1
|
Mayer AR, Quinn DK. Neuroimaging Biomarkers of New-Onset Psychiatric Disorders Following Traumatic Brain Injury. Biol Psychiatry 2022; 91:459-469. [PMID: 34334188 PMCID: PMC8665933 DOI: 10.1016/j.biopsych.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) has traditionally been associated with cognitive and behavioral changes during both the acute and chronic phases of injury. Because of its noninvasive nature, neuroimaging has the potential to provide unique information on underlying macroscopic and microscopic biological mechanisms that may serve as causative agents for these neuropsychiatric sequelae. This broad scoping review identifies at least 4 common macroscopic pathways that exist between TBI and new-onset psychiatric disorders, as well as several examples of how neuroimaging is currently being utilized in clinical research. The review then critically examines the strengths and limitations of neuroimaging for elucidating TBI-related microscopic pathology, such as microstructural changes, neuroinflammation, proteinopathies, blood-brain barrier damage, and disruptions in cellular signaling. A summary is then provided for how neuroimaging is currently being used to investigate TBI-related pathology in new-onset neurocognitive disorders, depression, and posttraumatic stress disorder. Identified gaps in the literature include a lack of prospective studies to definitively associate imaging findings with the development of new-onset psychiatric disorders, as well as antemortem imaging studies subsequently confirmed with postmortem correlates in the same study cohort. Although the spatial resolution and specificity of imaging biomarkers has greatly improved over the last 2 decades, we conclude that neuroimaging biomarkers do not yet exist for the definitive in vivo diagnosis of cellular pathology. This represents a necessary next step for further elucidating causal relationships between TBI and new-onset psychiatric disorders.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychology, University of New Mexico, Albuquerque, NM 87131,Corresponding author: Andrew Mayer, Ph.D., The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106 USA; Tel: 505-272-0769; Fax: 505-272-8002;
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
2
|
Polusny MA, Marquardt CA, Campbell EH, Filetti CR, Noël VV, Disner SG, Schaefer JD, Davenport N, Lissek S, Noorbaloochi S, Sponheim SR, Erbes CR. Advancing Research on Mechanisms of Resilience (ARMOR) Longitudinal Cohort Study of New Military Recruits: Results from a Feasibility Pilot Study. RESEARCH IN HUMAN DEVELOPMENT 2021; 18:212-229. [PMID: 34887706 DOI: 10.1080/15427609.2021.1964898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Psychological resilience as a longitudinal process is highly relevant for understanding the functioning outcomes of military populations. Here, we review the extant literature on resilience among military service members, focusing on National Guard Soldiers. Our specific project (Advancing Research on Mechanisms of Resilience, "ARMOR") aims to develop a comprehensive model of resilience using a multilevel perspective. We report results from our prospective pilot study (n = 103) conducted in preparation for our large-scale longitudinal cohort study of Basic Combat Training (BCT) and its impact on military recruits' wellbeing. Results support feasibility of the larger study, evidence for a new measure of BCT stressor exposure, and demonstrate preliminary associations with BCT-related stressors and longitudinal changes in adaptive functioning. Future directions for our larger study will utilize data from survey responses, structured clinical interviews, neurobehavioral tasks, and neurobiological measures (functional and structural MRI and electroencephalography [EEG]) to examine individual differences in self-regulation as a predictor of resilience-related processes. ARMOR is well positioned to elucidate mechanisms that could be targeted for promoting wellbeing, preventing psychopathology, and facilitating long-term recovery.
Collapse
Affiliation(s)
- Melissa A Polusny
- Minneapolis VA Health Care System, Minneapolis, MN.,Center for Care Delivery and Outcomes Research, Minneapolis, MN.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Craig A Marquardt
- Minneapolis VA Health Care System, Minneapolis, MN.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Emily Hagel Campbell
- Center for Care Delivery and Outcomes Research, Minneapolis, MN.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Clarissa R Filetti
- Minneapolis VA Health Care System, Minneapolis, MN.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Valentin V Noël
- Minneapolis VA Health Care System, Minneapolis, MN.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | | | - Nicholas Davenport
- Minneapolis VA Health Care System, Minneapolis, MN.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota - Twin Cities
| | - Siamak Noorbaloochi
- Minneapolis VA Health Care System, Minneapolis, MN.,Center for Care Delivery and Outcomes Research, Minneapolis, MN.,Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Christopher R Erbes
- Minneapolis VA Health Care System, Minneapolis, MN.,Center for Care Delivery and Outcomes Research, Minneapolis, MN.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| |
Collapse
|
3
|
Mortaheb S, Filippini MM, Kaux JF, Annen J, Lejeune N, Martens G, Calderón MAF, Laureys S, Thibaut A. Neurophysiological Biomarkers of Persistent Post-concussive Symptoms: A Scoping Review. Front Neurol 2021; 12:687197. [PMID: 34566837 PMCID: PMC8459021 DOI: 10.3389/fneur.2021.687197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives: Persistent post-concussive symptoms (PCS) consist of neurologic and psychological complaints persisting after a mild traumatic brain injury (mTBI). It affects up to 50% of mTBI patients, may cause long-term disability, and reduce patients' quality of life. The aim of this review was to examine the possible use of different neuroimaging modalities in PCS. Methods: Articles from Pubmed database were screened to extract studies that investigated the relationship between any neuroimaging features and symptoms of PCS. Descriptive statistics were applied to report the results. Results: A total of 80 out of 939 papers were included in the final review. Ten examined conventional MRI (30% positive finding), 24 examined diffusion weighted imaging (54.17% positive finding), 23 examined functional MRI (82.61% positive finding), nine examined electro(magneto)encephalography (77.78% positive finding), and 14 examined other techniques (71% positive finding). Conclusion: MRI was the most widely used technique, while functional techniques seem to be the most sensitive tools to evaluate PCS. The common functional patterns associated with symptoms of PCS were a decreased anti-correlation between the default mode network and the task positive network and reduced brain activity in specific areas (most often in the prefrontal cortex). Significance: Our findings highlight the importance to use functional approaches which demonstrated a functional alteration in brain connectivity and activity in most studies assessing PCS.
Collapse
Affiliation(s)
- Sepehr Mortaheb
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium.,Physiology of Cognition Lab., GIGA-Consciousness, University of Liège, Liège, Belgium
| | - Maria Maddalena Filippini
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium.,Neuromotor and Rehabilitation Department, Azienda Unita Sanitaria Locale-Istituto di Ricovero e Cura a Carattere Scientifico (USL-IRCSS) di Reggio Emilia, Reggio Emilia, Italy
| | - Jean-François Kaux
- Physical Medicine and Sport Traumatology Department, Sports, FIFA Medical Centre of Excellence, IOC Research Centre for Prevention of Injury and Protection of Athletes Health, FIMS Collaborative Centre of Sport Medicine, University and University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium.,Institute of NeuroScience, University of Louvain, Brussels, Belgium
| | - Géraldine Martens
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Physical Medicine and Sport Traumatology Department, Sports, FIFA Medical Centre of Excellence, IOC Research Centre for Prevention of Injury and Protection of Athletes Health, FIMS Collaborative Centre of Sport Medicine, University and University Hospital of Liège, Liège, Belgium
| | | | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
4
|
McDonald SD, Walker WC, Cusack SE, Yoash-Gantz RE, Pickett TC, Cifu DX, Mid-Atlantic Mirecc Workgroup V, Tupler LA. Health symptoms after war zone deployment-related mild traumatic brain injury: contributions of mental disorders and lifetime brain injuries. Brain Inj 2021; 35:1338-1348. [PMID: 34543115 DOI: 10.1080/02699052.2021.1959058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PRIMARY OBJECTIVE To gain a better understanding of the complex relationship between combat deployment-related mild traumatic brain injury (mTBI) and persistent post-concussive symptoms (PPCSs), taking into consideration a wide range of potentially mediating and confounding factors. RESEARCH DESIGN Cross-sectional. METHODS AND PROCEDURES Subjects were 613 U. S. military Veterans and Service Members who served during operations Enduring Freedom, Iraqi Freedom, or New Dawn (OEF/OIF/OND) and completed a structured interview of mental disorders and a battery of questionnaires. Hierarchical binary logistic regression analyses were used to test the hypotheses. MAIN OUTCOMES AND RESULTS After accounting for mental disorders, lifetime mTBIs outside of OEF/OIF/OND deployment, medical conditions, and injury/demographic characteristics, deployment-related mTBI continued to be associated with several PPCSs (headaches, sleep disturbance, and difficulty making decisions). Deployment-related mTBI was also associated with two symptoms not normally associated with mTBI (nausea/upset stomach and numbness/tingling). CONCLUSIONS After adjusting for a wide range of factors, OEF/OIF/OND deployment-related mTBI was still associated with PPCSs on average 10 years after the injury. These findings suggest that mTBI sustained during OEF/OIF/OND deployment may have enduring negative health effects. More studies are needed that prospectively and longitudinally track health and mental health outcomes after TBI.
Collapse
Affiliation(s)
- Scott D McDonald
- Mental Health Service, Hunter Holmes McGuire Va Medical Center, Richmond, VA, USA.,Department Of Psychology, Virginia Commonwealth University, Richmond, VA, USA.,Department Of Physical Medicine And Rehabilitation, School Of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - William C Walker
- Mental Health Service, Hunter Holmes McGuire Va Medical Center, Richmond, VA, USA.,Department Of Physical Medicine And Rehabilitation, School Of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Shannon E Cusack
- Department Of Psychology, Virginia Commonwealth University, Richmond, VA, USA.,Virginia Institute for Psychiatric and Behavioral Genetics (Vipbg), School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ruth E Yoash-Gantz
- Va Mid-Atlantic Mental Illness, Research, And Clinical Center, Durham, NC, USA
| | | | - David X Cifu
- Mental Health Service, Hunter Holmes McGuire Va Medical Center, Richmond, VA, USA.,Department Of Physical Medicine And Rehabilitation, School Of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Larry A Tupler
- Va Mid-Atlantic Mental Illness, Research, And Clinical Center, Durham, NC, USA.,Durham VA Medical Center, Durham, NC, USA.,Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Phipps H, Mondello S, Wilson A, Dittmer T, Rohde NN, Schroeder PJ, Nichols J, McGirt C, Hoffman J, Tanksley K, Chohan M, Heiderman A, Abou Abbass H, Kobeissy F, Hinds S. Characteristics and Impact of U.S. Military Blast-Related Mild Traumatic Brain Injury: A Systematic Review. Front Neurol 2020; 11:559318. [PMID: 33224086 PMCID: PMC7667277 DOI: 10.3389/fneur.2020.559318] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Abstract
As a result of armed conflict, head trauma from exposure to blasts is an increasing critical health issue, particularly among military service members. Whilst numerous studies examined the burden of blast-related brain injuries on service members', few systematic reviews have been published. This work provides a comprehensive summary of the evidence on blast-related mild traumatic brain injury (mTBI) burden in active U.S. military service members and inactive Veterans, describing characteristics and outcomes. Records published up to April 2017 were identified through a search of PubMed, Web of Science, Scopus, Ovid MEDLINE, and Cochrane Library. Records-based and original research reporting on U.S. military service members and Veterans with mild blast TBI were included. Data on subject characteristics, exposure, diagnostic criterion, and outcomes were extracted from included studies using a standardized extraction form and were presented narratively. Of the 2,290 references identified by the search, 106 studies with a total of 37,515 participants met inclusion criteria for blast-related mTBI. All but nine studies were based out of military or Veteran medical facilities. Unsurprisingly, men were over-represented (75–100%). The criteria used to define blast-related mTBI were consistent; however, the methodology used to ascertain whether individuals met those criteria for diagnosis were inconsistent. The diagnosis, most prevalent among the Army, heavily relied on self-reported histories. Commonly reported adverse outcomes included hearing disturbances and headaches. The most frequently associated comorbidities were post-traumatic stress disorder, depression, anxiety, sleep disorders, attention disorders, and cognitive disorders. The primary objective of this review was to provide a summary of descriptive data on blast-related mTBI in a U.S. military population. Low standardization of the methods for reaching diagnosis and problems in the study reporting emphasize the importance to collect high-quality data to fill knowledge gaps pertaining to blast-related mTBI.
Collapse
Affiliation(s)
- Helen Phipps
- Booz Allen Hamilton, San Antonio, TX, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | | | | | | | | | | | | | | | | | | | | | - Hussein Abou Abbass
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, United States
| | - Sidney Hinds
- Medical Research and Development Command, Ft Detrick, MD, United States
| |
Collapse
|
6
|
Lange RT, Yeh PH, Brickell TA, Lippa SM, French LM. Postconcussion symptom reporting is not associated with diffusion tensor imaging findings in the subacute to chronic phase of recovery in military service members following mild traumatic brain injury. J Clin Exp Neuropsychol 2019; 41:497-511. [PMID: 30871410 DOI: 10.1080/13803395.2019.1585518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The purpose of this study was to examine the relation between white matter integrity of the brain and postconcussion symptom reporting following mild traumatic brain injury (MTBI). METHOD Participants were 109 U.S. military service members (91.7% male) who had sustained a MTBI (n = 88) or orthopedic injury without TBI (trauma controls, TC, n = 21), enrolled from the Walter Reed National Military Medical Center, Bethesda, Maryland. Participants completed a battery of neurobehavioral symptom measures and underwent diffusion tensor imaging (DTI; General Electric 3T) of the whole brain, on average 44.9 months post injury (SD = 42.3). Measures of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were generated for 18 regions of interest (ROIs). Participants in the MTBI group were divided into two subgroups based on International Classification of Diseases-10th Revision (ICD-10) Category C criteria for postconcussion syndrome (PCS): PCS-present (n = 41) and PCS-absent (n = 47). RESULTS The PCS-present group had significantly worse scores on all 13 neurobehavioral measures than the PCS-absent group (p < .001, d = 0.87-2.50) and TC group (p < .003, d = 0.84-2.06). For all ROIs, there were no significant main effects across the three groups for FA, MD, AD, and RD (all ps >.03). Pairwise comparisons revealed no significant differences for all ROIs when using FA and RD, and only two significant pairwise differences were found between PCS-present and PCS-absent groups when using MD and AD [i.e., anterior thalamic radiation and cingulate gyrus (supracallosal) bundle]. CONCLUSIONS Consistent with past research, but not all studies, postconcussion symptom reporting was not associated with white matter integrity in the subacute to chronic phase of recovery following MTBI.
Collapse
Affiliation(s)
- Rael T Lange
- a Defense and Veterans Brain Injury Center , Walter Reed National Military Medical Center , Bethesda , MD , USA.,b National Intrepid Center of Excellence , Walter Reed National Military Medical Center , Bethesda , MD , USA.,c Department of Psychiatry , University of British Columbia , Vancouver , BC , Canada
| | - Ping-Hong Yeh
- b National Intrepid Center of Excellence , Walter Reed National Military Medical Center , Bethesda , MD , USA
| | - Tracey A Brickell
- a Defense and Veterans Brain Injury Center , Walter Reed National Military Medical Center , Bethesda , MD , USA.,b National Intrepid Center of Excellence , Walter Reed National Military Medical Center , Bethesda , MD , USA.,d Department of Psychiatry , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Sara M Lippa
- a Defense and Veterans Brain Injury Center , Walter Reed National Military Medical Center , Bethesda , MD , USA.,b National Intrepid Center of Excellence , Walter Reed National Military Medical Center , Bethesda , MD , USA
| | - Louis M French
- a Defense and Veterans Brain Injury Center , Walter Reed National Military Medical Center , Bethesda , MD , USA.,b National Intrepid Center of Excellence , Walter Reed National Military Medical Center , Bethesda , MD , USA.,d Department of Psychiatry , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
7
|
Kawa L, Kamnaksh A, Long JB, Arborelius UP, Hökfelt T, Agoston DV, Risling M. A Comparative Study of Two Blast-Induced Traumatic Brain Injury Models: Changes in Monoamine and Galanin Systems Following Single and Repeated Exposure. Front Neurol 2018; 9:479. [PMID: 29973912 PMCID: PMC6019469 DOI: 10.3389/fneur.2018.00479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/01/2018] [Indexed: 12/28/2022] Open
Abstract
Repeated mild blast-induced traumatic brain injury (rmbTBI), caused by recurrent exposure to low levels of explosive blast, is a significant concern for military health systems. However, the pathobiology of rmbTBI is currently poorly understood. Animal models are important tools to identify the molecular changes of rmbTBI, but comparisons across different models can present their own challenges. In this study, we compared two well-established rodent models of mbTBI, the "KI model" and the "USU/WRAIR model." These two models create different pulse forms, in terms of peak pressure and duration. Following single and double exposures to mild levels of blast, we used in situ hybridization (ISH) to assess changes in mRNA levels of tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH2), and galanin in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). These systems and their transmitters are known to mediate responses to stress and anxiety. We found increased mRNA levels of TH, TPH2 and galanin in the LC and DRN of single-exposed rats relative to sham rats in the KI but not the USU/WRAIR model. Sham mRNA values measured in the USU/WRAIR model were substantially higher than their KI counterparts. Double exposure caused similarly significant increases in mRNA values in the KI model but not the USU/WRAIR model, except TPH2 and galanin levels in the DRN. We detected no cumulative effect of injury in either model at the used inter-injury interval (30 min), and there were no detectable neuropathological changes in any experimental group at 1 day post-injury. The apparent lack of early response to injury as compared to sham in the USU/WRAIR model is likely caused by stressors (e.g., transportation and noise), associated with the experimental execution, that were absent in the KI model. This study is the first to directly compare two established rodent models of rmbTBI, and to highlight the challenges of comparing findings from different animal models. Additional studies are needed to understand the role of stress, dissect the effects of psychological and physical injuries and to identify the window of increased cerebral vulnerability, i.e., the inter-injury interval that results in a cumulative effect following repeated blast exposure.
Collapse
Affiliation(s)
- Lizan Kawa
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology and Genetics, Uniformed Services, University, Bethesda, MD, United States
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ulf P Arborelius
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Denes V Agoston
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Anatomy, Physiology and Genetics, Uniformed Services, University, Bethesda, MD, United States
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Davenport ND, Lamberty GJ, Nelson NW, Lim KO, Armstrong MT, Sponheim SR. PTSD confounds detection of compromised cerebral white matter integrity in military veterans reporting a history of mild traumatic brain injury. Brain Inj 2018; 30:1491-1500. [PMID: 27834537 DOI: 10.1080/02699052.2016.1219057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PRIMARY OBJECTIVE Based on high comorbidity between mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) among deployed military service members, this study tested the hypothesis that the presence of PTSD disrupts the association between mTBI and lower white matter integrity identified in non-military samples. Research design/Methods and procedures: In a sample of 124 recent veterans with a range of mTBI and PTSD history, diffusion tensor imaging (DTI) metrics of white matter integrity in 20 regions were compared using multiple mTBI and PTSD contrasts. MAIN OUTCOMES AND RESULTS Civilian mTBI was associated with lower global anisotropy, higher global diffusivity and higher diffusivity in 17 of 20 regions. No main effects of deployment mTBI were observed, but an interaction between deployment mTBI and lifetime PTSD on FA was observed globally and in 10 regions. Impact and blast mTBI demonstrated similar but weaker effects to those of civilian and deployment mTBI, respectively, demonstrating the context of mTBI is more relevant to white matter integrity than mechanism of injury. CONCLUSIONS Overall, a main effect of civilian mTBI indicates long-term disruptions to white matter are likely present, while the interaction between deployment mTBI and PTSD indicates that a history of PTSD alters this relationship.
Collapse
Affiliation(s)
- Nicholas D Davenport
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA
| | - Greg J Lamberty
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA
| | - Nathaniel W Nelson
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,c Graduate School of Professional Psychology, University of St. Thomas , Minneapolis , MN , USA
| | - Kelvin O Lim
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA.,d Department of Psychology , University of Minnesota , Minneapolis , MN , USA
| | | | - Scott R Sponheim
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA.,d Department of Psychology , University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
9
|
|
10
|
Kawa L, Barde S, Arborelius UP, Theodorsson E, Agoston D, Risling M, Hökfelt T. Expression of galanin and its receptors are perturbed in a rodent model of mild, blast-induced traumatic brain injury. Exp Neurol 2016; 279:159-167. [PMID: 26928087 DOI: 10.1016/j.expneurol.2016.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/05/2023]
Abstract
The symptomatology, mood and cognitive disturbances seen in post-traumatic stress disorder (PTSD) and mild blast-induced traumatic brain injury (mbTBI) overlap considerably. However the pathological mechanisms underlying the two conditions are currently unknown. The neuropeptide galanin has been suggested to play a role in the development of stress and mood disorders. Here we applied bio- and histochemical methods with the aim to elucidate the nature of any changes in the expression of galanin and its receptors in a rodent model of mbTBI. In situ hybridization and quantitative polymerase chain reaction studies revealed significant, injury-induced changes, in some cases lasting at least for one week, in the mRNA levels of galanin and/or its three receptors, galanin receptor 1-3 (GalR1-3). Such changes were seen in several forebrain regions, and the locus coeruleus. In the ventral periaqueductal gray GalR1 mRNA levels were increased, while GalR2 were decreased. Analysis of galanin peptide levels using radioimmunoassay demonstrated an increase in several brain regions including the locus coeruleus, dorsal hippocampal formation and amygdala. These findings suggest a role for the galanin system in the endogenous response to mbTBI, and that pharmacological studies of the effects of activation or inhibition of different galanin receptors in combination with functional assays of behavioral recovery may reveal promising targets for new therapeutic strategies in mbTBI.
Collapse
Affiliation(s)
- Lizan Kawa
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden.
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden
| | - Ulf P Arborelius
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
| | - Denes Agoston
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden; Department of Anatomy, Physiology and Genetics, The Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden.
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden
| |
Collapse
|
11
|
Davenport ND. The Chaos of Combat: An Overview of Challenges in Military Mild Traumatic Brain Injury Research. Front Psychiatry 2016; 7:85. [PMID: 27242555 PMCID: PMC4865507 DOI: 10.3389/fpsyt.2016.00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mTBI), or concussion, is among the most common injuries affecting Veterans of recent combat deployments. Military mTBI differs from civilian mTBI in fundamental ways that make assessment and diagnosis difficult, including a reliance on retrospective self-report and the potential influence of comorbid psychopathology. These unique features and their implications for research and clinical practice are summarized, and neuroimaging studies are discussed in the context of these complicating factors.
Collapse
Affiliation(s)
- Nicholas D Davenport
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, USA; Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|