1
|
Lobato-Camacho FJ, Vargas JP, López JC. Standardization of decision-making skills but persistent impulsivity after chronic stimulant exposure in ADHD patients. Pharmacol Biochem Behav 2025; 249:173986. [PMID: 40021064 DOI: 10.1016/j.pbb.2025.173986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Attention deficit hyperactivity disorder (ADHD) is commonly associated with deficits in executive function. Even though attention, hyperactivity, and impulsivity are the more distinctive symptoms, impairment in other cognitive processes, for instance memory, could be due to the interferences from these symptoms. However, it remains unclear whether information processing errors made by individuals with ADHD arise primarily from impulsive responding or reflect a more fundamental difference in how they process information, potentially due to compensatory mechanisms developed throughout childhood. This study analyzes pattern separation (distinguishing similar stimuli), recognition memory, decision-making, and impulsivity in both ADHD-diagnosed and non-diagnosed youth population. We further examined possible treatment effects by dividing the ADHD group into three cohorts based on stimulant medication duration. We evaluate their response latency and responses utilizing the signal detection theory method. While ADHD participants exhibited poorer recognition memory compared to controls, this pattern did not show a statistically significant difference in pattern separation. Additionally, both processes improved with longer treatment duration within the ADHD group, leading to decreased error commission. Decision-making analyses revealed sex-specific response strategies within the ADHD group, but both groups showed similar adjustment to task difficulty. However, the ADHD group responses were notably faster, associated with a higher error rate. Additionally, response times varied depending on the stimulus type, suggesting potential differences in how the ADHD group processed information compared to the control group. These findings collectively point towards a possible difference in information management in ADHD, that is also characterized by faster, but less accurate, processing.
Collapse
Affiliation(s)
- Francisco José Lobato-Camacho
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Calle Camilo José Cela, S/N, 41018 Sevilla, Spain.
| | - Juan Pedro Vargas
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Calle Camilo José Cela, S/N, 41018 Sevilla, Spain.
| | - Juan Carlos López
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Calle Camilo José Cela, S/N, 41018 Sevilla, Spain.
| |
Collapse
|
2
|
Pretzsch CM, Parlatini V, Murphy D. Single-dose methylphenidate induces shift in functional connectivity associated with positive longer term clinical response in adult attention-deficit/hyperactivity disorder. Sci Rep 2025; 15:5794. [PMID: 39962109 PMCID: PMC11833068 DOI: 10.1038/s41598-025-87204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Stimulants, such as methylphenidate (MPH), are beneficial for attention-deficit/hyperactivity disorder (ADHD), but individual response varies. A deeper understanding of the mechanisms underpinning response is needed. Previous studies suggest that a single MPH dose modulates resting-state functional connectivity (rs-fc). We investigated whether single-dose induced rs-fc changes were associated with post-dose optimization clinical response. Fifty-six adults with ADHD underwent rs-functional magnetic resonance imaging (rs-fMRI) under placebo and a single MPH dose, before starting MPH treatment. Clinical response was measured at two months. We tested if a single MPH dose (vs. placebo) shifted rs-fc; how these shifts were associated with treatment response (categorical approach); and whether these associations were driven by improvement on either ADHD symptom domain. A single MPH dose (vs. placebo) increased rs-fc in three subcortical-cortical and cerebellar-cortical clusters. Enhanced rs-fc between the cerebellar vermis (lobule 6) and the left precentral gyrus was associated with a greater probability of responding to treatment (χ2(7) = 22.740, p = .002) and with an improvement on both inattentive and hyperactive/impulsive symptoms (both p ≤ .001). We provide proof-of-concept that the brain functional response to a single MPH dose, administered before starting routine treatment, is indicative of two-month clinical response in adult ADHD. This may encourage future replication using clinically applicable measures.
Collapse
Affiliation(s)
- Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Valeria Parlatini
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
3
|
Bartkoski M, Tumberger J, Martin L, Choi IY, Lee P, Strawn JR, Brooks WM, Stancil SL. Neuroimaging as a Tool for Advancing Pediatric Psychopharmacology. Paediatr Drugs 2025:10.1007/s40272-025-00683-9. [PMID: 39899194 DOI: 10.1007/s40272-025-00683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
Neuroimaging, specifically magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET), plays an important role in improving the therapeutic landscape of pediatric neuropsychopharmacology by detecting target engagement, pathway modulation, and disease-related changes in the brain. This review provides a comprehensive update on the application of neuroimaging to detect neural effects of psychotropic medication in pediatrics. Additionally, we discuss opportunities and challenges for expanding the use of neuroimaging to advance pediatric neuropsychopharmacology. PubMed and Embase were searched for studies published between 2012 and 2024 reporting neural effects of attention deficit hyperactivity disorder (ADHD) medications (e.g., methylphenidate, amphetamine, atomoxetine, guanfacine), selective serotonin reuptake inhibitors (e.g., fluoxetine, escitalopram, sertraline), serotonin/norepinephrine reuptake inhibitors (e.g., duloxetine, venlafaxine), second-generation antipsychotics (e.g., aripiprazole, olanzapine, risperidone, quetiapine, ziprasidone), and others (e.g., lithium, carbamazepine, lamotrigine, ketamine, naltrexone) used to treat pediatric psychiatric conditions. Of the studies identified (N = 57 in 3314 pediatric participants), most (86%, total participants n = 3045) used MRI to detect functional pathway modulation or anatomical changes. Fewer studies (14%, total participants n = 269) used MRS to understand neurochemical modulation. No studies used PET. Studies that included healthy controls detected normalization of disease-altered pathways following treatment. Studies that focused on affected youth detected neuromodulation following single-dose and ongoing treatment. Neuroimaging is positioned to serve as a biomarker capable of demonstrating acute brain modulation, predicting clinical response, and monitoring disease, yet biomarker validation requires further work. Neuroimaging is also well suited to fill the notable knowledge gap of long-term neuromodulatory effects of psychotropic medications in the context of ongoing brain development in children and adolescents. Future studies can leverage advancements in neuroimaging technology, acquisition, and analysis to fill these gaps and accelerate the discovery of novel therapeutics, leading to more effective prescribing and ensuring faster recovery.
Collapse
Affiliation(s)
- Michael Bartkoski
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - John Tumberger
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Laura Martin
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
- Hoglund Biomedical Imaging Center, University of Kansas, Kansas City, KS, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - In-Young Choi
- Hoglund Biomedical Imaging Center, University of Kansas, Kansas City, KS, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
- Department of Radiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Phil Lee
- Hoglund Biomedical Imaging Center, University of Kansas, Kansas City, KS, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
- Department of Radiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William M Brooks
- Hoglund Biomedical Imaging Center, University of Kansas, Kansas City, KS, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Stephani L Stancil
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA.
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine and University of Kansas School of Medicine, Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
4
|
Nugiel T, Fogleman ND, Sheridan MA, Cohen JR. Methylphenidate stabilizes dynamic brain network organization during tasks probing attention and reward processing in stimulant-naïve children with ADHD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.27.25321175. [PMID: 39974117 PMCID: PMC11838951 DOI: 10.1101/2025.01.27.25321175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Children with ADHD often exhibit fluctuations in attention and heightened reward sensitivity. Psychostimulants, such as methylphenidate (MPH), improve these behaviors in many, but not all, children with ADHD. Given the extent to which psychostimulants are prescribed for children, coupled with variable efficacy on an individual level, a better understanding of the mechanisms through which MPH changes brain function and behavior is necessary. MPH's primary action is on catecholamines, including dopamine and norepinephrine. Catecholaminergic signaling can influence the tradeoff between flexibility and stability of brain function, which is one candidate mechanism through which MPH may alter brain function and behavior. Time-varying functional connectivity, which models how functional brain networks reconfigure on short timescales, can be used to examine brain flexibility versus stability, and is thus well-suited to test how MPH impacts brain function. Here, we scanned stimulant-naïve children with ADHD (8-12 years) on and off a single dose of MPH. In the MRI machine, participants completed two attention-demanding tasks: 1) a standard go/no-go task and 2) a rewarded go/no-go task. For both tasks, using a within-subjects design, we compared the degree to which brain organization changed throughout the course of the MRI scan, termed whole brain flexibility, on and off MPH. We found that whole brain flexibility decreased on MPH. Further, individuals with greater decreases in whole brain flexibility on MPH exhibited greater improvements in task performance. Together, these results provide novel insights into the neurobiological mechanisms underlying the effectiveness of MPH administration for children with ADHD.
Collapse
|
5
|
van der Pal Z, Geurts HM, Haslbeck JMB, van Keeken A, Bruijn AM, Douw L, van Rooij D, Franke B, Buitelaar J, Lambregts-Rommelse N, Hartman C, Oosterlaan J, Luman M, Reneman L, Hoekstra PJ, Blanken TF, Schrantee A. Stimulant medication and symptom interrelations in children, adolescents and adults with attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02610-8. [PMID: 39527154 DOI: 10.1007/s00787-024-02610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Stimulant medication is effective in alleviating overall symptom severity of attention-deficit/hyperactivity disorder (ADHD), yet interindividual variability in treatment response and tolerability still exists. While network analysis has identified differences in ADHD symptom relations, the impact of stimulant medication remains unexplored. Increased understanding of this association could provide valuable insights for optimizing treatment approaches for individuals with ADHD. In this study, we compared and characterized ADHD symptom networks (including 18 ADHD symptoms) between stimulant-treated (n = 348) and untreated (n = 70) individuals with ADHD and non-ADHD controls (NACs; n = 444). Moreover, we compared symptom networks between subgroups defined by their stimulant treatment trajectory (early-and-intense use, late-and-moderate use). Stimulant-treated individuals with ADHD showed stronger associations between symptoms, compared with untreated individuals with ADHD and NACs. We found no differences in symptom networks between the stimulant treatment trajectory subgroups. Prospective longitudinal studies are needed to disentangle whether the identified differences stem from treatment or pre-existing factors.
Collapse
Affiliation(s)
- Zarah van der Pal
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands.
| | - Hilde M Geurts
- Division of Brain & Cognition, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Jonas M B Haslbeck
- Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands
| | - Alex van Keeken
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Anne Marijn Bruijn
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Linda Douw
- Department of Anatomy & Neurosciences, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and Behavior, Donders Centre for Cognitive Neuroimaging, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behavior, Donders Centre for Cognitive Neuroimaging, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nanda Lambregts-Rommelse
- Donders Institute for Brain, Cognition and Behavior, Donders Centre for Cognitive Neuroimaging, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina Hartman
- Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjolein Luman
- Department of Clinical Neuropsychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen-University Medical Center Groningen, Groningen, The Netherlands
| | - Tessa F Blanken
- Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
| | - Anouk Schrantee
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Kaminski A, Xie H, Hawkins B, Vaidya CJ. Change in striatal functional connectivity networks across 2 years due to stimulant exposure in childhood ADHD: results from the ABCD sample. Transl Psychiatry 2024; 14:463. [PMID: 39505862 PMCID: PMC11541585 DOI: 10.1038/s41398-024-03165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Widely prescribed for Attention-Deficit/Hyperactivity Disorder (ADHD), stimulants (e.g., methylphenidate) have been studied for their chronic effects on the brain in prospective designs controlling dosage and adherence. While controlled approaches are essential, they do not approximate real-world stimulant exposure contexts where medication interruptions, dosage non-compliance, and polypharmacy are common. Brain changes in real-world conditions are largely unexplored. To fill this gap, we capitalized on the observational design of the Adolescent Brain Cognitive Development (ABCD) study to examine effects of stimulants on large-scale bilateral cortical networks' resting-state functional connectivity (rs-FC) with 6 striatal regions (left and right caudate, putamen, and nucleus accumbens) across two years in children with ADHD. Bayesian hierarchical regressions revealed associations between stimulant exposure and change in rs-FC of multiple striatal-cortical networks, affiliated with executive and visuo-motor control, which were not driven by general psychotropic medication. Of these connections, three were selective to stimulants versus stimulant naive: reduced rs-FC between caudate and frontoparietal network, and between putamen and frontoparietal and visual networks. Comparison with typically developing children in the ABCD sample revealed stronger rs-FC reduction in stimulant-exposed children for putamen and frontoparietal and visual networks, suggesting a normalizing effect of stimulants. 14% of stimulant-exposed children demonstrated reliable reduction in ADHD symptoms, and were distinguished by stronger rs-FC reduction between right putamen and visual network. Thus, stimulant exposure for a two-year period under real-world conditions modulated striatal-cortical functional networks broadly, had a normalizing effect on a subset of networks, and was associated with potential therapeutic effects involving visual attentional control.
Collapse
Affiliation(s)
- Adam Kaminski
- Department of Psychology, Georgetown University, Washington, DC, USA.
| | - Hua Xie
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | - Brylee Hawkins
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Chandan J Vaidya
- Department of Psychology, Georgetown University, Washington, DC, USA.
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
7
|
Lobato-Camacho FJ, López JC, Vargas JP. Enhancing spatial memory and pattern separation: Long-term effects of stimulant treatment in individuals with ADHD. Behav Brain Res 2024; 475:115211. [PMID: 39182623 DOI: 10.1016/j.bbr.2024.115211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
This study explores the under-researched domain of long-term stimulant treatment in children and adolescents diagnosed with attention deficit hyperactivity disorder (ADHD). The necessity for extended treatment duration, often accompanied by safety concerns and side effects leading to treatment discontinuation, underscores the significance of this investigation. Concurrently, comparative studies have revealed adverse impacts on vulnerable regions within the hippocampal formation, accompanied by behavioral perturbations. We employed computerized tests and virtual reality to assess spatial memory, pattern separation, and object recognition memory in a cohort of children diagnosed with ADHD receiving stimulant treatment. We compared their performance to a group of neurotypical peers. Our findings indicate that the ADHD group exhibited a lower performance in spatial memory, pattern separation, and object recognition memory than ND group. Intriguingly, a positive relationship emerged between the duration of stimulant treatment and performance in these variables. Notably, this improvement was not immediate to MPH treatment but becomes significant after 24 months of treatment. In contrast to previous comparative investigations, our study did not reveal a detrimental impact on spatial navigation, object recognition memory, or pattern separation, despite the known interplay of these cognitive processes with the hippocampal formation. These results shed new light on the nuanced effects of stimulant treatment in ADHD, underscoring the need for a more comprehensive understanding of long-term treatment outcomes.
Collapse
Affiliation(s)
- Francisco José Lobato-Camacho
- Departamento de psicología experimental, Facultad de Psicología, Universidad de Sevilla, Calle Camilo José Cela, S/N, Sevilla 41018, Spain.
| | - Juan Carlos López
- Departamento de psicología experimental, Facultad de Psicología, Universidad de Sevilla, Calle Camilo José Cela, S/N, Sevilla 41018, Spain
| | - Juan Pedro Vargas
- Departamento de psicología experimental, Facultad de Psicología, Universidad de Sevilla, Calle Camilo José Cela, S/N, Sevilla 41018, Spain
| |
Collapse
|
8
|
Cao Q, Wang P, Zhang Z, Castellanos FX, Biswal BB. Compressed cerebro-cerebellar functional gradients in children and adolescents with attention-deficit/hyperactivity disorder. Hum Brain Mapp 2024; 45:e26796. [PMID: 39254180 PMCID: PMC11386319 DOI: 10.1002/hbm.26796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 09/11/2024] Open
Abstract
Both cortical and cerebellar developmental differences have been implicated in attention-deficit/hyperactivity disorder (ADHD). Recently accumulating neuroimaging studies have highlighted hierarchies as a fundamental principle of brain organization, suggesting the importance of assessing hierarchy abnormalities in ADHD. A novel gradient-based resting-state functional connectivity analysis was applied to investigate the cerebro-cerebellar disturbed hierarchy in children and adolescents with ADHD. We found that the interaction of functional gradient between diagnosis and age was concentrated in default mode network (DMN) and visual network (VN). At the same time, we also found that the opposite gradient changes of DMN and VN caused the compression of the cortical main gradient in ADHD patients, implicating the co-occurrence of both low- (visual processing) and high-order (self-related thought) cognitive dysfunction manifesting in abnormal cerebro-cerebellar organizational hierarchy in ADHD. Our study provides a neurobiological framework to better understand the co-occurrence and interaction of both low-level and high-level functional abnormalities in the cortex and cerebellum in ADHD.
Collapse
Affiliation(s)
- Qingquan Cao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ziqian Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - F. Xavier Castellanos
- Department of Child and Adolescent PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| |
Collapse
|
9
|
Lobato-Camacho FJ, Faísca L. Object Recognition Memory Deficits in ADHD: A Meta-analysis. Neuropsychol Rev 2024:10.1007/s11065-024-09645-3. [PMID: 38907905 DOI: 10.1007/s11065-024-09645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
Object recognition memory allows us to identify previously seen objects. This type of declarative memory is a primary process for learning. Despite its crucial role in everyday life, object recognition has received far less attention in ADHD research compared to verbal recognition memory. In addition to the existence of a small number of published studies, the results have been inconsistent, possibly due to the diversity of tasks used to assess recognition memory. In the present meta-analysis, we have collected studies from Web of Science, Scopus, PubMed, and Google Scholar databases up to May 2023. We have compiled studies that assessed visual object recognition memory with specific visual recognition tests (sample-match delayed tasks) in children and adolescents diagnosed with ADHD. A total of 28 studies with 1619 participants diagnosed with ADHD were included. The studies were assessed for risk of bias using the Quadas-2 tool and for each study, Cohen's d was calculated to estimate the magnitude of the difference in performance between groups. As a main result, we have found a worse recognition memory performance in ADHD participants when compared to their matched controls (overall Cohen's d ~ 0.492). We also observed greater heterogeneity in the magnitude of this deficit among medicated participants compared to non-medicated individuals, as well as a smaller deficit in studies with a higher proportion of female participants. The magnitude of the object recognition memory impairment in ADHD also seems to depend on the assessment method used.
Collapse
Affiliation(s)
- Francisco José Lobato-Camacho
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Calle Camilo José Cela, 41018, Seville, S/N, Spain.
| | - Luís Faísca
- Departamento de Psicología e Ciências da Educação & Center for Research in Health Technologies and Information Systems (CINTESIS@RISE), Universidade Do Algarve, 8005-139, Faro, Portugal
| |
Collapse
|
10
|
Kaminski A, Xie H, Hawkins B, Vaidya CJ. Change in Striatal Functional Connectivity Networks Across Two Years Due to Stimulant Exposure in Childhood ADHD: Results from the ABCD Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304470. [PMID: 38562872 PMCID: PMC10984058 DOI: 10.1101/2024.03.18.24304470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Widely prescribed for Attention-Deficit/Hyperactivity Disorder (ADHD), stimulants (e.g., methylphenidate) have been studied for their chronic effects on the brain in prospective designs controlling dosage and adherence. While controlled approaches are essential, they do not approximate real-world stimulant exposure contexts where medication interruptions, dosage non-compliance, and polypharmacy are common. Brain changes in real-world conditions are largely unexplored. To fill this gap, we capitalized on the observational design of the Adolescent Brain Cognitive Development (ABCD) study to examine effects of stimulants on large-scale bilateral cortical networks' resting-state functional connectivity (rs-FC) with 6 striatal regions (left and right caudate, putamen, and nucleus accumbens) across two years in children with ADHD. Bayesian hierarchical regressions revealed associations between stimulant exposure and change in rs-FC of multiple striatal-cortical networks, affiliated with executive and visuo-motor control, which were not driven by general psychotropic medication. Of these connections, three were selective to stimulants versus stimulant naive: reduced rs-FC between caudate and frontoparietal network, and between putamen and frontoparietal and visual networks. Comparison with typically developing children in the ABCD sample revealed stronger rs-FC reduction in stimulant-exposed children for putamen and frontoparietal and visual networks, suggesting a normalizing effect of stimulants. 14% of stimulant-exposed children demonstrated reliable reduction in ADHD symptoms, and were distinguished by stronger rs-FC reduction between right putamen and visual network. Thus, stimulant exposure for a two-year period under real-world conditions modulated striatal-cortical functional networks broadly, had a normalizing effect on a subset of networks, and was associated with potential therapeutic effects involving visual attentional control.
Collapse
Affiliation(s)
- Adam Kaminski
- Department of Psychology, Georgetown University, Washington, DC
| | - Hua Xie
- Children’s Research Institute, Children’s National Medical Center, Washington, DC
| | - Brylee Hawkins
- Department of Psychology, Georgetown University, Washington, DC
| | - Chandan J. Vaidya
- Department of Psychology, Georgetown University, Washington, DC
- Children’s Research Institute, Children’s National Medical Center, Washington, DC
| |
Collapse
|
11
|
Loo SK, Lenartowicz A, Norman LJ, Michelini G. Translating Decades of Neuroscience Research into Diagnostic and Treatment Biomarkers for ADHD. ADVANCES IN NEUROBIOLOGY 2024; 40:579-616. [PMID: 39562458 DOI: 10.1007/978-3-031-69491-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this chapter, we review scientific findings that form the basis for neuroimaging and neurophysiological biomarkers for ADHD diagnosis and treatment. We then highlight the different challenges in translating mechanistic findings into biomarkers for ADHD diagnosis and treatment. Population heterogeneity is a primary barrier for identifying biomarkers of ADHD diagnosis, which requires shifts toward dimensional approaches that identify clinically useful subgroups or prospective biomarkers that can identify trajectories of illness, function, or treatment response. Methodological limitations, including emphasis on group level analyses of treatment effects in small sample sizes, are the primary barriers to biomarker discovery in ADHD treatment. Modifications to clinical trials, including shifting towards testing biomarkers of a priori prediction of functionally related brain targets, treatment response, and side effects, are suggested. Finally, future directions for biomarker work are discussed.
Collapse
Affiliation(s)
- Sandra K Loo
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Agatha Lenartowicz
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Luke J Norman
- National Institute of Mental Health, Bethesda, MD, USA
| | - Giorgia Michelini
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Tomasi D, Manza P, Yan W, Shokri-Kojori E, Demiral ŞB, Yonga MV, McPherson K, Biesecker C, Dennis E, Johnson A, Zhang R, Wang GJ, Volkow ND. Examining the role of dopamine in methylphenidate's effects on resting brain function. Proc Natl Acad Sci U S A 2023; 120:e2314596120. [PMID: 38109535 PMCID: PMC10756194 DOI: 10.1073/pnas.2314596120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
The amplitude of low-frequency fluctuations (ALFF) and global functional connectivity density (gFCD) are fMRI (Functional MRI) metrics widely used to assess resting brain function. However, their differential sensitivity to stimulant-induced dopamine (DA) increases, including the rate of DA rise and the relationship between them, have not been investigated. Here we used, simultaneous PET-fMRI to examine the association between dynamic changes in striatal DA and brain activity as assessed by ALFF and gFCD, following placebo, intravenous (IV), or oral methylphenidate (MP) administration, using a within-subject double-blind placebo-controlled design. In putamen, MP significantly reduced D2/3 receptor availability and strongly reduced ALFF and increased gFCD in the brain for IV-MP (Cohen's d > 1.6) but less so for oral-MP (Cohen's d < 0.6). Enhanced gFCD was associated with both the level and the rate of striatal DA increases, whereas decreased ALFF was only associated with the level of DA increases. These findings suggest distinct representations of neurovascular activation with ALFF and gFCD by stimulant-induced DA increases with differential sensitivity to the rate and the level of DA increases. We also observed an inverse association between gFCD and ALFF that was markedly enhanced during IV-MP, which could reflect an increased contribution from MP's vasoactive properties.
Collapse
Affiliation(s)
- Dardo Tomasi
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Peter Manza
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Weizheng Yan
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Şükrü Barış Demiral
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Michele-Vera Yonga
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Katherine McPherson
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Catherine Biesecker
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Evan Dennis
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Allison Johnson
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Rui Zhang
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Gene-Jack Wang
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Nora D. Volkow
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| |
Collapse
|
13
|
Liu J, Liu QR, Wu ZM, Chen QR, Chen J, Wang Y, Cao XL, Dai MX, Dong C, Liu Q, Zhu J, Zhang LL, Li Y, Wang YF, Liu L, Yang BR. Specific brain imaging alterations underlying autistic traits in children with attention-deficit/hyperactivity disorder. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:20. [PMID: 37986005 PMCID: PMC10658985 DOI: 10.1186/s12993-023-00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Autistic traits (ATs) are frequently reported in children with Attention-Deficit/Hyperactivity Disorder (ADHD). This study aimed to examine ATs in children with ADHD from both behavioral and neuroimaging perspectives. METHODS We used the Autism Spectrum Screening Questionnaire (ASSQ) to assess and define subjects with and without ATs. For behavioral analyses, 67 children with ADHD and ATs (ADHD + ATs), 105 children with ADHD but without ATs (ADHD - ATs), and 44 typically developing healthy controls without ATs (HC - ATs) were recruited. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data and analyzed the mean amplitude of low-frequency fluctuation (mALFF) values (an approach used to depict different spontaneous brain activities) in a sub-sample. The imaging features that were shared between ATs and ADHD symptoms or that were unique to one or the other set of symptoms were illustrated as a way to explore the "brain-behavior" relationship. RESULTS Compared to ADHD-ATs, the ADHD + ATs group showed more global impairment in all aspects of autistic symptoms and higher hyperactivity/impulsivity (HI). Partial-correlation analysis indicated that HI was significantly positively correlated with all aspects of ATs in ADHD. Imaging analyses indicated that mALFF values in the left middle occipital gyrus (MOG), left parietal lobe (PL)/precuneus, and left middle temporal gyrus (MTG) might be specifically related to ADHD, while those in the right MTG might be more closely associated with ATs. Furthermore, altered mALFF in the right PL/precuneus correlated with both ADHD and ATs, albeit in diverse directions. CONCLUSIONS The co-occurrence of ATs in children with ADHD manifested as different behavioral characteristics and specific brain functional alterations. Assessing ATs in children with ADHD could help us understand the heterogeneity of ADHD, further explore its pathogenesis, and promote clinical interventions.
Collapse
Affiliation(s)
- Juan Liu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qian-Rong Liu
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhao-Min Wu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiao-Ru Chen
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jing Chen
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yuan Wang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Xiao-Lan Cao
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Mei-Xia Dai
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Chao Dong
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiao Liu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jun Zhu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Lin-Lin Zhang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Ying Li
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yu-Feng Wang
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Bin-Rang Yang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Liu G, Lu W, Qiu J, Shi L. Identifying individuals with attention‐deficit/hyperactivity disorder based on multisite resting‐state functional magnetic resonance imaging: A radiomics analysis. Hum Brain Mapp 2023; 44:3433-3445. [PMID: 36971664 PMCID: PMC10171499 DOI: 10.1002/hbm.26290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, characterized by symptoms of age-inappropriate inattention, hyperactivity, and impulsivity. Apart from behavioral symptoms investigated by psychiatric methods, there is no standard biological test to diagnose ADHD. This study aimed to explore whether the radiomics features based on resting-state functional magnetic resonance (rs-fMRI) have more discriminative power for the diagnosis of ADHD. The rs-fMRI of 187 subjects with ADHD and 187 healthy controls were collected from 5 sites of ADHD-200 Consortium. A total of four preprocessed rs-fMRI images including regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), voxel-mirrored homotopic connectivity (VMHC) and network degree centrality (DC) were used in this study. From each of the four images, we extracted 93 radiomics features within each of 116 automated anatomical labeling brain areas, resulting in a total of 43,152 features for each subject. After dimension reduction and feature selection, 19 radiomics features were retained (5 from ALFF, 9 from ReHo, 3 from VMHC and 2 from DC). By training and optimizing a support vector machine model using the retained features of training dataset, we achieved the accuracy of 76.3% and 77.0% (areas under curve = 0.811 and 0.797) in the training and testing datasets, respectively. Our findings demonstrate that radiomics can be a novel strategy for fully utilizing rs-fMRI information to distinguish ADHD from healthy controls. The rs-fMRI-based radiomics features have the potential to be neuroimaging biomarkers for ADHD.
Collapse
|
15
|
Bavato F, Esposito F, Dornbierer DA, Zölch N, Quednow BB, Staempfli P, Landolt HP, Seifritz E, Bosch OG. Subacute changes in brain functional network connectivity after nocturnal sodium oxybate intake are associated with anterior cingulate GABA. Cereb Cortex 2023:7086058. [DOI: 10.1093/cercor/bhad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractSodium oxybate (γ-hydroxybutyrate, GHB) is an endogenous GHB/GABAB receptor agonist, clinically used to promote slow-wave sleep and reduce next-day sleepiness in disorders such as narcolepsy and fibromyalgia. The neurobiological signature of these unique therapeutic effects remains elusive. Promising current neuropsychopharmacological approaches to understand the neural underpinnings of specific drug effects address cerebral resting-state functional connectivity (rsFC) patterns and neurometabolic alterations. Hence, we performed a placebo-controlled, double-blind, randomized, cross-over pharmacological magnetic resonance imaging study with a nocturnal administration of GHB, combined with magnetic resonance spectroscopy of GABA and glutamate in the anterior cingulate cortex (ACC). In sum, 16 healthy male volunteers received 50 mg/kg GHB p.o. or placebo at 02:30 a.m. to maximize deep sleep enhancement and multi-modal brain imaging was performed at 09:00 a.m. of the following morning. Independent component analysis of whole-brain rsFC revealed a significant increase of rsFC between the salience network (SN) and the right central executive network (rCEN) after GHB intake compared with placebo. This SN-rCEN coupling was significantly associated with changes in GABA levels in the ACC (pall < 0.05). The observed neural pattern is compatible with a functional switch to a more extrinsic brain state, which may serve as a neurobiological signature of the wake-promoting effects of GHB.
Collapse
|
16
|
Rafi H, Delavari F, Perroud N, Derome M, Debbané M. The continuum of attention dysfunction: Evidence from dynamic functional network connectivity analysis in neurotypical adolescents. PLoS One 2023; 18:e0279260. [PMID: 36662797 PMCID: PMC9858399 DOI: 10.1371/journal.pone.0279260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/04/2022] [Indexed: 01/21/2023] Open
Abstract
The question of whether attention-related disorders such as attention-deficit/hyperactivity disorder (ADHD) are best understood as clinical categories or as extreme ends of a spectrum is an ongoing debate. Assessing individuals with varying degrees of attention problems and utilizing novel methodologies to assess relationships between attention and brain activity may provide key information to support the spectrum hypothesis. We scanned 91 neurotypical adolescents during rest using functional magnetic resonance imaging. We conducted static and dynamic functional network connectivity (FNC) analysis and correlated findings to behavioral metrics of ADHD, attention problems, and impulsivity. We found that dynamic FNC analysis detects significant differences in large-scale neural connectivity as a function of individual differences in attention and impulsivity that are obscured in static analysis. We show ADHD manifestations and attention problems are associated with diminished Salience Network-centered FNC and that ADHD manifestations and impulsivity are associated with prolonged periods of dynamically hyperconnected states. Importantly, our meta-state analysis results reveal a relationship between ADHD manifestations and exhibiting variable and volatile dynamic behavior such as changing meta-states more often and traveling over a greater dynamic range. These findings in non-clinical adolescents provide support for the continuum model of attention disorders.
Collapse
Affiliation(s)
- Halima Rafi
- Faculty of Psychology and Educational Sciences, Developmental Clinical Psychology Research Unit, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, Developmental Neuroimaging and Psychopathology Laboratory, University of Geneva, Geneva, Switzerland
| | - Farnaz Delavari
- Department of Psychiatry, Developmental Neuroimaging and Psychopathology Laboratory, University of Geneva, Geneva, Switzerland
- Medical Image Processing Lab, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Nader Perroud
- Department of Psychiatry, Service of Psychiatric Specialties, University Hospitals of Geneva, Geneva, Switzerland
| | - Mélodie Derome
- Faculty of Psychology and Educational Sciences, Developmental Clinical Psychology Research Unit, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, Developmental Neuroimaging and Psychopathology Laboratory, University of Geneva, Geneva, Switzerland
| | - Martin Debbané
- Faculty of Psychology and Educational Sciences, Developmental Clinical Psychology Research Unit, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, Developmental Neuroimaging and Psychopathology Laboratory, University of Geneva, Geneva, Switzerland
- Research Department of Clinical, Educational & Health Psychology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Henry TR, Fogleman ND, Nugiel T, Cohen JR. Effect of methylphenidate on functional controllability: a preliminary study in medication-naïve children with ADHD. Transl Psychiatry 2022; 12:518. [PMID: 36528602 PMCID: PMC9759578 DOI: 10.1038/s41398-022-02283-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Methylphenidate (MPH) is the recommended first-line treatment for attention-deficit/hyperactivity disorder (ADHD). While MPH's mechanism of action as a dopamine and noradrenaline transporter blocker is well known, how this translates to ADHD-related symptom mitigation is still unclear. As functional connectivity is reliably altered in ADHD, with recent literature indicating dysfunctional connectivity dynamics as well, one possible mechanism is through altering brain network dynamics. In a double-blind, placebo-controlled MPH crossover trial, 19 medication-naïve children with ADHD underwent two functional MRI scanning sessions (one on MPH and one on placebo) that included a resting state scan and two inhibitory control tasks; 27 typically developing (TD) children completed the same protocol without medication. Network control theory, which quantifies how brain activity reacts to system inputs based on underlying connectivity, was used to assess differences in average and modal functional controllability during rest and both tasks between TD children and children with ADHD (on and off MPH) and between children with ADHD on and off MPH. Children with ADHD on placebo exhibited higher average controllability and lower modal controllability of attention, reward, and somatomotor networks than TD children. Children with ADHD on MPH were statistically indistinguishable from TD children on almost all controllability metrics. These findings suggest that MPH may stabilize functional network dynamics in children with ADHD, both reducing reactivity of brain organization and making it easier to achieve brain states necessary for cognitively demanding tasks.
Collapse
Affiliation(s)
- Teague R Henry
- Department of Psychology and School of Data Science, University of Virginia, Charlottesville, VA, USA.
| | - Nicholas D Fogleman
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tehila Nugiel
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Wang P, Wang J, Jiang Y, Wang Z, Meng C, Castellanos FX, Biswal BB. Cerebro-cerebellar Dysconnectivity in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2022; 61:1372-1384. [PMID: 35661770 DOI: 10.1016/j.jaac.2022.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/16/2022] [Accepted: 03/30/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Abnormal cerebellar development has been implicated in attention-deficit/hyperactivity disorder (ADHD), although cerebro-cerebellar functional connectivity (FC) has yet to be examined in ADHD. Our objective is to investigate the disturbed cerebro-cerebellar FC in children and adolescents with ADHD. METHOD We analyzed a dataset of 106 individuals with ADHD (68 children, 38 adolescents) and 62 healthy comparison individuals (34 children, 28 adolescents) from the publicly available ADHD-200 dataset. We identified 7 cerebellar subregions based on cerebro-cerebellar FC and subsequently obtained the FC maps of cerebro-cerebellar networks. The main effects of ADHD and age and their interaction were examined using 2-way analysis of variance. RESULTS Compared to comparisons, ADHD showed higher cerebro-cerebellar FC in the superior temporal gyrus within the somatomotor network. Interactions of diagnosis and age were identified in the supplementary motor area and postcentral gyrus within the somatomotor network and middle temporal gyrus within the ventral attention network. Follow-up Pearson correlation analysis revealed decreased cerebro-cerebellar FC in these regions with increasing age in comparisons, whereas the opposite pattern of increased cerebro-cerebellar FC occurred in ADHD. CONCLUSION Increased cerebro-cerebellar FC in the superior temporal gyrus within the somatomotor network could underlie impairments in cognitive control and somatic motor function in ADHD. In addition, increasing cerebro-cerebellar FC in older participants with ADHD suggests that enhanced cerebellar involvement may compensate for dysfunctions of the cerebral cortex in ADHD.
Collapse
Affiliation(s)
- Pan Wang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianlin Wang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Jiang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zedong Wang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Meng
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - F Xavier Castellanos
- New York University School of Medicine, New York, and the Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Bharat B Biswal
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; New Jersey Institute of Technology, Newark.
| |
Collapse
|
19
|
Kaiser A, Broeder C, Cohen JR, Douw L, Reneman L, Schrantee A. Effects of a single-dose methylphenidate challenge on resting-state functional connectivity in stimulant-treatment naive children and adults with ADHD. Hum Brain Mapp 2022; 43:4664-4675. [PMID: 35781371 PMCID: PMC9491277 DOI: 10.1002/hbm.25981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Prior studies suggest that methylphenidate, the primary pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD), alters functional brain connectivity. As the neurotransmitter systems targeted by methylphenidate undergo significant alterations throughout development, the effects of methylphenidate on functional connectivity may also be modulated by age. Therefore, we assessed the effects of a single methylphenidate challenge on brain network connectivity in stimulant-treatment naïve children and adults with ADHD. We obtained resting-state functional MRI from 50 boys (10-12 years of age) and 49 men (23-40 years of age) with ADHD (DSM IV, all subtypes), before and after an oral challenge with 0.5 mg/kg methylphenidate; and from 11 boys and 12 men as typically developing controls. Connectivity strength (CS), eigenvector centrality (EC), and betweenness centrality (BC) were calculated for the striatum, thalamus, dorsal anterior cingulate cortex (dACC), and prefrontal cortex (PFC). In line with our hypotheses, we found that methylphenidate decreased measures of connectivity and centrality in the striatum and thalamus in children with ADHD, but increased the same metrics in adults with ADHD. Surprisingly, we found no major effects of methylphenidate in the dACC and PFC in either children or adults. Interestingly, pre-methylphenidate, participants with ADHD showed aberrant connectivity and centrality compared to controls predominantly in frontal regions. Our findings demonstrate that methylphenidate's effects on connectivity of subcortical regions are age-dependent in stimulant-treatment naïve participants with ADHD, likely due to ongoing maturation of dopamine and noradrenaline systems. These findings highlight the importance for future studies to take a developmental perspective when studying the effects of methylphenidate treatment.
Collapse
Affiliation(s)
- Antonia Kaiser
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Caroline Broeder
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jessica R. Cohen
- Department of Psychology and NeuroscienceUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
20
|
Michelini G, Norman LJ, Shaw P, Loo SK. Treatment biomarkers for ADHD: Taking stock and moving forward. Transl Psychiatry 2022; 12:444. [PMID: 36224169 PMCID: PMC9556670 DOI: 10.1038/s41398-022-02207-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
The development of treatment biomarkers for psychiatric disorders has been challenging, particularly for heterogeneous neurodevelopmental conditions such as attention-deficit/hyperactivity disorder (ADHD). Promising findings are also rarely translated into clinical practice, especially with regard to treatment decisions and development of novel treatments. Despite this slow progress, the available neuroimaging, electrophysiological (EEG) and genetic literature provides a solid foundation for biomarker discovery. This article gives an updated review of promising treatment biomarkers for ADHD which may enhance personalized medicine and novel treatment development. The available literature points to promising pre-treatment profiles predicting efficacy of various pharmacological and non-pharmacological treatments for ADHD. These candidate predictive biomarkers, particularly those based on low-cost and non-invasive EEG assessments, show promise for the future stratification of patients to specific treatments. Studies with repeated biomarker assessments further show that different treatments produce distinct changes in brain profiles, which track treatment-related clinical improvements. These candidate monitoring/response biomarkers may aid future monitoring of treatment effects and point to mechanistic targets for novel treatments, such as neurotherapies. Nevertheless, existing research does not support any immediate clinical applications of treatment biomarkers for ADHD. Key barriers are the paucity of replications and external validations, the use of small and homogeneous samples of predominantly White children, and practical limitations, including the cost and technical requirements of biomarker assessments and their unknown feasibility and acceptability for people with ADHD. We conclude with a discussion of future directions and methodological changes to promote clinical translation and enhance personalized treatment decisions for diverse groups of individuals with ADHD.
Collapse
Affiliation(s)
- Giorgia Michelini
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Luke J Norman
- Office of the Clinical Director, NIMH, Bethesda, MD, USA
| | - Philip Shaw
- Office of the Clinical Director, NIMH, Bethesda, MD, USA
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Sandra K Loo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Kowalczyk OS, Mehta MA, O’Daly OG, Criaud M. Task-Based Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Systematic Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:350-367. [PMID: 36324660 PMCID: PMC9616264 DOI: 10.1016/j.bpsgos.2021.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
Altered neurocognitive functioning is a key feature of attention-deficit/hyperactivity disorder (ADHD), and increasing numbers of studies assess task-based functional connectivity in the disorder. We systematically reviewed and critically appraised functional magnetic resonance imaging (fMRI) task-based functional connectivity studies in ADHD. A systematic search conducted up to September 2020 found 34 studies, including 51 comparisons. Comparisons were divided into investigations of ADHD neuropathology (37 comparing ADHD and typical development, 2 comparing individuals with ADHD and their nonsymptomatic siblings, 2 comparing remitted and persistent ADHD, and 1 exploring ADHD symptom severity) and the effects of interventions (8 investigations of stimulant effects and 1 study of fMRI neurofeedback). Large heterogeneity in study methodologies prevented a meta-analysis; thus, the data were summarized as a narrative synthesis. Across cognitive domains, functional connectivity in the cingulo-opercular, sensorimotor, visual, subcortical, and executive control networks in ADHD consistently differed from neurotypical populations. Furthermore, literature comparing individuals with ADHD and their nonsymptomatic siblings as well as adults with ADHD and their remitted peers showed ADHD-related abnormalities in similar sensorimotor and subcortical (primarily striatal) networks. Interventions modulated those dysfunctional networks, with the most consistent action on functional connections with the striatum, anterior cingulate cortex, occipital regions, and midline default mode network structures. Although methodological issues limited many of the reviewed studies, the use of task-based functional connectivity approaches has the potential to broaden the understanding of the neural underpinnings of ADHD and the mechanisms of action of ADHD treatments.
Collapse
Affiliation(s)
- Olivia S. Kowalczyk
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Owen G. O’Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Marion Criaud
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
22
|
Fu Z, Yuan J, Pei X, Zhang K, Xu C, Hu N, Xie R, Zhao Y, Wang Y, Yang L, Cao Q. Shared and Unique Effects of Long-Term Administration of Methylphenidate and Atomoxetine on Degree Centrality in Medication-Naïve Children With Attention-Deficit/Hyperactive Disorder. Int J Neuropsychopharmacol 2022; 25:709-719. [PMID: 35524732 PMCID: PMC9515135 DOI: 10.1093/ijnp/pyac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Although methylphenidate (MPH) and atomoxetine (ATX) can improve clinical symptoms and functional impairments in attention deficit/hyperactive disorder (ADHD), the underlying psychopharmacological mechanisms have not been clearly elucidated. Therefore, we aimed to explore the shared and unique neurologic basis of these 2 medications in alleviating the clinical symptoms and functional impairments observed in ADHD. METHODS Sixty-seven ADHD and 44 age-matched children with typical development were included and underwent resting-state functional magnetic resonance imaging scans at baseline. Then patients were assigned to MPH, ATX, or untreated subgroups, based on the patients' and their parents' choice, for a 12-week follow-up and underwent a second functional magnetic resonance imaging scan. The treatment effect on degree centrality (DC) was identified and correlated with clinical symptoms and functional impairments in the ADHD group. RESULTS Both MPH and ATX normalized the DC value in extensive brain regions mainly involving fronto-cingulo-parieto-cerebellum circuits. However, ATX showed limited significant effects on the cerebellum compared with ADHD at baseline. The improvements in clinical symptoms were correlated with increased DC in the right inferior temporal gyrus in both MPH and ATX subgroups but showed opposite effects. The alleviation of functional impairments in the school/learning domain negatively correlated with decreased DC in the bilateral cerebellum after MPH treatment, and the family functional domain positively correlated with decreased DC in the cerebellum and negatively correlated with decreased DC in the postcentral gyrus after ATX treatment. CONCLUSIONS Both MPH and ATX can normalize abnormal brain functions that mainly involve the fronto-cingulo-parieto-cerebellum circuit in ADHD. Furthermore, the 2 medications showed shared and unique effects on brain functions to alleviate clinical symptoms and functional impairment.
Collapse
Affiliation(s)
- Zhao Fu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Jing Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Xuyao Pei
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Kangfuxi Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Chenyang Xu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Na Hu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Rao Xie
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China (Mr Fu, Ms Yuan, Ms Pei, Ms Zhang, Ms Xu, Mr Hu, Ms Xie, Ms Zhao, Dr Wang, Dr Yang, and Dr Cao)
| | - Yilu Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Yufeng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Qingjiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| |
Collapse
|
23
|
Kim SM, Min KJ, Han DH. Effects of Methylphenidate on Somatic Symptoms and Brain Functional Connectivity in Adolescents with Attention Deficit Hyperactivity Disorder: A Pilot Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:259-270. [PMID: 35466097 PMCID: PMC9048013 DOI: 10.9758/cpn.2022.20.2.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023]
Abstract
Objective This study aimed to evaluate whether somatic symptoms in adolescents with attention deficit hyperactivity disorder (ADHD) are associated with a dissociative pattern of functional connectivity (FC) within the default mode network (DMN) and whether methylphenidate administration can improve clinical and somatic symptoms. We also evaluated whether the improvement of somatic symptoms is associated with increased FC within the DMN in response to methylphenidate treatment. Methods Fifteen male adolescents with somatic symptoms of ADHD and 15 male adolescents with ADHD without somatic symptoms were included. At baseline and after 6 months of methylphenidate treatment, all adolescents were asked to complete questionnaires for the Korean version of the Dupaul’s ADHD rating scale, the symptom checklist-90- revised-somatization subscales, the Beck Depression Inventory, and the Beck Anxiety Inventory. Additionally, a resting-state functional magnetic resonance imaging scan was conducted. Results Methylphenidate treatment improved clinical and somatic symptoms in adolescents with ADHD. In addition, it increased brain FC within the DMN from the posterior cingulate cortex (posterior DMN) to the middle prefrontal cortex (anterior DMN). The improvement of somatic symptoms was associated with FC within the DMN from the posterior cingulate cortex to the middle prefrontal cortex in ADHD adolescents with somatic symptoms. Conclusion Methylphenidate increased brain FC between the anterior and posterior DMN. The improvement of somatic symptoms in adolescents with ADHD was associated with FC within the DMN. The DMN in adolescents with ADHD seems to be associated with the severity of the clinical and somatic symptoms of ADHD.
Collapse
Affiliation(s)
- Sun Mi Kim
- Department of Psychiatry, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kyung Joon Min
- Department of Psychiatry, Chung-Ang University College of Medicine, Seoul, Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Norman LJ, Sudre G, Bouyssi-Kobar M, Sharp W, Shaw P. A Longitudinal Study of Resting-State Connectivity and Response to Psychostimulant Treatment in ADHD. Am J Psychiatry 2021; 178:744-751. [PMID: 34086483 PMCID: PMC8528221 DOI: 10.1176/appi.ajp.2021.20091342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Psychostimulants are first-line pharmacological treatments for attention deficit hyperactivity disorder (ADHD), although symptom reduction varies widely between patients and these individual differences in treatment response are poorly understood. The authors sought to examine whether the resting-state functional connectivity within and between cingulo-opercular, striato-thalamic, and default mode networks was associated with treatment response to psychostimulant medication, and whether this relationship changed with development. METHODS Patients with ADHD (N=110; 196 observations; mean age at first observation, 10.83 years, SD=2.2) and typically developing control subjects (N=142; 330 observations; mean age at first observation, 10.49 years, SD=2.81) underwent functional neuroimaging on up to five occasions during development (age range, 6-17 years). For patients, symptoms were assessed on and off psychostimulant medication (methylphenidate-based treatments: N=132 observations, 67%; amphetamine-based treatments: N=64 observations, 33%) using the Diagnostic Interview for Children and Adolescents for parents. Linear mixed-effects models examined whether resting-state connectivity was associated with treatment response and its interaction with age. Comparisons with typically developing control subjects were performed to contextualize any significant associations. RESULTS Resting-state connectivity within the cingulo-opercular network was associated with a significant interaction between treatment response and age. Specifically, worse responses to treatment compared with better responses to treatment among patients and compared with typically developing control subjects were associated with an atypical increase in cingulo-opercular connectivity with increasing age from childhood to adolescence. CONCLUSIONS This work delineates how resting-state connectivity may be associated over development with response to psychostimulants in ADHD. Functioning and development within the cingulo-opercular network may warrant further investigation as a contributor to differential response to psychostimulants.
Collapse
Affiliation(s)
- Luke J Norman
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Md. (Norman, Sudre, Bouyssi-Kobar, Sharp, Shaw); Office of the Clinical Director, NIMH, Bethesda, Md. (Sharp, Shaw)
| | - Gustavo Sudre
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Md. (Norman, Sudre, Bouyssi-Kobar, Sharp, Shaw); Office of the Clinical Director, NIMH, Bethesda, Md. (Sharp, Shaw)
| | - Marine Bouyssi-Kobar
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Md. (Norman, Sudre, Bouyssi-Kobar, Sharp, Shaw); Office of the Clinical Director, NIMH, Bethesda, Md. (Sharp, Shaw)
| | - Wendy Sharp
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Md. (Norman, Sudre, Bouyssi-Kobar, Sharp, Shaw); Office of the Clinical Director, NIMH, Bethesda, Md. (Sharp, Shaw)
| | - Philip Shaw
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Md. (Norman, Sudre, Bouyssi-Kobar, Sharp, Shaw); Office of the Clinical Director, NIMH, Bethesda, Md. (Sharp, Shaw)
| |
Collapse
|
25
|
ADHD symptoms map onto noise-driven structure-function decoupling between hub and peripheral brain regions. Mol Psychiatry 2021; 26:4036-4045. [PMID: 31666679 DOI: 10.1038/s41380-019-0554-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Adults with childhood-onset attention-deficit hyperactivity disorder (ADHD) show altered whole-brain connectivity. However, the relationship between structural and functional brain abnormalities, the implications for the development of life-long debilitating symptoms, and the underlying mechanisms remain uncharted. We recruited a unique sample of 80 medication-naive adults with a clinical diagnosis of childhood-onset ADHD without psychiatric comorbidities, and 123 age-, sex-, and intelligence-matched healthy controls. Structural and functional connectivity matrices were derived from diffusion spectrum imaging and multi-echo resting-state functional MRI data. Hub, feeder, and local connections were defined using diffusion data. Individual-level measures of structural connectivity and structure-function coupling were used to contrast groups and link behavior to brain abnormalities. Computational modeling was used to test possible neural mechanisms underpinning observed group differences in the structure-function coupling. Structural connectivity did not significantly differ between groups but, relative to controls, ADHD showed a reduction in structure-function coupling in feeder connections linking hubs with peripheral regions. This abnormality involved connections linking fronto-parietal control systems with sensory networks. Crucially, lower structure-function coupling was associated with higher ADHD symptoms. Results from our computational model further suggest that the observed structure-function decoupling in ADHD is driven by heterogeneity in neural noise variability across brain regions. By highlighting a neural cause of a clinically meaningful breakdown in the structure-function relationship, our work provides novel information on the nature of chronic ADHD. The current results encourage future work assessing the genetic and neurobiological underpinnings of neural noise in ADHD, particularly in brain regions encompassed by fronto-parietal systems.
Collapse
|
26
|
Han DH, Bae S, Hong J, Kim SM, Son YD, Renshaw P. Resting-State fMRI Study of ADHD and Internet Gaming Disorder. J Atten Disord 2021; 25:1080-1095. [PMID: 31640464 DOI: 10.1177/1087054719883022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective: We aimed to understand whether Attention Deficit Hyperactivity Disorder (ADHD) and Internet gaming disorder (IGD) share similar brain functional connectivity (FC) between the frontal and subcortices. Method: We compared changes in clinical symptoms and brain activity using functional magnetic resonance imaging (fMRI) in 26 patients with ADHD but without IGD, 29 patients with ADHD and IGD, and 20 patients with IGD but without ADHD. Results: The functional connectivity (FC) from the cortex to subcortex in both groups was decreased relative to that in age-matched healthy participants. One-year treatment for ADHD and IGD symptoms increased the FC between the cortex and subcortex in all ADHD participants and all IGD participants with good prognoses compared with those in all ADHD participants and all IGD participants with poor prognoses. Conclusion: Patients with ADHD and IGD shared similar brain FC at baseline and FC changes in response to treatment.
Collapse
Affiliation(s)
| | - Sujin Bae
- Chung-Ang University, Seoul, South Korea
| | - Jisun Hong
- Chung-Ang University, Seoul, South Korea
| | - Sun Mi Kim
- Chung-Ang University Hospital, Seoul, South Korea
| | | | | |
Collapse
|
27
|
Pereira-Sanchez V, Franco AR, Vieira D, de Castro-Manglano P, Soutullo C, Milham MP, Castellanos FX. Systematic Review: Medication Effects on Brain Intrinsic Functional Connectivity in Patients With Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2021; 60:222-235. [PMID: 33137412 DOI: 10.1016/j.jaac.2020.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/02/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Resting-state functional magnetic resonance imaging (R-fMRI) studies of the neural correlates of medication treatment in attention-deficit/hyperactivity disorder (ADHD) have not been systematically reviewed. Our objective was to systematically identify, assess and summarize within-subject R-fMRI studies of pharmacological-induced changes in patients with ADHD. We critically appraised strengths and limitations, and provide recommendations for future research. METHOD Systematic review of published original reports in English meeting criteria in pediatric and adult patients with ADHD up to July 1, 2020. A thorough search preceded selection of studies matching prespecified criteria. Strengths and limitations of selected studies, regarding design and reporting, were identified based on current best practices. RESULTS We identified and reviewed 9 studies (5 pediatric and 4 adult studies). Sample sizes were small-medium (16-38 patients), and included few female participants. Medications were methylphenidate, amphetamines, and atomoxetine. Wide heterogeneity was observed in designs, analyses and results, which could not be combined quantitatively. Qualitatively, the multiplicity of brain regions and networks identified, some of which correlated with clinical improvements, do not support a coherent mechanistic hypothesis of medication effects. Overall, reports did not meet current standards to ensure reproducibility. CONCLUSION In this emerging field, the few studies using R-fMRI to analyze the neural correlates of medications in patients with ADHD suggest a potential modulatory effect of stimulants and atomoxetine on several intrinsic brain activity metrics. However, methodological heterogeneity and reporting issues need to be addressed in future research to validate findings which may contribute to clinical care. Such a goal is not yet at hand.
Collapse
Affiliation(s)
- Victor Pereira-Sanchez
- NYU Grossman School of Medicine, New York, New York; Clinica Universidad de Navarra, Pamplona, Navarra, Spain.
| | - Alexandre R Franco
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York; Child Mind Institute, New York, New York
| | | | | | | | - Michael P Milham
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York; Child Mind Institute, New York, New York
| | - Francisco X Castellanos
- NYU Grossman School of Medicine, New York, New York; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| |
Collapse
|
28
|
Cortese S, Aoki YY, Itahashi T, Castellanos FX, Eickhoff SB. Systematic Review and Meta-analysis: Resting-State Functional Magnetic Resonance Imaging Studies of Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2021; 60:61-75. [PMID: 32946973 DOI: 10.1016/j.jaac.2020.08.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To conduct a meta-analysis of resting-state functional magnetic resonance imaging (R-fMRI) studies in children and adolescents with attention-deficit/hyperactivity disorder (ADHD) and in adults with ADHD to assess spatial convergence of findings from available studies. METHOD Based on a preregistered protocol in PROSPERO (CRD42019119553), a large set of databases were searched up to April 9, 2019, with no language or article type restrictions. Study authors were systematically contacted for additional unpublished information/data. Resting-state functional magnetic resonance imaging studies using seed-based connectivity (SBC) or any other method (non-SBC) reporting whole-brain results of group comparisons between participants with ADHD and typically developing controls were eligible. Voxelwise meta-analysis via activation likelihood estimation with cluster-level familywise error (voxel-level: p < .001; cluster-level: p < .05) was used. RESULTS Thirty studies (18 SBC and 12 non-SBC), comprising 1,978 participants (1,094 with ADHD; 884 controls) were retained. The meta-analysis focused on SBC studies found no significant spatial convergence of ADHD-related hyperconnectivity or hypoconnectivity across studies. This nonsignificant finding remained after integrating 12 non-SBC studies into the main analysis and in sensitivity analyses limited to studies including only children or only non-medication-naïve patients. CONCLUSION The lack of significant spatial convergence may be accounted for by heterogeneity in study participants, experimental procedures, and analytic flexibility as well as in ADHD pathophysiology. Alongside other neuroimaging meta-analyses in other psychiatric conditions, the present results should inform the conduct and publication of future neuroimaging studies of psychiatric disorders.
Collapse
Affiliation(s)
- Samuele Cortese
- Hassenfeld Children's Hospital at NYU Langone, New York; University of Southampton, Solent NHS Trust, Southampton, and University of Nottingham, United Kingdom
| | - Yuta Y Aoki
- Showa University, Tokyo, Japan; National Center for Child Health and Development, Tokyo, Japan.
| | | | - F Xavier Castellanos
- Hassenfeld Children's Hospital at NYU Langone, New York; Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
29
|
Aberrant functional connectivity in resting state networks of ADHD patients revealed by independent component analysis. BMC Neurosci 2020; 21:39. [PMID: 32948139 PMCID: PMC7501693 DOI: 10.1186/s12868-020-00589-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 09/09/2020] [Indexed: 02/04/2023] Open
Abstract
Background ADHD is one of the most common psychiatric disorders in children and adolescents. Altered functional connectivity has been associated with ADHD symptoms. This study aimed to investigate abnormal changes in the functional connectivity of resting-state brain networks (RSNs) among adolescent patients with different subtypes of ADHD. Methods The data were obtained from the ADHD-200 Global Competition, including fMRI data from 88 ADHD patients (56 patients of ADHD-Combined, ADHD-C and 32 patients of ADHD-Inattentive, ADHD-I) and 67 typically developing controls (TD-C). Group ICA was utilized to research aberrant brain functional connectivity within the different subtypes of ADHD. Results In comparison with the TD-C group, the ADHD-C group showed clusters of decreased functional connectivity in the left inferior occipital gyrus (p = 0.0041) and right superior occipital gyrus (p = 0.0011) of the dorsal attention network (DAN), supplementary motor area (p = 0.0036) of the executive control network (ECN), left supramarginal gyrus (p = 0.0081) of the salience network (SN), middle temporal gyrus (p = 0.0041), and superior medial frontal gyrus (p = 0.0055) of the default mode network (DMN), while the ADHD-I group showed decreased functional connectivity in the right superior parietal gyrus (p = 0.0017) of the DAN and left middle temporal gyrus (p = 0.0105) of the DMN. In comparison with the ADHD-I group, the ADHD-C group showed decreased functional connectivity in the superior temporal gyrus (p = 0.0062) of the AN, inferior temporal gyrus (p = 0.0016) of the DAN, and the dorsolateral superior frontal gyrus (p = 0.0082) of the DMN. All the clusters surviving at p < 0.05 (AlphaSim correction). Conclusion The results suggested that decreased functional connectivity within the DMN and DAN was responsible, at least in part, for the symptom of inattention in ADHD-I patients. Similarly, we believed that the impaired functional connectivity within networks may contribute to the manifestations of ADHD-C patients, including inattention, hyperactivity/impulsivity, and unconscious movements.
Collapse
|
30
|
Kahathuduwa CN, Wakefield S, West BD, Blume J, Dassanayake TL, Weerasinghe VS, Mastergeorge A. Effects of L-theanine-caffeine combination on sustained attention and inhibitory control among children with ADHD: a proof-of-concept neuroimaging RCT. Sci Rep 2020; 10:13072. [PMID: 32753637 PMCID: PMC7403383 DOI: 10.1038/s41598-020-70037-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
We examined the acute effects of L-theanine, caffeine and their combination on sustained attention, inhibitory control and overall cognition in boys with attention deficit hyperactivity disorder (ADHD). L-Theanine (2.5 mg/kg), caffeine (2.0 mg/kg), their combination and a placebo were administered in a randomized four-way repeated-measures crossover with washout, to five boys (8-15 years) with ADHD. Functional magnetic resonance imaging (fMRI) was performed during a Go/NoGo task and a Stop-signal task ~ 1 h post-dose. NIH Cognition Toolbox was administered ~ 2 h post-dose. Treatment vs. placebo effects were examined in multi-level mixed-effects models. L-Theanine improved total cognition composite in NIH Cognition Toolbox (p = 0.040) vs. placebo. Caffeine worsened and L-theanine had a trend of worsening inhibitory control (i.e. increased Stop-signal reaction time; p = 0.031 and p = 0.053 respectively). L-Theanine-caffeine combination improved total cognition composite (p = 0.041), d-prime in the Go/NoGo task (p = 0.033) and showed a trend of improvement of inhibitory control (p = 0.080). L-Theanine-caffeine combination was associated with decreased task-related reactivity of a brain network associated with mind wandering (i.e. default mode network). L-Theanine-caffeine combination may be a potential therapeutic option for ADHD-associated impairments in sustained attention, inhibitory control and overall cognitive performance.
Collapse
Affiliation(s)
- Chanaka N Kahathuduwa
- Department of Laboratory Sciences and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, USA.
- Department of Psychiatry, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, USA.
- Department of Human Development and Family Studies, College of Human Sciences, Texas Tech University, Lubbock, TX, USA.
| | - Sarah Wakefield
- Department of Psychiatry, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, USA
- Department of Human Development and Family Studies, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Blake D West
- Department of Human Development and Family Studies, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jessica Blume
- Department of Human Development and Family Studies, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Tharaka L Dassanayake
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- School of Psychology, The University of Newcastle, Callaghan, NSW, Australia
| | - Vajira S Weerasinghe
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Ann Mastergeorge
- Department of Human Development and Family Studies, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
31
|
Spatiotemporal consistency analysis of attention-deficit/hyperactivity disorder children. Neurosci Lett 2020; 734:135099. [DOI: 10.1016/j.neulet.2020.135099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 11/22/2022]
|
32
|
Wang R, Tang Z, Liu T, Sun X, Wu L, Xiao Z. Altered spontaneous neuronal activity and functional connectivity pattern in primary angle-closure glaucoma: a resting-state fMRI study. Neurol Sci 2020; 42:243-251. [PMID: 32632634 DOI: 10.1007/s10072-020-04577-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To explore the alterations of spontaneous neuronal activity and functional connectivity pattern using fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) in patients with primary angle-closure glaucoma (PACG) and fALFF relationship with the glaucoma clinical indices. MATERIALS AND METHODS Forty-two PACG patients and 21 normal controls were enrolled in this study. Resting-state functional magnetic resonance imaging was firstly analyzed by fALFF and brain regions with altered fALFF between groups were selected as seeds for the further FC analysis. The relationships between fALFF/FC values of abnormal regions and ophthalmological measures, including mean deviation of visual field (MDVF) and retinal nerve fiber layer (RNFL) thickness, were also analyzed. RESULTS Compared with NC, PACG had significant lower fALFF values in the left cuneus, left middle temporal gyrus, right middle temporal gyrus, and right precentral gyrus, while higher fALFF values in the bilateral superior frontal gyrus (P < 0.05 after correction). Furthermore, PACG showed increased FC between left cuneus and bilateral superior frontal gyrus/bilateral posterior cingulate gyrus; between left middle temporal gyrus and bilateral superior frontal gyrus; and between right middle temporal gyrus and bilateral insular (P < 0.05 after correction). In addition, in the PACG group, the mean fALFF values of the left cuneus were positively correlated with MDVF (R = 0.419, P = 0.005) and RNFL thickness (R = 0.322, P = 0.038). Meanwhile, the mean fALFF values of bilateral superior frontal gyrus were negatively correlated with MDVF (R = - 0.454, P = 0.003) and RNFL thickness (R = - 0.556, P < 0.001). CONCLUSIONS PACG exhibited abnormal spontaneous neural activity and connectivity in several brain regions mainly associated with visual and visual-related functions. In addition, the fALFF values of the left cuneus and bilateral superior frontal gyrus may be complementary biomarkers for assessing the disease severity.
Collapse
Affiliation(s)
- Rong Wang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.,Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200031, China.,Department of Radiology, HuaShan Hospital of Shanghai Medical School, Fudan University, Shanghai, 200030, China
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
| | - Tingting Liu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.,Key Laboratory of Myopia, NHFPC, Fudan University, Shanghai, 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031, China. .,Key Laboratory of Myopia, NHFPC, Fudan University, Shanghai, 200031, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.
| | - Lingjie Wu
- Department of Otolaryngology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, 200031, China
| | - Zebin Xiao
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| |
Collapse
|
33
|
Benefits of Methylphenidate for Long-Term Attention Problems After Traumatic Brain Injury in Childhood: A Randomized, Double-Masked, Placebo-Controlled, Dose-Titration, Crossover Trial. J Head Trauma Rehabil 2020; 34:E1-E12. [PMID: 30169436 PMCID: PMC6395577 DOI: 10.1097/htr.0000000000000432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To characterize the benefits and optimal dose of long-acting methylphenidate for management of long-term attention problems after childhood traumatic brain injury (TBI). DESIGN Phase 2, randomized, double-masked, placebo-controlled, dose-titration, crossover clinical trial. SETTING Outpatient, clinical research. PARTICIPANTS Twenty-six children aged 6 to 17 years who were at least 6 months post-TBI and met criteria for attention-deficit hyperactivity disorder (ADHD) at the time of enrollment. OUTCOME MEASURES Vanderbilt Rating Scale of attention problems, Pittsburgh Side Effects Rating Scale, and vital signs. RESULTS Among the 26 participants randomized, 20 completed the trial. The mean ages at injury and enrollment were 6.3 and 11.5 years, respectively. Eight participants had a severe TBI. On an optimal dose of medication, greater reductions were found on the Vanderbilt Parent Rating Scale for the medicated condition than for placebo (P = .022, effect size = 0.59). The mean optimal dose of methylphenidate was 40.5 mg (1.00 mg/kg/day). Preinjury ADHD diagnosis status was not associated with a differential medication response. Methylphenidate was associated with weight loss (∼1 kg), increased systolic blood pressure (∼3- to 6-point increase), and mild reported changes in appetite. CONCLUSION Findings support use of long-acting methylphenidate for management of long-term attention problems after pediatric TBI. Larger trials are warranted of stimulant medications, including comparative effectiveness and combination medication and nonmedication interventions.
Collapse
|
34
|
Kaboodvand N, Iravani B, Fransson P. Dynamic synergetic configurations of resting-state networks in ADHD. Neuroimage 2019; 207:116347. [PMID: 31715256 DOI: 10.1016/j.neuroimage.2019.116347] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is characterized by high distractibility and impaired executive functions. Notably, there is mounting evidence suggesting that ADHD could be regarded as a default mode network (DMN) disorder. In particular, failure in regulating the dynamics of activity and interactions of the DMN and cognitive control networks have been hypothesized as the main source of task interference causing attentional problems. On the other hand, previous studies indicated pronounced fluctuations in the strength of functional connections over time, particularly for the inter-network connections between the DMN and fronto-parietal control networks. Hence, characterization of connectivity disturbances in ADHD requires a thorough assessment of time-varying functional connectivity (FC). In this study, we proposed a dynamical systems perspective to assess how the DMN over time recruits different configurations of network segregation and integration. Specifically, we were interested in configurations for which both intra- and inter-network connections are retained, as opposed to commonly used methods which assess network segregation as a single measure. From resting-state fMRI data, we extracted three different stable configurations of FC patterns for the DMN, namely synergies. We provided evidence supporting our hypothesis that ADHD differs compared to controls, both in terms of recruitment rate and topology of specific synergies between resting-state networks. In addition, we found a relationship between synergetic cooperation patterns of the DMN with cognitive control networks and a behavioral measure which is sensitive to ADHD-related symptoms, namely the Stroop color-word task.
Collapse
Affiliation(s)
- Neda Kaboodvand
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Behzad Iravani
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Stobernack T, de Vries SPW, Rodrigues Pereira R, Pelsser LM, Ter Braak CJF, Aarts E, van Baarlen P, Kleerebezem M, Frankena K, Hontelez S. Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) - study protocol of an open-label trial to investigate the mechanisms underlying the effects of a few-foods diet on ADHD symptoms in children. BMJ Open 2019; 9:e029422. [PMID: 31694844 PMCID: PMC6858247 DOI: 10.1136/bmjopen-2019-029422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Attention deficit hyperactivity disorder (ADHD) is the most common childhood behavioural disorder, causing significant impediment to a child's development. It is a complex disorder with numerous contributing (epi)genetic and environmental factors. Currently, treatment consists of behavioural and pharmacological therapy. However, ADHD medication is associated with several side effects, and concerns about long-term effects and efficacy exist. Therefore, there is considerable interest in the development of alternative treatment options. Double-blind research investigating the effects of a few-foods diet (FFD) has demonstrated a significant decrease in ADHD symptoms following an FFD. However, an FFD requires a considerable effort of both child and parents, limiting its applicability as a general ADHD treatment. To make FFD intervention less challenging or potentially obsolete, we need to understand how, and in which children, an FFD affects ADHD behaviour and, consequently, the child's well-being. We hypothesise that an FFD affects brain function, and that the nutritional impact on ADHD is effectuated by a complex interplay between the microbiota, gut and brain, that is, the microbiota-gut-brain axis. METHODS AND ANALYSIS The Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) study is an open-label trial with researchers blinded to changes in ADHD symptoms during sample processing and initial data analyses. ETHICS AND DISSEMINATION The Medical Research and Ethics Committee of Wageningen University has approved this study (NL63851.081.17, application 17/24). Results will be disseminated through peer-reviewed journal publications, conference presentations, (social) media and the BRAIN study website. A summary of the findings will be provided to the participants. TRIAL REGISTRATION NUMBER NCT03440346. STUDY DATES Collection of primary outcome data started in March 2018 and will be ongoing until 100 children have participated in the study. Sample data analysis will start after all samples have been collected.
Collapse
Affiliation(s)
- Tim Stobernack
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Stefan P W de Vries
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | - Cajo J F Ter Braak
- Biometris, Wageningen University and Research, Wageningen, The Netherlands
| | - Esther Aarts
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Klaas Frankena
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Saartje Hontelez
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
36
|
Chaim-Avancini TM, Doshi J, Zanetti MV, Erus G, Silva MA, Duran FLS, Cavallet M, Serpa MH, Caetano SC, Louza MR, Davatzikos C, Busatto GF. Neurobiological support to the diagnosis of ADHD in stimulant-naïve adults: pattern recognition analyses of MRI data. Acta Psychiatr Scand 2017; 136:623-636. [PMID: 29080396 DOI: 10.1111/acps.12824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVE In adulthood, the diagnosis of attention-deficit/hyperactivity disorder (ADHD) has been subject of recent controversy. We searched for a neuroanatomical signature associated with ADHD spectrum symptoms in adults by applying, for the first time, machine learning-based pattern classification methods to structural MRI and diffusion tensor imaging (DTI) data obtained from stimulant-naïve adults with childhood-onset ADHD and healthy controls (HC). METHOD Sixty-seven ADHD patients and 66 HC underwent high-resolution T1-weighted and DTI acquisitions. A support vector machine (SVM) classifier with a non-linear kernel was applied on multimodal image features extracted on regions of interest placed across the whole brain. RESULTS The discrimination between a mixed-gender ADHD subgroup and individually matched HC (n = 58 each) yielded area-under-the-curve (AUC) and diagnostic accuracy (DA) values of up to 0.71% and 66% (P = 0.003) respectively. AUC and DA values increased to 0.74% and 74% (P = 0.0001) when analyses were restricted to males (52 ADHD vs. 44 HC). CONCLUSION Although not at the level of clinically definitive DA, the neuroanatomical signature identified herein may provide additional, objective information that could influence treatment decisions in adults with ADHD spectrum symptoms.
Collapse
Affiliation(s)
- T M Chaim-Avancini
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - J Doshi
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - M V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - G Erus
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - M A Silva
- Program for Attention Deficit Hyperactivity Disorder (PRODATH), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
| | - F L S Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - M Cavallet
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - M H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - S C Caetano
- Department of Psychiatry, Child and Adolescent Psychiatry Unit (UPIA), Universidade Federal de São Paulo, São Paulo, Brazil
| | - M R Louza
- Program for Attention Deficit Hyperactivity Disorder (PRODATH), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
| | - C Davatzikos
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - G F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|