1
|
Qian X, Sheng Y, Jiang Y, Xu Y. Associations of serum lactate and lactate clearance with delirium in the early stage of ICU: a retrospective cohort study of the MIMIC-IV database. Front Neurol 2024; 15:1371827. [PMID: 39011361 PMCID: PMC11246852 DOI: 10.3389/fneur.2024.1371827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Aim This study aimed to investigate the associations of serum lactate level [within and after 24 h of the intensive care unit (ICU) admission] and lactate clearance rate with delirium and assess associations of lactate and lactate clearance rate with 30-day mortality in delirium patients. Methods Data in this retrospective cohort study were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database in 2012-2019. The associations of lactate and lactate clearance rate with delirium were explored through univariable and multivariable logistic regression analyses, whereas the associations of lactate and lactate clearance rate with 30-day mortality in delirium patients were investigated using univariable and multivariable Cox regression analyses. Subgroup analysis was performed for age, gender, sepsis, hypertension, sedative drug, ventilation, antibiotic drug, vasopressors, and the Sequential Organ Failure Assessment (SOFA) score. The evaluation indexes were odds ratios (ORs), hazard ratios (HRs), and 95% confidence intervals (CIs). Results Among 7,812 (14.58%) eligible participants, 4,338 (8.19%) had delirium and 1,903 (24.36%) died within 30 days. After adjusting for covariates, patients with lactic acidosis (lactate level > 5 mmol/L and PH < 7.35) at T0 (within 24 h of the ICU admission) had higher odds of delirium (OR = 1.235, 95%CI: 1.105-1.382). Hyperlactatemia (lactate level 2-5 mmol/L and PH > 7.35) at T1 (after 24 h of the ICU admission) was also associated with higher odds of delirium (OR = 1.277, 95%CI: 1.126-1.447). Lactate clearance rate > 50% was linked to lower odds of delirium (OR = 0.705, 95%CI: 0.613-0.811), and this relationship was also observed in ≥65 years old, female, male, non-sepsis, sepsis, non-hypertension, non-sedative drug use, sedative drug use, ventilation, antibiotic drug use, use of vasopressors, and different SOFA score subgroups (all p < 0.05). Additionally, hyperlactatemia and lactic acidosis (whether at T0 or T1) may be potential risk factors for 30-day mortality in delirium patients, whereas lactate clearance rate ≥ 0 had a potential protective effect on 30-day mortality (all p < 0.05). Conclusion Higher serum lactate levels in the early stage of the ICU were associated with a higher risk of delirium and subsequent mortality. Measures taken to increase the lactate clearance rate are necessary to reduce potential delirium or mortality risk in clinical settings. However, more evidence from prospective studies is needed to verify these findings.
Collapse
Affiliation(s)
- Xiangfeng Qian
- Department of Emergency Medicine, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Sheng
- Department of Emergency Medicine, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinsheng Jiang
- Department of Emergency Medicine, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yong'an Xu
- Department of Emergency Medicine, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Pedrosa L, Hoyos J, Reyes L, Mosteiro A, Zattera L, Topczewski T, Rodríguez-Hernández A, Amaro S, Torné R, Enseñat J. Brain metabolism response to intrahospital transfers in neurocritical ill patients and the impact of microdialysis probe location. Sci Rep 2024; 14:7388. [PMID: 38548829 PMCID: PMC10978944 DOI: 10.1038/s41598-024-57217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Intrahospital transfer (IHT), a routine in the management of neurocritical patients requiring imaging or interventions, might affect brain metabolism. Studies about IHT effects using microdialysis (MD) have produced conflicting results. In these studies, only the most damaged hemisphere was monitored, and those may not reflect the impact of IHT on overall brain metabolism, nor do they address differences between the hemispheres. Herein we aimed to quantify the effect of IHT on brain metabolism by monitoring both hemispheres with bilateral MD. In this study, 27 patients with severe brain injury (10 traumatic brain injury and 17 subarachnoid hemorrhage patients) were included, with a total of 67 IHT. Glucose, glycerol, pyruvate and lactate were measured by MD in both hemispheres for 10 h pre- and post-IHT. Alterations in metabolite levels after IHT were observed on both hemispheres; although these changes were more marked in hemisphere A (most damaged) than B (less damaged). Our results suggest that brain metabolism is altered after an IHT of neurocritical ill patients particularly but not limited to the damaged hemisphere. Bilateral monitorization may be more sensitive than unilateral monitorization for detecting metabolic disturbances not directly related to the course of the disease.
Collapse
Affiliation(s)
- Leire Pedrosa
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
- IDIBAPS Biomedical Research Institute, 08036, Barcelona, Spain
| | - Jhon Hoyos
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Luis Reyes
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Luigi Zattera
- Department of Anesthesiology and Critical Care, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Thomaz Topczewski
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Ana Rodríguez-Hernández
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, 08916, Badalona, Spain
| | - Sergio Amaro
- IDIBAPS Biomedical Research Institute, 08036, Barcelona, Spain
- Comprehensive Stroke Unit, Neurology, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Ramon Torné
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain.
- IDIBAPS Biomedical Research Institute, 08036, Barcelona, Spain.
- Comprehensive Stroke Unit, Neurology, Hospital Clinic of Barcelona, 08036, Barcelona, Spain.
| | - Joaquim Enseñat
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| |
Collapse
|
3
|
Verhulst MMLH, Glimmerveen AB, van Heugten CM, Helmich RCG, Hofmeijer J. MRI factors associated with cognitive functioning after acute onset brain injury: Systematic review and meta-analysis. Neuroimage Clin 2023; 38:103415. [PMID: 37119695 PMCID: PMC10165272 DOI: 10.1016/j.nicl.2023.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Impairments of memory, attention, and executive functioning are frequently reported after acute onset brain injury. MRI markers hold potential to contribute to identification of patients at risk for cognitive impairments and clarification of mechanisms. The aim of this systematic review was to summarize and value the evidence on MRI markers of memory, attention, and executive functioning after acute onset brain injury. We included ninety-eight studies, on six classes of MRI factors (location and severity of damage (n = 15), volume/atrophy (n = 36), signs of small vessel disease (n = 15), diffusion-weighted imaging measures (n = 36), resting-state functional MRI measures (n = 13), and arterial spin labeling measures (n = 1)). Three measures showed consistent results regarding their association with cognition. Smaller hippocampal volume was associated with worse memory in fourteen studies (pooled correlation 0.58 [95% CI: 0.46-0.68] for whole, 0.11 [95% CI: 0.04-0.19] for left, and 0.34 [95% CI: 0.17-0.49] for right hippocampus). Lower fractional anisotropy in cingulum and fornix was associated with worse memory in six and five studies (pooled correlation 0.20 [95% CI: 0.08-0.32] and 0.29 [95% CI: 0.20-0.37], respectively). Lower functional connectivity within the default-mode network was associated with worse cognition in four studies. In conclusion, hippocampal volume, fractional anisotropy in cingulum and fornix, and functional connectivity within the default-mode network showed consistent associations with cognitive performance in all types of acute onset brain injury. External validation and cut off values for predicting cognitive impairments are needed for clinical implementation.
Collapse
Affiliation(s)
- Marlous M L H Verhulst
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands.
| | - Astrid B Glimmerveen
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Caroline M van Heugten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Limburg Brain Injury Center, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rick C G Helmich
- Donders Institute for Brain, Cognition, and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
4
|
Serum lactate monitoring may help to predict neurological function impairment caused by acute metabolism crisis. Sci Rep 2023; 13:2820. [PMID: 36805695 PMCID: PMC9938219 DOI: 10.1038/s41598-023-29506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
To investigate the predictive value of serum lactate on neurological function impairment and the possible etiology. In this retrospective study, all the adult patients admitted to ICU more than 24 h after general anesthesia elective neurosurgery from January 2018 to January 2019 were recruited. The data of the serum lactate every 8 h during the 24 h of ICU admission were acquired and analyzed. 169 patients were included in the outcomes analysis. The average serum lactate after ICU admission was 3.7(3.4-4.1) mmol/L, higher than normal, and serum lactate elevated commonly after neurosurgery. The serum lactate at ICU admission (lactateserum0h) was not correlated with the outcomes, whereas the predictive value increased as the monitoring time was extended. The result indicated that lactateserum8h, the lactateserum16h, and the lactateserum24h were correlated with the primary outcome (difference of GCS scores before the surgery and after 24 h of ICU admission (ΔGCS24h) (p < 0.05). The lactateserum16h and the lactateserum 24 h were correlated with all the outcomes except for the hospital LOS. The ROC curve suggested that the lactateserum24h achieved the best predictive value. Patients with serum lactate non-recovered trend after 24 h of ICU stay had decreased GCS scores and vice versa, as indicated by the graph of the dynamic changes in the serum lactate. The predictive value of the serum glucose/serum lactate ratio at ICU admission (G/Lserum) was analyzed, and the result indicated that it was correlated with the ΔGCS24h (p < 0.05), the G/Lserum can predict neurological impairment earlier. Dynamic serum lactate monitoring and the G/Lserum at ICU admission have predict value on neurological function impairment after neurosurgery which might be attributed to ACMC.
Collapse
|
5
|
Sharma H, McGinnis JP, Kabotyanski KE, Gopinath SP, Goodman JC, Robertson C, Cruz Navarro J. Cerebral microdialysis and glucopenia in traumatic brain injury: A review. Front Neurol 2023; 14:1017290. [PMID: 36779054 PMCID: PMC9911651 DOI: 10.3389/fneur.2023.1017290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Traditionally, intracranial pressure (ICP) and partial brain tissue oxygenation (PbtO2) have been the primary invasive intracranial measurements used to guide management in patients with severe traumatic brain injury (TBI). After injury however, the brain develops an increased metabolic demand which may require an increment in the oxidative metabolism of glucose. Simultaneously, metabolic, and electrical dysfunction can lead to an inability to meet these demands, even in the absence of ischemia or increased intracranial pressure. Cerebral microdialysis provides the ability to accurately measure local concentrations of various solutes including lactate, pyruvate, glycerol and glucose. Experimental and clinical data demonstrate that such measurements of cellular metabolism can yield critical missing information about a patient's physiologic state and help limit secondary damage. Glucose management in traumatic brain injury is still an unresolved question. As cerebral glucose metabolism may be uncoupled from systemic glucose levels due to the metabolic dysfunction, measurement of cerebral extracellular glucose concentrations could provide more predictive information and prove to be a better biomarker to avoid secondary injury of at-risk brain tissue. Based on data obtained from cerebral microdialysis, specific interventions such as ICP-directed therapy, blood glucose increment, seizure control, and/or brain oxygen optimization can be instituted to minimize or prevent secondary insults. Thus, microdialysis measurements of parenchymal metabolic function provides clinically valuable information that cannot be obtained by other monitoring adjuncts in the standard ICU setting.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Himanshu Sharma ✉
| | - John P. McGinnis
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Shankar P. Gopinath
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Jerry C. Goodman
- Department of Pathology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Jovany Cruz Navarro
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States,Department of Anesthesiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Metabolism of Exogenous [2,4- 13C]β-Hydroxybutyrate following Traumatic Brain Injury in 21-22-Day-Old Rats: An Ex Vivo NMR Study. Metabolites 2022; 12:metabo12080710. [PMID: 36005582 PMCID: PMC9414923 DOI: 10.3390/metabo12080710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) is leading cause of morbidity in young children. Acute dysregulation of oxidative glucose metabolism within the first hours after injury is a hallmark of TBI. The developing brain relies on ketones as well as glucose for energy. Thus, the aim of this study was to determine the metabolism of ketones early after TBI injury in the developing brain. Following the controlled cortical impact injury model of TBI, 21-22-day-old rats were infused with [2,4-13C]β-hydroxybutyrate during the acute (4 h) period after injury. Using ex vivo 13C-NMR spectroscopy, we determined that 13C-β-hydroxybutyrate (13C-BHB) metabolism was increased in both the ipsilateral and contralateral sides of the brain after TBI. Incorporation of the label was significantly higher in glutamate than glutamine, indicating that 13C-BHB metabolism was higher in neurons than astrocytes in both sham and injured brains. Our results show that (i) ketone metabolism was significantly higher in both the ipsilateral and contralateral sides of the injured brain after TBI; (ii) ketones were extensively metabolized by both astrocytes and neurons, albeit higher in neurons; (iii) the pyruvate recycling pathway determined by incorporation of the label from the metabolism of 13C-BHB into lactate was upregulated in the immature brain after TBI.
Collapse
|
7
|
Vinh To X, Soni N, Medeiros R, Alateeq K, Nasrallah FA. Traumatic brain injury alterations in the functional connectome are associated with neuroinflammation but not tau in a P30IL tauopathy mouse model. Brain Res 2022; 1789:147955. [PMID: 35636493 DOI: 10.1016/j.brainres.2022.147955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Traumatic Brain Injury (TBI) is often associated with long-term cognitive deficits and altered brain networks which have been linked with accumulation of neurofibrillary tau tangles and neuroinflammation. In this work, we investigated the changes in the brain post-TBI in an Alzheimer's disease pR5 tauopathy model and evaluated the contribution of tauopathy and neuroinflammation to connectivity alterations using resting-state functional Magnetic Resonance Imaging (rs-fMRI). METHOD 26 P301L tau transgenic mice of 8-9 months of age (21-35 g) expressing the human tau isoform carrying the pathogenic P301L mutation were used for the study. Animals were assessed at day 1 and 7 post-injury/craniotomy and were randomly divided into four groups. All animals underwent an MRI scan on a 9.4 T Bruker system where rsfMRI was acquired. Following imaging, brains were stained with pSer (396 + 404), glial fibrillary acidic protein (GFAP), and ionised calcium-binding adaptor molecule-1 (Iba-1). Group-information-guided Independent Component Analysis (GIG-ICA) and region-of-interest (ROI)-based network connectivity approaches were applied. Principal Component Regression was applied to predict connectivity network strength from the corresponding ROIs. RESULTS TBI mice showed decreased functional connectivity in the dentate gyrus, thalamus, and other areas compared to sham animals at day 1 post-injury with the majority of changes resolving at day 7. Principal Component Regression showed only the contralateral CA1 network strength was correlated with the CA1's astrocyte and microglia cell density and the ipsilateral thalamus network strength was correlated with the ipsilateral thalamus' astrocyte and microglia cell density. CONCLUSION We present the first report on the temporal alterations in functional connectivity in a P30IL mouse model following TBI. Connectivity between key regions known to be affected in Alzheimer's disease were short-term and reversible following injury. Connectivity strength in CA1 and thalamus showed significant correlation with astrocyte and microglial cell density but not tau density.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Neha Soni
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Rodrigo Medeiros
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Khawlah Alateeq
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia; The University of California, Irvine, The United States of America.
| |
Collapse
|
8
|
Akrami H, Leahy R, Irimia A, Kim P, Heck C, Joshi A. Neuroanatomic Markers of Posttraumatic Epilepsy Based on MR Imaging and Machine Learning. AJNR Am J Neuroradiol 2022; 43:347-353. [PMID: 35210268 PMCID: PMC8910810 DOI: 10.3174/ajnr.a7436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/01/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Although posttraumatic epilepsy is a common complication of traumatic brain injury, the relationship between these conditions is unclear and early posttraumatic epilepsy detection and prevention remain major unmet clinical challenges. This study aimed to identify imaging biomarkers that predict posttraumatic epilepsy among survivors of traumatic brain injury on the basis of an MR imaging data set. MATERIALS AND METHODS We performed tensor-based morphometry to analyze brain-shape changes associated with traumatic brain injury and to derive imaging features for statistical group comparison. Additionally, machine learning was used to identify structural anomalies associated with brain lesions. Automatically generated brain lesion maps were used to identify brain regions where lesion load may indicate an increased incidence of posttraumatic epilepsy. We used 138 non-posttraumatic epilepsy subjects for training the machine learning method. Validation of lesion delineation was performed on 15 subjects. Group analysis of the relationship between traumatic brain injury and posttraumatic epilepsy was performed on an independent set of 74 subjects (37 subjects with and 37 randomly selected subjects without epilepsy). RESULTS We observed significant F-statistics related to tensor-based morphometry analysis at voxels close to the pial surface, which may indicate group differences in the locations of edema, hematoma, or hemorrhage. The results of the F-test on lesion data showed significant differences between groups in both the left and right temporal lobes. We also saw significant differences in the right occipital lobe and cerebellum. CONCLUSIONS Statistical analysis suggests that lesions in the temporal lobes, cerebellum, and the right occipital lobe are associated with an increased posttraumatic epilepsy incidence.
Collapse
Affiliation(s)
- H. Akrami
- From the Department of Biomedical Engineering (H.A., A.I.)
| | - R.M. Leahy
- Ming Hsieh Department of Electrical and Computer Engineering (R.M.L., A.A.J.)
| | - A. Irimia
- From the Department of Biomedical Engineering (H.A., A.I.),Leonard Davis School of Gerontology (A.I.)
| | - P.E. Kim
- Departments of Radiology (P.E.K.)
| | - C.N. Heck
- Neurology (C.N.H.), University of Southern California, Los Angeles, California
| | - A.A. Joshi
- Ming Hsieh Department of Electrical and Computer Engineering (R.M.L., A.A.J.)
| |
Collapse
|
9
|
Daines SA. The Therapeutic Potential and Limitations of Ketones in Traumatic Brain Injury. Front Neurol 2021; 12:723148. [PMID: 34777197 PMCID: PMC8579274 DOI: 10.3389/fneur.2021.723148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) represents a significant health crisis. To date, no FDA approved pharmacotherapies are available to prevent the neurological deficits caused by TBI. As an alternative to pharmacotherapy treatment of TBI, ketones could be used as a metabolically based therapeutic strategy. Ketones can help combat post-traumatic cerebral energy deficits while also reducing inflammation, oxidative stress, and neurodegeneration. Experimental models of TBI suggest that administering ketones to TBI patients may provide significant benefits to improve recovery. However, studies evaluating the effectiveness of ketones in human TBI are limited. Unanswered questions remain about age- and sex-dependent factors, the optimal timing and duration of ketone supplementation, and the optimal levels of circulating and cerebral ketones. Further research and improvements in metabolic monitoring technology are also needed to determine if ketone supplementation can improve TBI recovery outcomes in humans.
Collapse
Affiliation(s)
- Savannah Anne Daines
- Department of Biology, Utah State University, Logan, UT, United States
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States
| |
Collapse
|
10
|
Gifford EK, Robbins EM, Jaquins-Gerstl A, Rerick MT, Nwachuku EL, Weber SG, Boutelle MG, Okonkwo DO, Puccio AM, Michael AC. Validation of Dexamethasone-Enhanced Continuous-Online Microdialysis for Monitoring Glucose for 10 Days after Brain Injury. ACS Chem Neurosci 2021; 12:3588-3597. [PMID: 34506125 DOI: 10.1021/acschemneuro.1c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) induces a pathophysiologic state that can be worsened by secondary injury. Monitoring brain metabolism with intracranial microdialysis can provide clinical insights to limit secondary injury in the days following TBI. Recent enhancements to microdialysis include the implementation of continuously operating electrochemical biosensors for monitoring the dialysate sample stream in real time and dexamethasone retrodialysis to mitigate the tissue response to probe insertion. Dexamethasone-enhanced continuous-online microdialysis (Dex-enhanced coMD) records long-lasting declines of glucose after controlled cortical impact in rats and TBI in patients. The present study employed retrodialysis and fluorescence microscopy to investigate the mechanism responsible for the decline of dialysate glucose after injury of the rat cortex. Findings confirm the long-term functionality of Dex-enhanced coMD for monitoring brain glucose after injury, demonstrate that intracranial glucose microdialysis is coupled to glucose utilization in the tissues surrounding the probes, and validate the conclusion that aberrant glucose utilization drives the postinjury glucose decline.
Collapse
Affiliation(s)
- Emily K. Gifford
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Elaine M. Robbins
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Michael T. Rerick
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Enyinna L. Nwachuku
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Martyn G. Boutelle
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Takahashi CE, Virmani D, Chung DY, Ong C, Cervantes-Arslanian AM. Blunt and Penetrating Severe Traumatic Brain Injury. Neurol Clin 2021; 39:443-469. [PMID: 33896528 DOI: 10.1016/j.ncl.2021.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Severe traumatic brain injury is a common problem. Current practices focus on the importance of early resuscitation, transfer to high-volume centers, and provider expertise across multiple specialties. In the emergency department, patients should receive urgent intracranial imaging and consideration for tranexamic acid. Close observation in the intensive care unit environment helps identify problems, such as seizure, intracranial pressure crisis, and injury progression. In addition to traditional neurologic examination, patients benefit from use of intracranial monitors. Monitors gather physiologic data on intracranial and cerebral perfusion pressures to help guide therapy. Brain tissue oxygenation monitoring and cerebromicrodialysis show promise in studies.
Collapse
Affiliation(s)
- Courtney E Takahashi
- Department of Neurology, Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA.
| | - Deepti Virmani
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| | - David Y Chung
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA; Division of Neurocritical Care, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Neurovascular Research Unit, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Charlene Ong
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| | - Anna M Cervantes-Arslanian
- Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| |
Collapse
|
12
|
Santiago-Castañeda C, Segovia-Oropeza M, Concha L, Orozco-Suárez SA, Rocha L. Propylparaben Reduces the Long-Term Consequences in Hippocampus Induced by Traumatic Brain Injury in Rats: Its Implications as Therapeutic Strategy to Prevent Neurodegenerative Diseases. J Alzheimers Dis 2020; 82:S215-S226. [PMID: 33185606 DOI: 10.3233/jad-200914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Severe traumatic brain injury (TBI), an important risk factor for Alzheimer's disease, induces long-term hippocampal damage and hyperexcitability. On the other hand, studies support that propylparaben (PPB) induces hippocampal neuroprotection in neurodegenerative diseases. OBJECTIVE Experiments were designed to evaluate the effects of subchronic treatment with PPB on TBI-induced changes in the hippocampus of rats. METHODS Severe TBI was induced using the lateral fluid percussion model. Subsequently, rats received subchronic administration with PPB (178 mg/kg, TBI+PPB) or vehicle (TBI+PEG) daily for 5 days. The following changes were examined during the experimental procedure: sensorimotor dysfunction, changes in hippocampal excitability, as well as neuronal damage and volume. RESULTS TBI+PEG group showed sensorimotor dysfunction (p < 0.001), hyperexcitability (64.2%, p < 0.001), and low neuronal preservation ipsi- and contralateral to the trauma. Magnetic resonance imaging (MRI) analysis revealed lower volume (17.2%; p < 0.01) and great damage to the ipsilateral hippocampus. TBI+PPB group showed sensorimotor dysfunction that was partially reversed 30 days after trauma. This group showed hippocampal excitability and neuronal preservation similar to the control group. However, MRI analysis revealed lower hippocampal volume (p < 0.05) when compared with the control group. CONCLUSION The present study confirms that post-TBI subchronic administration with PPB reduces the long-term consequences of trauma in the hippocampus. Implications of PPB as a neuroprotective strategy to prevent the development of Alzheimer's disease as consequence of TBI are discussed.
Collapse
Affiliation(s)
- Cindy Santiago-Castañeda
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Marysol Segovia-Oropeza
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Luis Concha
- Institute of Neurobiology, National Autonomous University of Mexico, Campus Juriquilla, Queretaro, Mexico
| | - Sandra Adela Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, Specialties Hospital, National Medical Center SXXI (CMN-SXXI), Mexico City, Mexico
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
13
|
Rezaei S, Asgari Mobarake K, Saberi A. BDNF (rs6265) Val < Met polymorphism can buffer cognitive functions against post stroke CT/MRI pathological findings. APPLIED NEUROPSYCHOLOGY-ADULT 2020; 29:971-982. [PMID: 33073590 DOI: 10.1080/23279095.2020.1830774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Brain lesions following stroke have been shown prevalently in CT/MRI, and it was confirmed that lesions usually are accompanied by cognitive deficits. Although previous studies have emphasized that BDNF Val66Met polymorphism had a substantial role in neurogenesis and synaptic plasticity, it remains unclear to what extent an interaction may be appeared between neuroimaging findings and Val66Met variants on different cognitive functions following stroke. In a case-control study the carriers of at least one Val allele (n = 56), were compared with the carriers of Met/Met homozygotes (n = 156) in order to find possible neuroimaging factors in relation to cognitive functions in a sample from the north of Iran. The third edition of Addenbrooke's Cognitive Examination (ACE-III) was used to determine the cognitive functions. There were interactive effects among Val66Met genotypes with dominant hemisphere lesions [F = 6.97, ή2 = 0.03, p = 0.009], cerebral atrophy [F = 5.43, ή2 = 0.03, p = 0.011] and number of lesions [F = 4.32, ή2 = 0.04, p = 0.014], for visuospatial skills, memory, and attention functions respectively; implying that the effect of dominant hemisphere lesions, cerebral atrophy, and multiple lesions on cognitive functions have been modulated by Met/Met homozygosity. The destructive effect of Val/Met homozygosity on cognitive functions was shown to be exacerbated by dominant hemispheric lesions, cerebral atrophy, and multiple lesions following stroke. The findings of present research support our hypothesis that interaction of Val66Met variants with cerebral lesions is associated with cognitive dysfunctions in post stroke conditions; particularly through Met/Met homozygosity which act as a buffer mechanism against some CT/MRI pathological findings.
Collapse
Affiliation(s)
- Sajjad Rezaei
- Department of Psychology, University of Guilan, Rasht, Iran
| | | | - Alia Saberi
- Neuroscience Research Center, Department of Neurology, School of Medicine, PourSina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
14
|
Wright MJ, Monti MM, Lutkenhoff ES, Hardy DJ, Litvin PY, Kelly DF, Guskiewicz K, Cantu RC, Vespa PM, Hovda DA, Lopez WD, Wang C, Swerdloff R, Fuster JM. Memory in repeat sports-related concussive injury and single-impact traumatic brain injury. Brain Inj 2020; 34:1666-1673. [PMID: 32990043 DOI: 10.1080/02699052.2020.1825806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Repeat sports-related concussive/subconcussive injury (RC/SCI) is related to memory impairment. Objective & Methods: We sought to determine memory differences between persons with RC/SCI, moderate-to-severe single-impact traumatic brain injury (SI-TBI), and healthy controls. MRI scans from a subsample of participants with SI-TBI were used to identify the neuroanatomical correlates of observed memory process differences between the brain injury groups. Results: Both brain injury groups evidenced worse learning and recall in contrast to controls, although SI-TBI group had poorer memory than the RC/SCI group. Regarding memory process differences, in contrast to controls, the SI-TBI group evidenced difficulties with encoding, consolidation, and retrieval, while the RC/SCI group showed deficits in consolidation and retrieval. Delayed recall was predicted by encoding, with consolidation as a secondary predictor in the SI-TBI group. In the RC/SCI group, delayed recall was only predicted by consolidation. MRI data showed that the consolidation index we used mapped onto hippocampal atrophy. Conclusions: RC/SCI is primarily associated with consolidation deficits, which differs from SI-TBI. Given the role of the hippocampus in memory consolidation and the fact that hyperphosphorylated tau tends to accumulate in the medial temporal lobe in RC/SCI, consolidation deficits may be a cognitive marker of chronic traumatic encephalopathy in athletes.
Collapse
Affiliation(s)
- Matthew J Wright
- Lundquist Institute at Harbor-UCLA Medical Center , Torrance, California, USA.,Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine , Los Angeles, California, USA
| | - Martin M Monti
- Department of Psychology, UCLA , Los Angeles, California, USA.,Department of Neurosurgery, UCLA School of Medicine , Los Angeles, California, USA
| | - Evan S Lutkenhoff
- Department of Psychology, UCLA , Los Angeles, California, USA.,Department of Neurosurgery, UCLA School of Medicine , Los Angeles, California, USA
| | - David J Hardy
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine , Los Angeles, California, USA.,Department of Psychology, Loyola Marymount University , Los Angeles, California, USA
| | - Pavel Y Litvin
- Lundquist Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Daniel F Kelly
- Department of Neurosurgery, Brain Tumor Center & Pituitary Disorders Program, John Wayne Cancer Institute at Saint John's Health Center , Santa Monica, California, USA
| | - Kevin Guskiewicz
- Department of Exercise & Sports Science, Center for the Study of Retired Athletes at the University of North Carolina , Chapel Hill, North Carolina, USA
| | - Robert C Cantu
- Department of Neurosurgery, Boston University School of Medicine , Boston, Massachusetts, USA
| | - Paul M Vespa
- Department of Neurosurgery, UCLA School of Medicine , Los Angeles, California, USA.,Department of Neurology, UCLA School of Medicine , Los Angeles, California, USA
| | - David A Hovda
- Department of Neurosurgery, UCLA School of Medicine , Los Angeles, California, USA
| | - Walter D Lopez
- Lundquist Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Christina Wang
- Lundquist Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Ronald Swerdloff
- Lundquist Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Joaquín M Fuster
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine , Los Angeles, California, USA
| |
Collapse
|
15
|
Zirpe K, Bamne SN. Opiate and Cerebral Atrophy. Indian J Crit Care Med 2020; 24:218-219. [PMID: 32565630 PMCID: PMC7297242 DOI: 10.5005/jp-journals-10071-23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
How to cite this article: Zirpe K, Bamne SN. Opiate and Cerebral Atrophy. Indian J Crit Care Med 2020;24(4):218-219.
Collapse
Affiliation(s)
- Kapil Zirpe
- Neuro Trauma Unit, Grant Medical Foundation, Ruby Hall Clinic, Pune, Maharashtra, India
| | | |
Collapse
|
16
|
Litvin PY, Siders CA, Waite EN, Woo E, Romero E, Foley J, Ettenhofer ML, Gooding AL, Castellon S, Hinkin C, Wright MJ. Recent cocaine use and memory impairment in HIV. APPLIED NEUROPSYCHOLOGY-ADULT 2019; 28:685-696. [PMID: 31661322 DOI: 10.1080/23279095.2019.1683562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Both Human Immunodeficiency Virus (HIV) and cocaine use have been associated with impairment in neuropsychological functioning. The high comorbidity between HIV and cocaine use highlights the importance of ascertaining whether there is a compounding effect of cocaine use in individuals with HIV. Among neuropsychological domains impacted by HIV, verbal memory deficits have received substantial attention partly because they have been associated with declines in functional status in HIV positive individuals. We collected California Verbal Learning Test-II data from HIV participants who met lifetime diagnostic criteria of cocaine abuse and/or dependence (HIV/CocDx+, N = 80 & HIV/CocDx-, N = 30, respectively) and those with and without recent cocaine use, which was confirmed by toxicology analysis (HIV/Coc+, N = 56 & HIV/Coc-, N = 57, respectively). The Item Specific Deficit Approach (ISDA) was employed to determine any additional cocaine-associated deficits in encoding, consolidation, and retrieval, which attempts to control for potential confounding factors of memory such as attention. Using conventional methods of evaluating memory profiles, we found that the HIV/Coc + group demonstrated worse learning, immediate and delayed free recall, and recognition in contrast to the HIV/Coc - group; although using the ISDA, we found that encoding was the only significant difference between HIV/Coc + and HIV/Coc-participant, with HIV/Coc - performing better. Our data suggest that for individuals with HIV, cocaine use is associated with a temporary decline in verbal memory, is characterized by greater encoding deficits, and these effects may reduce with abstinence. Clinically, our findings suggest that reduced encoding is the likely contributor to verbal memory decline in HIV/Coc + and these effects are partially reversible-at least to the level of their HIV/Coc - counterparts.
Collapse
Affiliation(s)
- Pavel Y Litvin
- Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Craig A Siders
- Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA, USA.,California State University Long Beach, Long Beach, CA, USA
| | - Erin N Waite
- Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Ellen Woo
- California State University Fresno, Fresno, CA, USA
| | - Elizabeth Romero
- Veterans Administration Greater Los Angeles Healthcare System, West Lost Angeles Medical Center, Los Angeles, CA, USA
| | - Jessica Foley
- Memory & Aging Center, University California San Francisco, San Francisco, CA, USA
| | - Mark L Ettenhofer
- Department of Psychiatry, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Amanda L Gooding
- Department of Psychiatry, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Steven Castellon
- Veterans Administration Greater Los Angeles Healthcare System, West Lost Angeles Medical Center, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Charles Hinkin
- Veterans Administration Greater Los Angeles Healthcare System, West Lost Angeles Medical Center, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Matthew J Wright
- Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
17
|
|
18
|
Stewan Feltrin F, Zaninotto AL, Guirado VMP, Macruz F, Sakuno D, Dalaqua M, Magalhães LGA, Paiva WS, Andrade AFD, Otaduy MCG, Leite CC. Longitudinal changes in brain volumetry and cognitive functions after moderate and severe diffuse axonal injury. Brain Inj 2018; 32:1208-1217. [PMID: 30024781 DOI: 10.1080/02699052.2018.1494852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Diffuse axonal injury (DAI) induces a long-term process of brain atrophy and cognitive deficits. The goal of this study was to determine whether there are correlations between brain volume loss, microhaemorrhage load (MHL) and neuropsychological performance during the first year after DAI. METHODS Twenty-four patients with moderate or severe DAI were evaluated at 2, 6 and 12 months post-injury. MHL was evaluated at 3 months, and brain volumetry was evaluated at 3, 6 and 12 months. The trail making test (TMT) was used to evaluate executive function (EF), and the Hopkins verbal learning test (HVLT) was used to evaluate episodic verbal memory (EVM) at 6 and 12 months. RESULTS There were significant white matter volume (WMV), subcortical grey matter volume and total brain volume (TBV) reductions during the study period (p < 0.05). MHL was correlated only with WMV reduction. EF and EVM were not correlated with MHL but were, in part, correlated with WMV and TBV reductions. CONCLUSIONS Our findings suggest that MHL may be a predictor of WMV reduction but cannot predict EF or EVM in DAI. Brain atrophy progresses over time, but patients showed better EF and EVM in some of the tests, which could be due to neuroplasticity.
Collapse
Affiliation(s)
- Fabrício Stewan Feltrin
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Ana Luiza Zaninotto
- b Division of Psychology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Vinícius M P Guirado
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Fabiola Macruz
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Daniel Sakuno
- d Department of Radiology , Hospital Universitário HU-UEPG, Universidade Estadual de Ponta Grossa , Ponta Grossa , Brazil
| | - Mariana Dalaqua
- e Department of Radiology , Hospital Israelita Albert Einstein , São Paulo , Brazil
| | | | - Wellingson Silva Paiva
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Almir Ferreira de Andrade
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Maria C G Otaduy
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Claudia C Leite
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| |
Collapse
|
19
|
On-Field Signs Predict Future Acute Symptoms After Sport-Related Concussion: A Structural Equation Modeling Study. J Int Neuropsychol Soc 2018; 24:476-485. [PMID: 29307322 DOI: 10.1017/s1355617717001321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES This study investigated the relationship between on-field, objective signs immediately following sport-related concussion and self-reported symptom endorsement within 1 day post injury. METHODS A retrospective case series of 237 concussed high school athletes was performed. On-field signs were evaluated immediately post injury. Self-reported symptoms (2 clusters) were collected within 1 day post injury. A two-step structural equation model and follow-up bivariate regression analyses of significant on-field signs and symptom clusters were performed. RESULTS Signs of immediate memory, β=0.20, p=.04, and postural instability, β=0.19, p < .01, significantly predicted a greater likelihood of endorsing the cognitive-migraine-fatigue symptom cluster within 1 day post injury. Regarding signs correlated with specific symptoms, immediate memory was associated with symptoms of trouble remembering, χ 2 =37.92, p < .001, odds ratio (OR)=3.89 (95% confidence interval (CI) [2.47, 6.13]), and concentration difficulties, χ 2 =10.84, p=.001, OR=2.13 (95% CI [1.37, 3.30]). Postural instability was associated with symptom endorsement of trouble remembering, χ 2 =12.08, p < .001, OR=1.76 (95% CI [1.29, 2.40]). CONCLUSIONS Certain post-concussion on-field signs exhibited after injury were associated with specific symptom endorsement within 1 day post injury. Based on these associations, individualized education-based interventions and academic accommodations may help reduce unanticipated worry from parents, students, and teachers following a student-athlete's sport-related concussion, especially in cases of delayed onset symptoms. (JINS, 2018, 24, 476-485).
Collapse
|
20
|
Tu TW, Ibrahim WG, Jikaria N, Munasinghe JP, Witko JA, Hammoud DA, Frank JA. On the detection of cerebral metabolic depression in experimental traumatic brain injury using Chemical Exchange Saturation Transfer (CEST)-weighted MRI. Sci Rep 2018; 8:669. [PMID: 29330386 PMCID: PMC5766554 DOI: 10.1038/s41598-017-19094-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Metabolic abnormalities are commonly observed in traumatic brain injury (TBI) patients exhibiting long-term neurological deficits. This study investigated the feasibility and reproducibility of using chemical exchange saturation transfer (CEST) MRI to detect cerebral metabolic depression in experimental TBI. Phantom and in vivo CEST experiments were conducted at 9.4 Tesla to optimize the selective saturation for enhancing the endogenous contrast-weighting of the proton exchanges over the range of glucose proton chemical shifts (glucoCEST) in the resting rat brain. The optimized glucoCEST-weighted imaging was performed on a closed-head model of diffuse TBI in rats with 2-deoxy-D-[14C]-glucose (2DG) autoradiography validation. The results demonstrated that saturation duration of 1‒2 seconds at pulse powers 1.5‒2µT resulted in an improved contrast-to-noise ratio between the gray and white matter comparable to 2DG autoradiographs. The intrasubject (n = 4) and intersubject (n = 3) coefficient of variations for repeated glucoCEST acquisitions (n = 4) ranged between 8‒16%. Optimization for the TBI study revealed that glucoCEST-weighted images with 1.5μT power and 1 s saturation duration revealed the greatest changes in contrast before and after TBI, and positively correlated with 2DG autoradiograph (r = 0.78, p < 0.01, n = 6) observations. These results demonstrate that glucoCEST-weighted imaging may be useful in detecting metabolic abnormalities following TBI.
Collapse
Affiliation(s)
- Tsang-Wei Tu
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States. .,Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, United States. .,Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, United States.
| | - Wael G Ibrahim
- Center for Infectious Disease Imaging, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Neekita Jikaria
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, United States.,Acute Stroke Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeeva P Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jaclyn A Witko
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, United States
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Joseph A Frank
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Betancur-Calderón JM, Veronesi-Zuluaga LA, Castaño-Tobón HF. Terapia con lactato sódico hipertónico en trauma cráneo-encefálico: ¿se convertirá en la mejor alternativa de manejo? COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1016/j.rca.2017.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Betancur-Calderón JM, Veronesi-Zuluaga LA, Castaño-Tobón HF. Traumatic brain injury and treatment with hypertonic sodium lactate. Will it become the best management alternative? COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1016/j.rcae.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Traumatic brain injury and treatment with hypertonic sodium lactate. Will it become the best management alternative?☆. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1097/01819236-201712002-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Irimia A, Goh SYM, Wade AC, Patel K, Vespa PM, Van Horn JD. Traumatic Brain Injury Severity, Neuropathophysiology, and Clinical Outcome: Insights from Multimodal Neuroimaging. Front Neurol 2017; 8:530. [PMID: 29051745 PMCID: PMC5633783 DOI: 10.3389/fneur.2017.00530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 09/22/2017] [Indexed: 11/24/2022] Open
Abstract
Background The relationship between the acute clinical presentation of patients with traumatic brain injury (TBI), long-term changes in brain structure prompted by injury and chronic functional outcome is insufficiently understood. In this preliminary study, we investigate how acute Glasgow coma score (GCS) and epileptic seizure occurrence after TBIs are statistically related to functional outcome (as quantified using the Glasgow Outcome Score) and to the extent of cortical thinning observed 6 months after the traumatic event. Methods Using multivariate linear regression, the extent to which the acute GCS and epileptic seizure occurrence (predictor variables) correlate with structural brain changes (relative cortical atrophy) was examined in a group of 33 TBI patients. The statistical significance of the correlation between relative cortical atrophy and the Glasgow Outcome Score was also investigated. Results A statistically significant correlative relationship between cortical thinning and the predictor variables (acute GCS and seizure occurrence) was identified in the study sample. Regions where the statistical model was found to have highest statistical reliability in predicting both gray matter atrophy and neurological outcome include the frontopolar, middle frontal, postcentral, paracentral, middle temporal, angular, and lingual gyri. In addition, relative atrophy and GOS were also found to be significantly correlated over large portions of the cortex. Conclusion This study contributes to our understanding of the relationship between clinical descriptors of acute TBI, the extent of injury-related chronic brain changes and neurological outcome. This is partly because the brain areas where cortical thinning was found to be correlated with GCS and with seizure occurrence are implicated in executive control, sensory function, motor acuity, memory, and language, all of which may be affected by TBI. Thus, our quantification suggests the existence of a statistical relationship between acute clinical presentation, on the one hand, and structural/functional brain features which are particularly susceptible to post-injury degradation, on the other hand.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Sheng-Yang Matthew Goh
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Adam C Wade
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kavi Patel
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M Vespa
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - John D Van Horn
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
25
|
Mannino C, Glenn TC, Hovda DA, Vespa PM, McArthur DL, Van Horn JD, Wright MJ. Acute glucose and lactate metabolism are associated with cognitive recovery following traumatic brain injury. J Neurosci Res 2017; 96:696-701. [PMID: 28609544 DOI: 10.1002/jnr.24097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury (TBI) is associated with acute cerebral metabolic crisis (ACMC). ACMC-related atrophy appears to be prominent in frontal and temporal lobes following moderate-to-severe TBI. This atrophy is correlated with poorer cognitive outcomes in TBI. The current study investigated ability of acute glucose and lactate metabolism to predict long-term recovery of frontal-temporal cognitive function in participants with moderate-to-severe TBI. Cerebral metabolic rate of glucose and lactate were measured by the Kety-Schmidt method on days 0-7 post-injury. Indices of frontal-temporal cognitive processing were calculated for six months post-injury; 12 months post-injury; and recovery (the difference between the six- and 12-month scores). Glucose and lactate metabolism were included in separate regression models, as they were highly intercorrelated. Also, glucose and lactate values were centered and averaged and included in a final regression model. Models for the prediction frontal-temporal cognition at six and 12 months post-injury were not significant. However, average glucose and lactate metabolism predicted recovery of frontal-temporal cognition, accounting for 23% and 22% of the variance, respectively. Also, maximum glucose metabolism, but not maximum lactate metabolism, was an inverse predictor in the recovery of frontal-temporal cognition, accounting for 23% of the variance. Finally, the average of glucose and lactate metabolism predicted frontal-temporal cognitive recovery, accounting for 22% of the variance. These data indicate that acute glucose and lactate metabolism both support cognitive recovery from TBI. Also, our data suggest that control of endogenous fuels and/or supplementation with exogenous fuels may have therapeutic potential for cognitive recovery from TBI.
Collapse
Affiliation(s)
| | - Thomas C Glenn
- University of California, Los Angeles, Department of Neurosurgery
| | - David A Hovda
- University of California, Los Angeles, Department of Neurosurgery
| | - Paul M Vespa
- University of California, Los Angeles, Department of Neurosurgery.,University of California, Los Angeles, Department of Neurology
| | - David L McArthur
- University of California, Los Angeles, Department of Neurosurgery
| | - John D Van Horn
- University of Southern California, Laboratory of Neuro Imaging, Institute for Neuroimaging Informatics, Department of Neurology
| | - Matthew J Wright
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences.,Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center
| |
Collapse
|
26
|
Xu Z, Lv XA, Dai Q, Lu M, Jin Z. Exogenous BDNF Increases Mitochondrial pCREB and Alleviates Neuronal Metabolic Defects Following Mechanical Injury in a MPTP-Dependent Way. Mol Neurobiol 2017; 55:3499-3512. [PMID: 28508150 DOI: 10.1007/s12035-017-0576-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/25/2017] [Indexed: 11/29/2022]
Abstract
Metabolic defects are common pathological phenomena following traumatic brain injury (TBI) which contribute to poor prognosis. Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal survival, development, function, and plasticity. This study was designed to investigate the potential effects of BDNF on TBI-induced metabolic defects and their underlying molecular mechanisms. BDNF was added into cultured neurons to a concentration of 25, 50, and 100 ng/ml, respectively, right after mechanical injury and metabolite levels were analyzed 4 h post injury. The mitochondrial phosphorylated cAMP response element-binding protein (pCREB) distribution and complex V synthesis, as well as their roles in metabolic defects, were evaluated. We found that exogenous BDNF improved metabolic defects, especially the uncoupling of oxidative phosphorylation. BDNF increased pCREB in mitochondrial inner membrane and matrix and promoted mitochondrial complex V synthesis. We also found that these results were negatively regulated by the mitochondrial permeability transition pore (MPTP) antagonist CsA and positively regulated by the MPTP agonist atractyloside. BDNF's protectional effects on metabolic defects were abolished by CREB knockout. When administrated in a dominant interfering CREB mutant (A-CREB) model, mitochondrial pCREB accumulation could still be observed, but the synthesis of complex V and alleviation of metabolic defects were repressed. Our data demonstrate that exogenous BDNF mitigates neuronal metabolic defects following mechanical injury by promoting the pCREB accumulation in mitochondrial inner membrane and matrix, which is regulated by MPTP opening, thus facilitating the synthesis of mitochondrial complex V.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Neurosurgery, First Affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China.
| | - Xiao-Ai Lv
- Department of Surgery, First Affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Qun Dai
- Central Laboratory, First Affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Man Lu
- Department of Anesthesiology, First Affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Zhang Jin
- Department of Spine Surgery, The People's Hospital of Lishui, 15 Dazong Road, Lishui, 323000, China
| |
Collapse
|
27
|
Gardner AJ, Shih SL, Adamov EV, Zafonte RD. Research Frontiers in Traumatic Brain Injury. Phys Med Rehabil Clin N Am 2017; 28:413-431. [DOI: 10.1016/j.pmr.2016.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Martin RM, Wright MJ, Lutkenhoff ES, Ellingson BM, Van Horn JD, Tubi M, Alger JR, McArthur DL, Vespa PM. Traumatic hemorrhagic brain injury: impact of location and resorption on cognitive outcome. J Neurosurg 2017; 126:796-804. [DOI: 10.3171/2016.3.jns151781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE
Hemorrhagic contusions are often the most visible lesions following traumatic brain injury. However, the incidence, location, and natural history of traumatic parenchymal hemorrhage and its impact on neurological outcome have been understudied. The authors sought to examine the location and longitudinal evolution of traumatic parenchymal hemorrhage and its association with cognitive outcome.
METHODS
Sixteen patients with hemorrhagic contusions due to acceleration-deceleration injuries underwent MRI in the acute (mean 6.3 days postinjury) and chronic (mean 192.9 days postinjury) phases. ImageJ was used to generate GRE and FLAIR volumes. To account for the effect of head-size variability across individuals, the authors calculated each patient's total brain tissue volume using SIENAX. GRE and FLAIR volumes were normalized to the total brain tissue volume, and values for absolute and percent lesion volume and total brain volume change were generated. Spearman's rank correlations were computed to determine associations between neuroimaging and 6-month postinjury neuropsychological testing of attention (Symbol Digit Modalities Test [SDMT], oral [O] and written [W] versions), memory (Selective Reminding Test, total learning and delayed recall), and executive function (Trail Making Test Part B [TMT-B]).
RESULTS
The patients' mean age was 31.4 ± 14.0 years and their mean Glasgow Coma Scale score at admission was 7.9 ± 2.8. Lesions were predominantly localized to the frontal (11 lesions) and temporal (9 lesions) lobes. The average percent reductions in GRE and FLAIR volumes were 44.2% ± 46.1% and 80.5% ± 26.3%, respectively. While total brain and frontal lesion volumes did not correlate with brain atrophy, larger temporal lobe GRE and FLAIR volumes were associated with larger volumes of atrophy (GRE: acute, −0.87, p < 0.01, chronic, −0.78, p < 0.01; FLAIR: acute, −0.81, p < 0.01, chronic, −0.88, p < 0.01). Total percent volume change of GRE lesions correlated with TMT-B (0.53, p < 0.05) and SDMT-O (0.62, p < 0.05) scores. Frontal lobe lesion volume did not correlate with neuropsychological outcome. However, robust relationships were seen in the temporal lobe, with larger acute temporal lobe GRE volumes were associated with worse scores on both oral and written versions of the SDMT (SDMT-W, −0.85, p < 0.01; SDMT-O, −0.73, p < 0.05). Larger absolute change in temporal GRE volume was strongly associated with worse SDMT scores (SDMT-W, 0.88, p < 0.01; SDMT-O, 0.75, p < 0.05). The same relationships were also seen between temporal FLAIR lesion volumes and neuropsychological outcome.
CONCLUSIONS
Traumatic parenchymal hemorrhages are largely clustered in the frontal and temporal lobes, and significant residual blood products are present at 6 months postinjury, a potential source of ongoing secondary brain injury. Neuropsychological outcome is closely tied to lesion volume size, particularly in the temporal lobe, where larger GRE and FLAIR volumes are associated with more brain atrophy and worse SDMT scores. Interestingly, larger volumes of hemorrhage resorption were associated with worse SDMT and TMT-B scores, suggesting that the initial tissue damage had a lasting impact on attention and executive function.
Collapse
Affiliation(s)
| | | | | | | | - John D. Van Horn
- 6Department of Neurology, University of Southern California, Los Angeles, California
| | | | | | | | | |
Collapse
|
29
|
Evaluating the Role of Reduced Oxygen Saturation and Vascular Damage in Traumatic Brain Injury Using Magnetic Resonance Perfusion-Weighted Imaging and Susceptibility-Weighted Imaging and Mapping. Top Magn Reson Imaging 2016; 24:253-65. [PMID: 26502307 DOI: 10.1097/rmr.0000000000000064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cerebral vasculature, along with neurons and axons, is vulnerable to biomechanical insult during traumatic brain injury (TBI). Trauma-induced vascular injury is still an underinvestigated area in TBI research. Cerebral blood flow and metabolism could be important future treatment targets in neural critical care. Magnetic resonance imaging offers a number of key methods to probe vascular injury and its relationship with traumatic hemorrhage, perfusion deficits, venous blood oxygen saturation changes, and resultant tissue damage. They make it possible to image the hemodynamics of the brain, monitor regional damage, and potentially show changes induced in the brain's function not only acutely but also longitudinally following treatment. These methods have recently been used to show that even mild TBI (mTBI) subjects can have vascular abnormalities, and thus they provide a major step forward in better diagnosing mTBI patients.
Collapse
|
30
|
Xu Z, Lv XA, Dai Q, Ge YQ, Xu J. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it's role in metabolic defects and neuronal apoptosis after TBI. Mol Brain 2016; 9:75. [PMID: 27485212 PMCID: PMC4971620 DOI: 10.1186/s13041-016-0257-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
Metabolic defects and neuronal apoptosis initiated by traumatic brain injury (TBI) contribute to subsequent neurodegeneration. They are all regulated by mechanisms centered around mitochondrion. Type-1 cannabinoid receptor (CB1) is a G-protein coupled receptor (GPCR) enriched on neuronal plasma membrane. Recent evidences point to the substantial presence of CB1 receptors on neuronal mitochondrial outer membranes (mtCB1) and the activation of mtCB1 influences aerobic respiration via inhibiting mitochondrial cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/complex I pathway. The expression and role of neuronal mtCB1 under TBI are unknown. Using TBI models of cultured neurons, wild type and CB1 knockout mice, we found mtCB1 quickly upregulated after TBI. Activation of mtCB1 promoted metabolic defects accompanied with ATP shortage but protected neurons from apoptosis. Selective activation of plasma membrane CB1 showed no effects on neuronal metabolism and apoptosis. Activation of mtCB1 receptors inhibited mitochondrial cAMP/PKA/complex I and resulted in exacerbated metabolic defects accompanied with a higher ratio of ATP reduction to oxygen consumption decrease as well as neuronal apoptosis. Further research found the remarkable accumulation of protein kinase B (AKT) on neuronal mitochondria following TBI and the activation of mtCB1 upregulated mitochondrial AKT/complex V activity. Upregulation of mitochondrial AKT/complex V activity showed anti-apoptosis effects and alleviated ATP shortage in metabolic defects. Taken together, we have identified mtCB1 quickly upregulate after TBI and a dual role the mtCB1 might play in metabolic defects and neuronal apoptosis initiated by TBI: the inhibition of mitochondrial cAMP/PKA/complex I aggravates metabolic defects, energy insufficiency as well as neuronal apoptosis, but the coactivation of mitochondrial AKT/complex V mitigates energy insufficiency and neuronal apoptosis.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Neurosurgery, First affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China.
| | - Xiao-Ai Lv
- Department of Surgery, First affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Qun Dai
- Central laboratory, First affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Yu-Qing Ge
- Central laboratory, First affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Lane, Hangzhou, 310006, China
| | - Jie Xu
- Department of Neurosurgery, Huzhou Central Hospital, 198 Hongqi Lane, Huzhou, 313003, China
| |
Collapse
|
31
|
Zhou LZ, Liu XY. Nursing effects of evidence-based nursing intervention in patients with acute craniocerebral injury complicated with stress digestive tract hemorrhage. Shijie Huaren Xiaohua Zazhi 2016; 24:2577-2581. [DOI: 10.11569/wcjd.v24.i16.2577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the nursing effects of evidence-based nursing intervention in patients with acute craniocerebral injury complicated with stress digestive tract hemorrhage.
METHODS: Fifty patients with acute craniocerebral injury complicated with stress digestive tract hemorrhage treated at Lishui Central Hospital from January 2015 to December 2015 were selected and randomly divided into a control group and a study group. The patients in the control group were given conventional care, while those in the study group were given evidence-based nursing intervention. The success rate of hemostasis, improvement of anxiety and depression, nursing satisfaction and clinical effects were compared between the two groups.
RESULTS: The success rate of hemostasis was significantly higher in the study group than in the control group (100.00% vs 80.00%, P < 0.05). The scores of anxiety and depression after nursing were decreased, and the improvement of anxiety and depression in the study group was better than that in the control group (46.31 ± 8.03 vs 54.77 ± 9.36, 49.71 ± 9.02 vs 58.12 ± 10.23, P < 0.05). The nursing satisfaction in the study group was significantly higher than that in the control group (100.00% vs 68.00%, P < 0.05). The clinical total effective rate in the control group after nursing was significantly lower than that in the study group (76.00% vs 100.00%, P < 0.05).
CONCLUSION: The success rate of hemostasis of evidence-based nursing intervention in patients with acute craniocerebral injury complicated with stress digestive tract hemorrhage is higher, and the anxiety and depression in patients can be obviously improved.
Collapse
|
32
|
Ekmark-Lewén S, Flygt J, Fridgeirsdottir GA, Kiwanuka O, Hånell A, Meyerson BJ, Mir AK, Gram H, Lewén A, Clausen F, Hillered L, Marklund N. Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β. Eur J Neurosci 2016; 43:1016-33. [PMID: 27091435 DOI: 10.1111/ejn.13190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/06/2016] [Accepted: 01/26/2016] [Indexed: 12/15/2022]
Abstract
Widespread traumatic axonal injury (TAI) results in brain network dysfunction, which commonly leads to persisting cognitive and behavioural impairments following traumatic brain injury (TBI). TBI induces a complex neuroinflammatory response, frequently located at sites of axonal pathology. The role of the pro-inflammatory cytokine interleukin (IL)-1β has not been established in TAI. An IL-1β-neutralizing or a control antibody was administered intraperitoneally at 30 min following central fluid percussion injury (cFPI), a mouse model of widespread TAI. Mice subjected to moderate cFPI (n = 41) were compared with sham-injured controls (n = 20) and untreated, naive mice (n = 9). The anti-IL-1β antibody reached the target brain regions in adequate therapeutic concentrations (up to ~30 μg/brain tissue) at 24 h post-injury in both cFPI (n = 5) and sham-injured (n = 3) mice, with lower concentrations at 72 h post-injury (up to ~18 μg/g brain tissue in three cFPI mice). Functional outcome was analysed with the multivariate concentric square field (MCSF) test at 2 and 9 days post-injury, and the Morris water maze (MWM) at 14-21 days post-injury. Following TAI, the IL-1β-neutralizing antibody resulted in an improved behavioural outcome, including normalized behavioural profiles in the MCSF test. The performance in the MWM probe (memory) trial was improved, although not in the learning trials. The IL-1β-neutralizing treatment did not influence cerebral ventricle size or the number of microglia/macrophages. These findings support the hypothesis that IL-1β is an important contributor to the processes causing complex cognitive and behavioural disturbances following TAI.
Collapse
Affiliation(s)
- Sara Ekmark-Lewén
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Johanna Flygt
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Olivia Kiwanuka
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Hånell
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Bengt J Meyerson
- Department of Neuroscience, Pharmacology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anis K Mir
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Hermann Gram
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Anders Lewén
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Fredrik Clausen
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.,Department of Neurosurgery, Uppsala University Hospital, Ing 85, 2 tr, SE-756 55, Uppsala, Sweden
| |
Collapse
|
33
|
Yonutas HM, Vekaria HJ, Sullivan PG. Mitochondrial specific therapeutic targets following brain injury. Brain Res 2016; 1640:77-93. [PMID: 26872596 DOI: 10.1016/j.brainres.2016.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury is a complicated disease to treat due to the complex multi-factorial secondary injury cascade that is initiated following the initial impact. This secondary injury cascade causes nonmechanical tissue damage, which is where therapeutic interventions may be efficacious for intervention. One therapeutic target that has shown much promise following brain injury are mitochondria. Mitochondria are complex organelles found within the cell. At a superficial level, mitochondria are known to produce the energy substrate used within the cell called ATP. However, their importance to overall cellular homeostasis is even larger than their production of ATP. These organelles are necessary for calcium cycling, ROS production and play a role in the initiation of cell death pathways. When mitochondria become dysfunctional, they can become dysregulated leading to a loss of cellular homeostasis and eventual cell death. Within this review there will be a deep discussion into mitochondrial bioenergetics followed by a brief discussion into traumatic brain injury and how mitochondria play an integral role in the neuropathological sequelae following an injury. The review will conclude with a discussion pertaining to the therapeutic approaches currently being studied to ameliorate mitochondrial dysfunction following brain injury. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- H M Yonutas
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States
| | - H J Vekaria
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States
| | - P G Sullivan
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States.
| |
Collapse
|
34
|
Kilbaugh TJ, Sutton RM, Karlsson M, Hansson MJ, Naim MY, Morgan RW, Bratinov G, Lampe JW, Nadkarni VM, Becker LB, Margulies SS, Berg RA. Persistently Altered Brain Mitochondrial Bioenergetics After Apparently Successful Resuscitation From Cardiac Arrest. J Am Heart Assoc 2015; 4:e002232. [PMID: 26370446 PMCID: PMC4599507 DOI: 10.1161/jaha.115.002232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although advances in cardiopulmonary resuscitation have improved survival from cardiac arrest (CA), neurologic injury persists and impaired mitochondrial bioenergetics may be critical for targeted neuroresuscitation. The authors sought to determine if excellent cardiopulmonary resuscitation and postresuscitation care and good traditional survival rates result in persistently disordered cerebral mitochondrial bioenergetics in a porcine pediatric model of asphyxia-associated ventricular fibrillation CA. METHODS AND RESULTS After 7 minutes of asphyxia, followed by ventricular fibrillation, 5 female 1-month-old swine (4 sham) received blood pressure-targeted care: titration of compression depth to systolic blood pressure of 90 mm Hg and vasopressor administration to a coronary perfusion pressure >20 mm Hg. All animals received protocol-based vasopressor support after return of spontaneous circulation for 4 hours before they were killed. The primary outcome was integrated mitochondrial electron transport system (ETS) function. CA animals displayed significantly decreased maximal, coupled oxidative phosphorylating respiration (OXPHOSCI + CII) in cortex (P<0.02) and hippocampus (P<0.02), as well as decreased phosphorylation and coupling efficiency (cortex, P<0.05; hippocampus, P<0.05). Complex I- and complex II-driven respiration were both significantly decreased after CA (cortex: OXPHOSCI P<0.01, ETSCII P<0.05; hippocampus: OXPHOSCI P<0.03, ETSCII P<0.01). In the hippocampus, there was a significant decrease in maximal uncoupled, nonphosphorylating respiration (ETSCI + CII), as well as a 30% reduction in citrate synthase activity (P<0.04). CONCLUSIONS Mitochondria in both the cortex and hippocampus displayed significant alterations in respiratory function after CA despite excellent cardiopulmonary resuscitation and postresuscitation care in asphyxia-associated ventricular fibrillation CA. Analysis of integrated ETS function identifies mitochondrial bioenergetic failure as a target for goal-directed neuroresuscitation after CA. IACUC Protocol: IAC 13-001023.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden (M.K., M.J.H.)
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden (M.K., M.J.H.)
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - George Bratinov
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Joshua W Lampe
- Department of Emergency Medicine, The Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.W.L., L.B.B.)
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Lance B Becker
- Department of Emergency Medicine, The Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.W.L., L.B.B.)
| | - Susan S Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA (S.S.M.)
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| |
Collapse
|
35
|
Mayer AR, Ling JM, Dodd AB, Gasparovic C, Klimaj SD, Meier TB. A Longitudinal Assessment of Structural and Chemical Alterations in Mixed Martial Arts Fighters. J Neurotrauma 2015; 32:1759-67. [PMID: 26096140 DOI: 10.1089/neu.2014.3833] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests that temporally proximal acute concussions and repetitive subconcussive head injuries may lead to long-term neurological deficits. However, the underlying mechanisms of injury and their relative time-scales are not well documented in human injury models. The current study therefore investigated whether biomarkers of brain chemistry (magnetic resonance [MR] spectroscopy: N-acetylaspartate [NAA], combined glutamate and glutamine [Glx], total creatine [Cre], choline compounds [Cho], and myo-inositol [mI]) and structure (cortical thickness, white matter [WM]/subcortical volume) differed between mixed martial artists (MMA; n = 13) and matched healthy controls (HC) without a history of contact sport participation (HC; n = 14). A subset of participants (MMA = 9; HC = 10) returned for follow-up visits, with MMA (n = 3) with clinician-documented acute concussions also scanned serially. As expected, MMA self-reported a higher incidence of previous concussions and significantly more cognitive symptoms during prior concussion recovery. Fighters also exhibited reduced memory and processing speed relative to controls on neuropsychological testing coupled with cortical thinning in the left posterior cingulate gyrus and right occipital cortex at baseline assessment. Over a 1-year follow-up period, MMA experienced a significant decrease in both WM volume and NAA concentration, as well as relative thinning in the left middle and superior frontal gyri. These longitudinal changes did not correlate with self-reported metrics of injury (i.e., fight diary). In contrast, HC did not exhibit significant longitudinal changes over a 4-month follow-up period (p > 0.05). Collectively, current results provide preliminary evidence of progressive changes in brain chemistry and structure over a relatively short time period in individuals with high exposure to repetitive head hits. These findings require replication in independent samples.
Collapse
Affiliation(s)
- Andrew R Mayer
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico.,2 Neurology Department, School of Medicine, University of New Mexico , Albuquerque, New Mexico.,3 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| | - Josef M Ling
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Andrew B Dodd
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Charles Gasparovic
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Stefan D Klimaj
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Timothy B Meier
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| |
Collapse
|
36
|
Awwad HO, Gonzalez LP, Tompkins P, Lerner M, Brackett DJ, Awasthi V, Standifer KM. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats. Front Neurol 2015; 6:132. [PMID: 26136722 PMCID: PMC4470265 DOI: 10.3389/fneur.2015.00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/22/2015] [Indexed: 01/15/2023] Open
Abstract
Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000–30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8–11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using 18F-fluorodeoxyglucose (18F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4–6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5–6).
Collapse
Affiliation(s)
- Hibah O Awwad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Oklahoma Center for Neuroscience, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Larry P Gonzalez
- Oklahoma Center for Neuroscience, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Department of Psychiatry and Behavioral Sciences, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Paul Tompkins
- Department of Neurosurgery, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Megan Lerner
- Department of Surgery, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Oklahoma City VA Medical Center , Oklahoma City, OK , USA
| | - Daniel J Brackett
- Department of Surgery, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Oklahoma Center for Neuroscience, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| |
Collapse
|
37
|
Kilbaugh TJ, Karlsson M, Byro M, Bebee A, Ralston J, Sullivan S, Duhaime AC, Hansson MJ, Elmér E, Margulies SS. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain. Exp Neurol 2015; 271:136-44. [PMID: 26028309 DOI: 10.1016/j.expneurol.2015.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death in children worldwide. Emerging evidence suggests that alterations in mitochondrial function are critical components of secondary injury cascade initiated by TBI that propogates neurodegeneration and limits neuroregeneration. Unfortunately, there is very little known about the cerebral mitochondrial bioenergetic response from the immature brain triggered by traumatic biomechanical forces. Therefore, the objective of this study was to perform a detailed evaluation of mitochondrial bioenergetics using high-resolution respirometry in a high-fidelity large animal model of focal controlled cortical impact injury (CCI) 24h post-injury. This novel approach is directed at analyzing dysfunction in electron transport, ADP phosphorylation and leak respiration to provide insight into potential mechanisms and possible interventions for mitochondrial dysfunction in the immature brain in focal TBI by delineating targets within the electron transport system (ETS). Development and application of these methodologies have several advantages, and adds to the interpretation of previously reported techniques, by having the added benefit that any toxins or neurometabolites present in the ex-vivo samples are not removed during the mitochondrial isolation process, and simulates the in situ tricarboxylic acid (TCA) cycle by maximizing key substrates for convergent flow of electrons through both complexes I and II. To investigate alterations in mitochondrial function after CCI, ipsilateral tissue near the focal impact site and tissue from the corresponding contralateral side were examined. Respiration per mg of tissue was also related to citrate synthase activity (CS) and calculated flux control ratios (FCR), as an attempt to control for variability in mitochondrial content. Our biochemical analysis of complex interdependent pathways of electron flow through the electron transport system, by most measures, reveals a bilateral decrease in complex I-driven respiration and an increase in complex II-driven respiration 24h after focal TBI. These alterations in convergent electron flow though both complex I and II-driven respiration resulted in significantly lower maximal coupled and uncoupled respiration in the ipsilateral tissue compared to the contralateral side, for all measures. Surprisingly, increases in complex II and complex IV activities were most pronounced in the contralateral side of the brain from the focal injury, and where oxidative phosphorylation was increased significantly compared to sham values. We conclude that 24h after focal TBI in the immature brain, there are significant alterations in cerebral mitochondrial bioenergetics, with pronounced increases in complex II and complex IV respiration in the contralateral hemisphere. These alterations in mitochondrial bioenergetics present multiple targets for therapeutic intervention to limit secondary brain injury and support recovery.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- Perelman School of Medicine at the University of Pennsylvania, Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 34th & Civic Center Blvd., Philadelphia, PA 19104, USA.
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Melissa Byro
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Ashley Bebee
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Jill Ralston
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Sarah Sullivan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Ann-Christine Duhaime
- Department of Neurosurgery, Massachusetts General Hospital, 15 Parkman Street, Boston, MA 02114, USA.
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Wright MJ, Wong AL, Obermeit LC, Woo E, Schmitter-Edgecombe M, Fuster JM. Memory for performed and observed activities following traumatic brain injury. J Clin Exp Neuropsychol 2014; 36:268-77. [PMID: 24524393 DOI: 10.1080/13803395.2014.884543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traumatic brain injury (TBI) is associated with deficits in memory for the content of completed activities. However, TBI groups have shown variable memory for the temporal order of activities. We sought to clarify the conditions under which temporal order memory for activities is intact following TBI. Additionally, we evaluated activity source memory and the relationship between activity memory and functional outcome in TBI participants. Thus, we completed a study of activity memory with 18 severe TBI survivors and 18 healthy age- and education-matched comparison participants. Both groups performed eight activities and observed eight activities that were fashioned after routine daily tasks. Incidental encoding conditions for activities were utilized. The activities were drawn from two counterbalanced lists, and both performance and observation were randomly determined and interspersed. After all of the activities were completed, content memory (recall and recognition), source memory (conditional source identification), and temporal order memory (correlation between order reconstruction and actual order) for the activities were assessed. Functional ability was assessed via the Community Integration Questionnaire (CIQ). In terms of content memory, TBI participants recalled and recognized fewer activities than comparison participants. Recognition of performed and observed activities was strongly associated with social integration on the CIQ. There were no between- or within-group differences in temporal order or source memory, although source memory performances were near ceiling. The findings were interpreted as suggesting that temporal order memory following TBI is intact under conditions of both purposeful activity completion and incidental encoding, and that activity memory is related to functional outcomes following TBI.
Collapse
Affiliation(s)
- Matthew J Wright
- a Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance , CA , USA
| | | | | | | | | | | |
Collapse
|
39
|
Ling JM, Klimaj S, Toulouse T, Mayer AR. A prospective study of gray matter abnormalities in mild traumatic brain injury. Neurology 2013; 81:2121-7. [PMID: 24259552 DOI: 10.1212/01.wnl.0000437302.36064.b1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To examine the underlying pathophysiology of mild traumatic brain injury through changes in gray matter diffusion and atrophy during the semiacute stage. METHODS Fifty patients and 50 sex-, age-, and education-matched controls were evaluated with a clinical and neuroimaging battery approximately 14 days postinjury, with 26 patients returning for follow-up 4 months postinjury. Clinical measures included tests of attention, processing speed, executive function, working memory, memory, and self-reported postconcussive symptoms. Measures of diffusion (fractional anisotropy [FA], mean diffusivity) and atrophy were obtained for cortical and subcortical structures to characterize effects of injury as a function of time. RESULTS Patients reported more cognitive, somatic, and emotional complaints during the semiacute injury phase, which were significantly reduced 4 months postinjury. Patients showed evidence of increased FA in the bilateral superior frontal cortex during the semiacute phase, with the left superior frontal cortex remaining elevated 4 months postinjury. There were no significant differences between patients and matched controls on neuropsychological testing or measures of gray matter atrophy/mean diffusivity at either time point. CONCLUSIONS Increased cortical FA is largely consistent with an emerging animal literature of gray matter abnormalities after neuronal injury. Potential mechanistic explanations for increased FA include cytotoxic edema or reactive gliosis. In contrast, there was no evidence of cortical or subcortical atrophy in the current study, suggesting that frank neuronal or neuropil loss does not occur early in the chronic disease course for patients with typical mild traumatic brain injury.
Collapse
Affiliation(s)
- Josef M Ling
- From The Mind Research Network Lovelace Biomedical and Environmental Research Institute (J.M.L., S.K., T.T., A.R.M.), Albuquerque; Department of Psychology (A.R.M.), University of New Mexico, Albuquerque; and Neurology Department (A.R.M.), University of New Mexico School of Medicine, Albuquerque, NM
| | | | | | | |
Collapse
|
40
|
|