MIMS), Kozhikode, Kerala 673016, India; Nanoscience Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673 601, India
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Neelakandapillai Sandhyarani
- Nanoscience Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673 601, India
| |
Collapse
|
18
|
Gao C, Jin Y, Jia G, Suo X, Liu H, Liu D, Yang X, Ge K, Liang XJ, Wang S, Zhang J. Y 2O 3 Nanoparticles Caused Bone Tissue Damage by Breaking the Intracellular Phosphate Balance in Bone Marrow Stromal Cells. ACS NANO 2019; 13:313-323. [PMID: 30571089 DOI: 10.1021/acsnano.8b06211] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Y2O3 nanoparticles (NPs) have become great promising products for numerous applications in nanoscience especially for biomedical application, therefore increasing the probability of human exposure and gaining wide attention in biosecurity. It is well known that rare earth (RE) materials are deposited in the bone and excreted very slowly. Nevertheless, the effect of Y2O3-based NPs on bone metabolism has not been exactly known yet. In the present study, the effects of Y2O3 NPs on bone marrow stromal cells (BMSCs) and bone metabolism in mice after intravenous injection were studied. The results demonstrated that Y2O3 NPs could be taken up into BMSCs and localized in acidifying intracellular lysosomes and underwent dissolution and transformation from Y2O3 to YPO4, which could lead to a break in the intracellular phosphate balance and induce lysosomal- and mitochondrial-dependent apoptosis pathways. Furthermore, after being administered to mice, a higher concentration of yttrium occurred in bone, which caused the apoptosis of bone cells and induced the destruction of bone structure. However, the formation of a YPO4 coating on the surface of Y2O3 NPs by pretreatment of Y2O3 NPs in lysosome-simulated body fluid could observably decrease the toxicity in vivo and in vitro. This study may be useful for practical application of Y2O3 NPs in the biomedical field.
Collapse
Affiliation(s)
- Chunyue Gao
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Yi Jin
- College of Medical Science , Hebei University , Baoding 071002 , People's Republic of China
| | - Guang Jia
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Xiaomin Suo
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Huifang Liu
- College of Pharmacy , Hebei University , Baoding 071002 , People's Republic of China
| | - Dandan Liu
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Xinjian Yang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Kun Ge
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
| | - Shuxiang Wang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| |
Collapse
|
19
|
Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2081. [PMID: 30355975 PMCID: PMC6266948 DOI: 10.3390/ma11112081] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.
Collapse
Affiliation(s)
- Teddy Tite
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
- Army Centre for Medical Research, RO-010195 Bucharest, Romania.
| | | | | | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| |
Collapse
|
20
|
Debasu ML, Riedl JC, Rocha J, Carlos LD. The role of Li + in the upconversion emission enhancement of (YYbEr) 2O 3 nanoparticles. NANOSCALE 2018; 10:15799-15808. [PMID: 30101238 DOI: 10.1039/c8nr03608j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mechanism of upconversion enhancement for Li+-doped materials is still contentious. Attempting to settle the debate, here the upconversion emission enhancement of (Y0.97-xYb0.02Er0.01Lix)2O3, x = 0.000-0.123, nanoparticles is studied. Li+ incorporation in the Y2O3 host lattice is achieved via co-precipitation and solid-state reaction routes. In contrast to numerous reports, elemental analysis reveals that the former method does not afford Li+-bearing nanoparticles. The solid-state reaction route accomplishes an effective Li+ doping, as witnessed by inductively coupled plasma atomic emission spectroscopy and X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy and powder X-ray diffraction showed an increase in nanoparticle size with increasing Li+ concentration. Rietveld refinement of powder X-ray diffraction data shows that the cubic lattice parameter decreases with increasing Li+ content. The emission quantum yield increases tenfold with increasing Li+ content up to x = 0.123, reaching a maximal value of 0.04% at x = 0.031. XPS and infrared spectroscopy show that the carbonate groups increase with increasing Li+ content, thus not supporting the prevailing view that the upconversion luminescence enhancement observed upon Li+ nanoparticle's doping is due to the decrease of the number of quenching carbonate groups present. Rather, the particle size increment and the decrease in the lattice parameter of the host crystals are shown to be the prime sources of quantum yield enhancement.
Collapse
Affiliation(s)
- Mengistie L Debasu
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
21
|
Wang S, Li F, Hu X, Lv M, Fan C, Ling D. Tuning the Intrinsic Nanotoxicity in Advanced Therapeutics. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shuying Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Fangyuan Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Xi Hu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai 201800 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai 201800 China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Key Laboratory of Biomedical Engineering of the Ministry of Education; College of Biomedical Engineering and Instrument Science; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
22
|
Sonochemical Green Synthesis of Yttrium Oxide (Y2O3) Nanoparticles as a Novel Heterogeneous Catalyst for the Construction of Biologically Interesting 1,3-Thiazolidin-4-ones. Catal Letters 2017. [DOI: 10.1007/s10562-017-2168-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Panyala A, Chinde S, Kumari SI, Grover P. Assessment of genotoxicity and biodistribution of nano- and micron-sized yttrium oxide in rats after acute oral treatment. J Appl Toxicol 2017; 37:1379-1395. [PMID: 28685832 DOI: 10.1002/jat.3505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/26/2022]
Abstract
The increasing use of yttrium oxide (Y2 O3 ) nanoparticles (NPs) entails an improved understanding of their potential impact on the environmental and human health. In the present study, the acute oral toxicity of Y2 O3 NPs and their microparticles (MPs) was carried out in female albino Wistar rats with 250, 500 and 1000 mg kg-1 body weight doses. Before the genotoxicity evaluation, characterization of the particles by transmission electron microscopy, dynamic light scattering and laser Doppler velocimetry was performed. The genotoxicity studies were conducted using micronucleus and comet assays. Results showed that Y2 O3 NP-induced significant DNA damage at higher dose (1000 mg kg-1 body weight) in peripheral blood leukocytes and liver cells, micronucleus formation in bone marrow and peripheral blood cells. The findings from biochemical assays depicted significant alterations in aspartate transaminase, alanine transaminase, alkaline phosphatase, malondialdehyde, superoxide dismutase, reduced glutathione, catalase and lactate dehydrogenase levels in serum, liver and kidneys at the higher dose only. Furthermore, tissue biodistribution of both particles was analyzed by inductively coupled plasma optical emission spectrometry. Bioaccumulation of yttrium (Y) in all tissues was significant and dose-, time- and organ-dependent. Moreover, Y2 O3 NP-treated rats exhibited higher tissue distribution along with greater clearance through urine whereas Y2 O3 MP-dosed animals depicted the maximum amount of Y in the feces. Hence, the results indicated that bioaccumulation of Y2 O3 NPs via its Y ions may induce genotoxic effects.
Collapse
Affiliation(s)
- Archana Panyala
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Srinivas Chinde
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Department of Genetics, Osmania University, Osmania University Main Road, Hyderabad, Telangana, 500007, India
| | - Srinivas Indu Kumari
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Paramjit Grover
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| |
Collapse
|
24
|
Zhang F, Wang Z, Wang S, Fang H, Chen M, Xu D, Tang L, Wang D. Physicochemical properties and ecotoxicological effects of yttrium oxide nanoparticles in aquatic media: Role of low molecular weight natural organic acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:113-120. [PMID: 26840524 DOI: 10.1016/j.envpol.2016.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Understanding how engineered nanoparticles (ENPs) interact with natural organic acids is important to ecological risk assessment of ENPs, but this interaction remains poorly studied. Here, we investigate the dispersion stability, ion release, and toxicity of yttrium oxide nanoparticles (nY2O3) suspensions after exposure to two low molecular weight natural organic acids (LOAs), namely benzoic acid and gallic acid. We find that in the presence of LOAs the nY2O3 suspensions become more stable with surface zeta potential more positive or negative, accompanied by small agglomerated size. LOA interaction with nY2O3 is shown to promote the release of dissolved yttrium from the nanoparticles, depending on the concentrations of LOAs. Toxic effects of the nY2O3 suspensions incubated with LOAs on Scenedesmus obliquus as a function of their mixture levels show three types of signs: stimulation, inhibition, and alleviation. The mechanism of the effects of LOAs on the nY2O3 toxicity may be mainly associated with the degree of agglomeration, particle-induced oxidative stress, and dissolved yttrium. Our results stressed the importance of LOA impacts on the fate and toxicity of ENPs in the aquatic environment.
Collapse
Affiliation(s)
- Fan Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| | - Se Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Hao Fang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Defu Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Lili Tang
- Jiangsu Environmental Monitoring Centre, Nanjing 210036, PR China
| | - Degao Wang
- Department of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| |
Collapse
|
25
|
Rammohan A, Mishra G, Mahaling B, Tayal L, Mukhopadhyay A, Gambhir S, Sharma A, Sivakumar S. PEGylated Carbon Nanocapsule: A Universal Reactor and Carrier for In Vivo Delivery of Hydrophobic and Hydrophilic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:350-362. [PMID: 26646711 DOI: 10.1021/acsami.5b08885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have developed PEGylated mesoporous carbon nanocapsule as a universal nanoreactor and carrier for the delivery of highly crystalline hydrophobic/hydrophilic nanoparticles (NPs) which shows superior biocompatibility, dispersion in body fluids, good biodistribution and NPs independent cellular uptake mechanism. The hydrophobic/hydrophilic NPs without surface modification were synthesized in situ inside the cavities of mesoporous carbon capsules (200-850 nm). Stable and inert nature of carbon capsules in a wide range of reaction conditions like high temperature and harsh solvents, make it suitable for being used as nano/microreactors for the syntheses of a variety of NPs for bioimaging applications, such as NaYF4:Eu(3+)(5%), LaVO4:Eu(3+)(10%), GdVO4:Eu(3+)(10%), Y2O3:Eu(3+)(5%), GdF3:Tb(3+)(10%), Mo, Pt, Pd, Au, and Ag. Multiple types of NPs (Y2O3:Eu(3+)(5%) (hydrophobic) and GdF3:Tb(3+)(10%) (hydrophilic)) were coloaded inside the carbon capsules to create a multimodal agent for magneto-fluorescence imaging. Our in vivo study clearly suggests that carbon capsules have biodistribution in many organs including liver, heart, spleen, lungs, blood pool, and muscles.
Collapse
Affiliation(s)
- Amritha Rammohan
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Gargi Mishra
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Binapani Mahaling
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Lokesh Tayal
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Ahana Mukhopadhyay
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Sanjay Gambhir
- Sanjay Gandhi Post Graduate Institute of Medical Sciences , Lucknow, Uttar Pradesh India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
- Materials Science Programme, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| |
Collapse
|
26
|
Khan S, Ansari AA, Khan AA, Al-Kattan W, Al-Obeed O, Ahmad R. Design, synthesis and in vitro evaluation of anticancer and antibacterial potential of surface modified Tb(OH)3@SiO2core–shell nanoparticles. RSC Adv 2016. [DOI: 10.1039/c5ra17906h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the current study, we modified the surface of Tb(OH)3nanoparticles with a silica layer to enhance their solubility and biocompatibility.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Nanomedicine & Biotechnology Research Unit Department of Pharmaceutics
- College of Pharmacy
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Anees A. Ansari
- King Abdullah Institute for Nanotechnology
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Abdul Arif Khan
- Nanomedicine & Biotechnology Research Unit Department of Pharmaceutics
- College of Pharmacy
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Wael Al-Kattan
- Department of Surgery
- Al-Faisal University
- Riyadh 11451
- Saudi Arabia
| | - Omar Al-Obeed
- Colorectal Research Chair
- Department of Surgery
- King Khalid University Hospital
- College of Medicine
- King Saud University
| | - Rehan Ahmad
- Colorectal Research Chair
- Department of Surgery
- King Khalid University Hospital
- College of Medicine
- King Saud University
| |
Collapse
|
27
|
Toro RG, Caschera D, Palamà IE, D'Amone S, Biasiucci M, Federici F, Gigli G, Cortese B. Unconventional tailorable patterning by solvent-assisted surface-tension-driven lithography. J Colloid Interface Sci 2015; 446:44-52. [PMID: 25656558 DOI: 10.1016/j.jcis.2015.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 11/20/2022]
Abstract
Unconventional nanopatterning methods are emerging as powerful tools for the development of controlled shapes and ordered morphology of nanostructured materials with novel properties and tailorable functions. Here, we report a simple yet straightforward and efficient approach for patterning through unconventional dewetting that involves surface tension driven process. Using this innovative approach, we have successfully demonstrated to be able to prepare surface micro-patterns over large areas deposited through Eu(3+):TiO2 nanoparticles providing rational control over the local nucleation of nanoparticles. Remarkably, these features could be addressed by polar or apolar solvents, suggesting potential applications in bottom-up nanodevices. This paper represents the first such attempt to create an inorganic materials non-lithographic template for the directed deposition of Eu(3+):TiO2 or related metal oxides. The technique, which is driven by the unique chemical properties and geometrical layout of the underlying patterned micrometer-sized templates, enables the construction of micro- and nano-structuration of dispersed inorganic functional materials suitable for electrooptical and photonic applications.
Collapse
Affiliation(s)
- Roberta Grazia Toro
- Institute for the Study of Nanostructured Materials, ISMN-CNR, 00016 Monterotondo Stazione, Roma, Italy
| | - Daniela Caschera
- Institute for the Study of Nanostructured Materials, ISMN-CNR, 00016 Monterotondo Stazione, Roma, Italy
| | - Ilaria Elena Palamà
- National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, 73100 Lecce, Italy
| | - Stefania D'Amone
- National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, 73100 Lecce, Italy
| | - Mariano Biasiucci
- National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, 73100 Lecce, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Roma, Italy; Department of Physics, University Sapienza, P. le A. Moro 2, 00185 Rome, Italy
| | - Fulvio Federici
- Institute for the Study of Nanostructured Materials, ISMN-CNR, 00016 Monterotondo Stazione, Roma, Italy
| | - Giuseppe Gigli
- National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, 73100 Lecce, Italy; Center for Biomolecular Nanotechnologies (CNB) of Italian Institute of Technology (IIT), Lecce, Italy; Department of Mathematics and Physics, University of Salento, Lecce, Italy
| | - Barbara Cortese
- National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, 73100 Lecce, Italy; Department of Physics, University Sapienza, P. le A. Moro 2, 00185 Rome, Italy.
| |
Collapse
|
28
|
Yang S, Hao J, Guo X, Huang H, Cui R, Lin G, Li C, Dong J, Sun B. Eu3+:Y2O3@CNTs—a rare earth filled carbon nanotube nanomaterial with low toxicity and good photoluminescence properties. RSC Adv 2015. [DOI: 10.1039/c4ra14456b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New fluorescent nanomaterials—europium-doped yttria filled CNTs with low toxicity and good photoluminescence properties were synthesized using a supercritical method.
Collapse
Affiliation(s)
- Shangyuan Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Jian Hao
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Xihong Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Huan Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Rongli Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Guoming Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Cheng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Jinquan Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Baoyun Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| |
Collapse
|
29
|
Kaczmarek AM, Van Hecke K, Van Deun R. Nano- and micro-sized rare-earth carbonates and their use as precursors and sacrificial templates for the synthesis of new innovative materials. Chem Soc Rev 2015; 44:2032-59. [DOI: 10.1039/c4cs00433g] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rare-earth carbonate nano- and micro-materials are reviewed, focusing on factors that influence the morphology and luminescence, as well as their applications as precursors and sacrificial templates for other materials.
Collapse
Affiliation(s)
- Anna M. Kaczmarek
- L3- Luminescent Lanthanide Lab
- Department of Inorganic and Physical Chemistry
- Ghent University
- Krijgslaan 281-S3
- Belgium
| | - Kristof Van Hecke
- XStruct
- Department of Inorganic and Physical Chemistry
- Ghent University
- Krijgslaan 281-S3
- Belgium
| | - Rik Van Deun
- L3- Luminescent Lanthanide Lab
- Department of Inorganic and Physical Chemistry
- Ghent University
- Krijgslaan 281-S3
- Belgium
| |
Collapse
|
30
|
Mitra RN, Merwin MJ, Han Z, Conley SM, Al-Ubaidi MR, Naash MI. Yttrium oxide nanoparticles prevent photoreceptor death in a light-damage model of retinal degeneration. Free Radic Biol Med 2014; 75:140-8. [PMID: 25066531 PMCID: PMC4171208 DOI: 10.1016/j.freeradbiomed.2014.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023]
Abstract
Photoreceptor (PR) cells are prone to accumulation of reactive oxygen species (ROS) and oxidative stress. An imbalance between the production of ROS and cellular antioxidant defenses contributes to PR degeneration and blindness in many different ocular disease states. Yttrium oxide (Y2O3) nanoparticles (NPs) are excellent free radical scavengers owing to their nonstoichiometric crystal defects. Here we utilize a murine light-stress model to test the efficacy of Y2O3 NPs (~10-14nm in diameter) in ameliorating retinal oxidative stress-associated degeneration. Our studies demonstrate that intravitreal injections of these NPs at doses ranging from 0.1 to 5.0µM 2 weeks before acute light stress protect PRs from degeneration. This protection is reflected both structurally (i.e., decreased light-associated thinning of the outer nuclear layer) and functionally (i.e., preservation of scotopic and photopic electroretinogram amplitudes). We also observe preservation of structure and function when NPs are delivered immediately after acute light stress, although the magnitude of the preservation is smaller, and only doses ranging from 1.0 to 5.0µM were effective. We show that the Y2O3 NPs are nontoxic and well tolerated after intravitreal delivery. Our results suggest that Y2O3 NPs have astonishing antioxidant benefits and, with further exploration, may be an excellent strategy for the treatment of oxidative stress associated with multiple forms of retinal degeneration.
Collapse
Affiliation(s)
- Rajendra N Mitra
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Miles J Merwin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zongchao Han
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muayyad R Al-Ubaidi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muna I Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
31
|
Parchur AK, Ansari AA, Singh BP, Hasan TN, Syed NA, Rai SB, Ningthoujam RS. Enhanced luminescence of CaMoO₄:Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe₃O₄: cytotoxicity assessment on human liver cancer cells and mesenchymal stem cells. Integr Biol (Camb) 2014; 6:53-64. [PMID: 24287920 DOI: 10.1039/c3ib40148k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Highly water dispersible Eu³⁺ doped CaMoO₄ nanoparticles (core) covered by CaMoO₄ (shell) have been prepared using the polyol method. Significant enhancement in luminescence intensity by core@shell formation is observed due to the decrease of non-radiative rate arising from surface/defect of particles. Effect of 266 nm laser excitation (Mo-O charge transfer band) on the asymmetric ratio (A₂₁ = intensity ratio of electric to magnetic dipole transitions) has been studied and compared with a xenon lamp source. Luminescence intensity increases with the increase of power at 532 nm laser excitation. In order to explore materials, which can show dual functionalities such as luminescence as well as magnetic properties (magnetization of ∼14.2 emu g⁻¹), water dispersible Fe₃O₄-CaMoO₄:Eu hybrid magnetic nanoparticles (MN) have been prepared. This shows good heating ability up to ∼42 °C (hyperthermia) and luminescence in the red region (∼612 nm), which is in a biological window (optical imaging). Biocompatibility of the synthesized Fe₃O₄-CaMoO₄:Eu hybrid magnetic nanoparticles has been evaluated in vitro by assessing their cytotoxicity on human liver cancer cells (HepG2 cells) and hTERT cells using the MTT assay and fluorescent microscopy studies.
Collapse
Affiliation(s)
- A K Parchur
- Department of Physics, Banaras Hindu University, Varanasi-221005, India
| | | | | | | | | | | | | |
Collapse
|
32
|
Selvaraj V, Bodapati S, Murray E, Rice KM, Winston N, Shokuhfar T, Zhao Y, Blough E. Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells. Int J Nanomedicine 2014; 9:1379-91. [PMID: 24648735 PMCID: PMC3958544 DOI: 10.2147/ijn.s52625] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The increased use of engineered nanoparticles (NPs) has caused new concerns about the potential exposure to biological systems and the potential risk that these materials may pose on human health. Here, we examined the effects of exposure to different concentrations (0–50 μg/mL) and incubation times (10 hours, 24 hours, or 48 hours) of yttrium oxide (Y2O3) NPs on human embryonic kidney (HEK293) cells. Changes in cellular morphology, cell viability, cell membrane integrity, reactive oxygen species levels, mitochondrial membrane potential, cell death (apoptosis and necrosis), and the DNA damage after NP exposure were compared to the effects seen following incubation with paraquat, a known toxicant. Results The 24-hour inhibitory concentration 50 (IC50) of Y2O3 NPs (41±5 nm in size) in the HEK293 cells was found to be 108 μg/mL. Incubation with Y2O3 NPs (12.25–50 μg/mL) increased the ratio of Bax/Bcl-2, caspase-3 expression and promoted apoptotic- and necrotic-mediated cell death in both a concentration and a time-dependent manner. Decreases in cell survivability were associated with elevations in cellular reactive oxygen species levels, increased mitochondrial membrane permeability, and evidence of DNA damage, which were consistent with the possibility that mitochondria impairment may play an important role in the cytotoxic response. Conclusion These data demonstrate that the Y2O3 NP exposure is associated with increased cellular apoptosis and necrosis in cultured HEK293 cells.
Collapse
Affiliation(s)
| | - Sravanthi Bodapati
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Elizabeth Murray
- Department of Integrated Science and Technology, Marshall University, Huntington, WV, USA
| | - Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Nicole Winston
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA
| | - Tolou Shokuhfar
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
| | - Yu Zhao
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
| | - Eric Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Physiology and Toxicology, School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
33
|
Hemmer E, Venkatachalam N, Hyodo H, Hattori A, Ebina Y, Kishimoto H, Soga K. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. NANOSCALE 2013; 5:11339-61. [PMID: 23938606 DOI: 10.1039/c3nr02286b] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln(3+)), nanoscopic host materials doped with Ln(3+), e.g. Y2O3:Er(3+),Yb(3+), are promising candidates for NIR-NIR bioimaging. Ln(3+)-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er(3+),Yb(3+), have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.
Collapse
Affiliation(s)
- Eva Hemmer
- Tokyo University of Science, Center for Technologies against Cancer (CTC), 2669 Yamazaki, 278-0022 Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Nanoparticles are presently being studied for optical and biomedical applications such as medical imaging and drug delivery. Nanoparticles impact the cellular environment due to many variables such as size, shape, and composition. How these factors affect cell viability is not fully understood. The purpose of this study is to test the toxicity effects of silver coating (Ag@) Barium Titanium Oxide (BaTiO3) nanoparticles on Rhesus Monkey Retinal Endothelial cells (RhREC's) in culture. The addition of silver to the nanoparticles increases their nonlinear optical properties significantly, making the Ag@BaTiO3 nanoparticles good candidates for nonlinear microscopy contrast agents. We hypothesize that by silver coating nanoparticles, there will be an increase in cell viability at higher concentrations when compared to non-silver coated nanoparticles. RhREC's were treated with BaTiO3 and Ag@BaTiO3 at concentrations of 0, 1.0, 10.0, and 100µg/ml for 24 hours at 37°C + 5%CO2. After 24 hour incubation with respective nanoparticles, cell viability was determined using the trypan blue dye-exclusion method. Treatment with 0, 1.0 and 10.0µg/ml of Ag@BaTiO3 had minimal effect on cell viability, with 90% viable cells remaining at the end of the 24 hours treatment period. However, cells treated with 100µg/ml of Ag@BaTiO3 resulted in a decrease to 51% viable cells. Comparatively, cells treated with 0, 1.0 and 10µg/ml of BaTiO3 had no significant effect on cell viability (90% viable cells after treatment) while the 100µg/ml treatment resulted in a decrease to 29% viable cells. These results show that silver coating of BaTiO3 nanoparticles has a protective effect on cellular toxicity at high concentrations.
Collapse
|
35
|
Alinejad Y, Faucheux N, Soucy G. Preosteoblasts behavior in contact with single-walled carbon nanotubes synthesized by radio frequency induction thermal plasma using various catalysts. J Appl Toxicol 2013; 33:1143-55. [DOI: 10.1002/jat.2875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/01/2013] [Accepted: 02/15/2013] [Indexed: 01/11/2023]
Affiliation(s)
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems Laboratory, Department of Chemical Engineering and Biotechnological Engineering; Université de Sherbrooke; 2500 boul. de l'Université; Sherbrooke; Québec; Canada; J1K 2R1
| | - Gervais Soucy
- Thermal Plasma and Nanomaterial Synthesis Laboratory, Department of Chemical Engineering and Biotechnological Engineering; Université de Sherbrooke; Sherbrooke, 2500 boul. de l'Université; Sherbrooke; Québec; Canada; J1K 2R1
| |
Collapse
|
36
|
Lin YF, Chen JH, Hsu SH, Chung TW. Hydrothermal synthesis of Lewis acid Y2O3 cubes and flowers for the removal of phospholipids from soybean oil. CrystEngComm 2013. [DOI: 10.1039/c3ce40791h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Sandoval S, Yang J, Alfaro JG, Liberman A, Makale M, Chiang CE, Schuller IK, Kummel AC, Trogler WC. Europium Doped TiO(2) Hollow Nanoshells: Two-Photon Imaging of Cell Binding. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2012; 24:4222-4230. [PMID: 23185106 PMCID: PMC3505027 DOI: 10.1021/cm302642g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A simple scalable method to fabricate luminescent monodisperse 200 nm europium doped hollow TiO(2) nanoshell particles is reported. Fluorophore reporter, Eu(3+) ions, are incorporated directly in the NS matrix, leaving the surface free for functionalization and the core free for payload encapsulation. Amine functionalized polystyrene beads were used as templates, and the porous walls of europium doped titania nanoshells were synthesized using titanium(IV) t-butoxide and europium(III) nitrate as reactants. X-ray diffraction analysis identified anatase as the predominant titania phase of the rigid nanoshell wall structure, and photoluminescence spectra showed that the Eu(III) doped TiO(2) nanoshells exhibited a red emission at 617 nm due to an atomic f-f transition. Nanoshell interactions with HeLa cervical cancer cells in vitro were visualized using two-photon microscopy of the Eu(III) emission, and studied using a luminescence ratio analysis to assess nanoshell adhesion and endocytosis.
Collapse
Affiliation(s)
- Sergio Sandoval
- Department of Bioengineering, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
- CalIT, Nanomedicine Laboratory, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
- Moores Cancer Center, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - Jian Yang
- Department of Bioengineering, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
- Moores Cancer Center, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
- Department of Chemistry & Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - Jesus G. Alfaro
- Department of NanoEngineering, Chemical Engineering, & Material Science, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - Alexander Liberman
- Department of Bioengineering, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
- Department of NanoEngineering, Chemical Engineering, & Material Science, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - Milan Makale
- Moores Cancer Center, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - Casey E. Chiang
- Department of Physics, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - Ivan K. Schuller
- Department of Physics, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - Andrew C. Kummel
- CalIT, Nanomedicine Laboratory, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
- Moores Cancer Center, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
- Department of Chemistry & Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
| | - William C. Trogler
- CalIT, Nanomedicine Laboratory, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
- Moores Cancer Center, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
- Department of Chemistry & Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358
| |
Collapse
|
38
|
Alinejad Y, Faucheux N, Soucy G. Induction thermal plasma process modifies the physicochemical properties of materials used for carbon nanotube production, influencing their cytotoxicity. Nanotoxicology 2012; 7:1225-43. [DOI: 10.3109/17435390.2012.733037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Atabaev TS, Kim HK, Hwang YH. Submicron Y2O3 particles codoped with Eu and Tb ions: Size controlled synthesis and tuning the luminescence emission. J Colloid Interface Sci 2012; 373:14-9. [DOI: 10.1016/j.jcis.2011.09.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 01/02/2023]
|
40
|
Atabaev TS, Lee JH, Han DW, Hwang YH, Kim HK. Cytotoxicity and cell imaging potentials of submicron color-tunable yttria particles. J Biomed Mater Res A 2012; 100:2287-94. [PMID: 22499486 DOI: 10.1002/jbm.a.34168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 02/07/2012] [Accepted: 03/02/2012] [Indexed: 01/29/2023]
Abstract
Increased demand of environment protection encouraged scientists to design products and processes that minimize the use and generation of hazardous substances. This work presents comprehensive result of large-scale fabrication and investigation of red-to-green tunable submicron spherical yttria particles codoped with low concentrations of Eu(+3) and Tb(+3). The color emission of synthesized particles can be precisely tuned from red to green by simple variation of Tb/Eu ratio and excitation wavelength. The Tb/Eu-codoped Y(2)O(3) particles did not adversely affect the viability of L-929 fibroblastic cells at concentrations less than 62.5 ppm. Through internalization and wide distribution inside the cells, Tb/Eu codoped Y(2)O(3) particles with intense bright green or red fluorescence rendered cell imaging to be possible. The high brightness, excellent stability, low-toxicity, and imaging capability along with fine color-tunability of synthesized particles enable to find promising application in various areas.
Collapse
Affiliation(s)
- Timur Sh Atabaev
- Department of Nanomaterials Engineering and BK 21 Nano Fusion Technology Division, Pusan National University, Miryang, South Korea
| | | | | | | | | |
Collapse
|
41
|
Atabaev TS, Jin OS, Lee JH, Han DW, Vu HHT, Hwang YH, Kim HK. Facile synthesis of bifunctional silica-coated core–shell Y2O3:Eu3+,Co2+ composite particles for biomedical applications. RSC Adv 2012. [DOI: 10.1039/c2ra21332j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
42
|
Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev 2011; 41:2323-43. [PMID: 22170510 DOI: 10.1039/c1cs15188f] [Citation(s) in RCA: 814] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There are few studies of the long-term consequences of nanoparticles on human health, but governmental agencies, including the United States National Institute for Occupational Safety and Health and Japan's Ministry of Health, have recently raised the question of whether seemingly innocuous materials such as carbon-based nanotubes should be treated with the same caution afforded known carcinogens such as asbestos. Since nanomaterials are increasing a part of everyday consumer products, manufacturing processes, and medical products, it is imperative that both workers and end-users be protected from inhalation of potentially toxic NPs. It also suggests that NPs may need to be sequestered into products so that the NPs are not released into the atmosphere during the product's life or during recycling. Further, non-inhalation routes of NP absorption, including dermal and medical injectables, must be studied in order to understand possible toxic effects. Fewer studies to date have addressed whether the body can eventually eliminate nanomaterials to prevent particle build-up in tissues or organs. This critical review discusses the biophysicochemical properties of various nanomaterials with emphasis on currently available toxicology data and methodologies for evaluating nanoparticle toxicity (286 references).
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Yang J, Sandoval S, Alfaro JG, Aschemeyer S, Liberman A, Martin DT, Makale M, Kummel AC, Trogler WC. Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization, and their interaction with HeLa cells. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:066012. [PMID: 21721813 PMCID: PMC3133801 DOI: 10.1117/1.3593003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A simple method to fabricate Eu(3+) doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu(3+) doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells.
Collapse
Affiliation(s)
- Jian Yang
- University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|