1
|
Wan X, Zeng Y, Wang J, Tian M, Yin X, Zhang J. Structural and functional abnormalities and cognitive profiles in older adults with early-onset and late-onset focal epilepsy. Cereb Cortex 2024; 34:bhae300. [PMID: 39052362 DOI: 10.1093/cercor/bhae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
This study aimed to determine the patterns of changes in structure, function, and cognitive ability in early-onset and late-onset older adults with focal epilepsy (OFE). This study first utilized the deformation-based morphometry analysis to identify structural abnormalities, which were used as the seed region to investigate the functional connectivity with the whole brain. Next, a correlation analysis was performed between the altered imaging findings and neuropsychiatry assessments. Finally, the potential role of structural-functional abnormalities in the diagnosis of epilepsy was further explored by using mediation analysis. Compared with healthy controls (n = 28), the area of reduced structural volume was concentrated in the bilateral cerebellum, right thalamus, and right middle cingulate cortex, with frontal, temporal, and occipital lobes also affected in early-onset focal epilepsy (n = 26), while late-onset patients (n = 31) displayed cerebellar, thalamic, and cingulate atrophy. Furthermore, correlation analyses suggest an association between structural abnormalities and cognitive assessments. Dysfunctional connectivity in the cerebellum, cingulate cortex, and frontal gyrus partially mediates the relationship between structural abnormalities and the diagnosis of early-onset focal epilepsy. This study identified structural and functional abnormalities in early-onset and late-onset focal epilepsy and explored characters in cognitive performance. Structural-functional coupling may play a potential role in the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Xinyue Wan
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yanwei Zeng
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xuyang Yin
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200040, China
| |
Collapse
|
2
|
Lucas A, Revell A, Davis KA. Artificial intelligence in epilepsy - applications and pathways to the clinic. Nat Rev Neurol 2024; 20:319-336. [PMID: 38720105 DOI: 10.1038/s41582-024-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
Artificial intelligence (AI) is rapidly transforming health care, and its applications in epilepsy have increased exponentially over the past decade. Integration of AI into epilepsy management promises to revolutionize the diagnosis and treatment of this complex disorder. However, translation of AI into neurology clinical practice has not yet been successful, emphasizing the need to consider progress to date and assess challenges and limitations of AI. In this Review, we provide an overview of AI applications that have been developed in epilepsy using a variety of data modalities: neuroimaging, electroencephalography, electronic health records, medical devices and multimodal data integration. For each, we consider potential applications, including seizure detection and prediction, seizure lateralization, localization of the seizure-onset zone and assessment for surgical or neurostimulation interventions, and review the performance of AI tools developed to date. We also discuss methodological considerations and challenges that must be addressed to successfully integrate AI into clinical practice. Our goal is to provide an overview of the current state of the field and provide guidance for leveraging AI in future to improve management of epilepsy.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Revell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Liao K, Wu H, Jiang Y, Dong C, Zhou H, Wu B, Tang Y, Gong J, Ye W, Hu Y, Guo Q, Xu H. Machine learning techniques based on 18F-FDG PET radiomics features of temporal regions for the classification of temporal lobe epilepsy patients from healthy controls. Front Neurol 2024; 15:1377538. [PMID: 38654734 PMCID: PMC11035742 DOI: 10.3389/fneur.2024.1377538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Background This study aimed to investigate the clinical application of 18F-FDG PET radiomics features for temporal lobe epilepsy and to create PET radiomics-based machine learning models for differentiating temporal lobe epilepsy (TLE) patients from healthy controls. Methods A total of 347 subjects who underwent 18F-FDG PET scans from March 2014 to January 2020 (234 TLE patients: 25.50 ± 8.89 years, 141 male patients and 93 female patients; and 113 controls: 27.59 ± 6.94 years, 48 male individuals and 65 female individuals) were allocated to the training (n = 248) and test (n = 99) sets. All 3D PET images were registered to the Montreal Neurological Institute template. PyRadiomics was used to extract radiomics features from the temporal regions segmented according to the Automated Anatomical Labeling (AAL) atlas. The least absolute shrinkage and selection operator (LASSO) and Boruta algorithms were applied to select the radiomics features significantly associated with TLE. Eleven machine-learning algorithms were used to establish models and to select the best model in the training set. Results The final radiomics features (n = 7) used for model training were selected through the combinations of the LASSO and the Boruta algorithms with cross-validation. All data were randomly divided into a training set (n = 248) and a testing set (n = 99). Among 11 machine-learning algorithms, the logistic regression (AUC 0.984, F1-Score 0.959) model performed the best in the training set. Then, we deployed the corresponding online website version (https://wane199.shinyapps.io/TLE_Classification/), showing the details of the LR model for convenience. The AUCs of the tuned logistic regression model in the training and test sets were 0.981 and 0.957, respectively. Furthermore, the calibration curves demonstrated satisfactory alignment (visually assessed) for identifying the TLE patients. Conclusion The radiomics model from temporal regions can be a potential method for distinguishing TLE. Machine learning-based diagnosis of TLE from preoperative FDG PET images could serve as a useful preoperative diagnostic tool.
Collapse
Affiliation(s)
- Kai Liao
- Department of Nuclear Medicine and PET/CT-MRI Center, Institute of Molecular and Functional Imaging, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Huanhua Wu
- The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Yuanfang Jiang
- Department of Nuclear Medicine and PET/CT-MRI Center, Institute of Molecular and Functional Imaging, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Chenchen Dong
- Department of Nuclear Medicine and PET/CT-MRI Center, Institute of Molecular and Functional Imaging, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hailing Zhou
- Department of Radiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Biao Wu
- Department of Nuclear Medicine and PET/CT-MRI Center, Institute of Molecular and Functional Imaging, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yongjin Tang
- Department of Nuclear Medicine and PET/CT-MRI Center, Institute of Molecular and Functional Imaging, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jian Gong
- Department of Nuclear Medicine and PET/CT-MRI Center, Institute of Molecular and Functional Imaging, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Weijian Ye
- Department of Nuclear Medicine and PET/CT-MRI Center, Institute of Molecular and Functional Imaging, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Youzhu Hu
- The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Qiang Guo
- Epilepsy Center, Guangdong 999 Brain Hospital, Affiliated Brain Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, Institute of Molecular and Functional Imaging, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
She Y, Zhou L, Li Y. Interpretable machine learning models for predicting 90-day death in patients in the intensive care unit with epilepsy. Seizure 2024; 114:23-32. [PMID: 38035490 DOI: 10.1016/j.seizure.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
PURPOSE This study aims to develop a machine learning-based model for predicting mortality risk in patients with epilepsy admitted to the intensive care unit (ICU), providing clinicians with an accurate prognostic tool to guide individualized treatment. METHODS We collected clinical data from clinical databases (MIMIC IV and eICU-CRD) of epilepsy patients 24 h after ICU admission. The clinical characteristics of ICU patients with epilepsy were carefully feature selected and processed. MIMIC IV as the training set and eICU-CRD database as the test set. Six models were developed and validated, and the best LightGBM model was selected by performance comparison and analysed for interpretability. RESULTS The final cohort comprised 429 patients for training and 1217 for testing. The training set exhibited a 90-day mortality rate of 9.32 %, and the test set had an in-hospital 90-day mortality rate of 4.10 %. Utilizing the LightGBM model, we achieved an AUC of 0.956 in the training set. External validation demonstrated promising results with accuracy of 0.898, precision of 0.975, AUC of 0.781, F1 score of 0.945, highlighting the model's potential for guiding clinical decision-making. Significant factors influencing model performance included the severity of illness, as measured by the OASIS score, and clinical parameters like heart rate and body temperature. CONCLUSION This study introduces a machine learning-based approach to predict mortality risk in ICU epilepsy patients, offering a valuable tool for clinicians to identify high-risk individuals and devise personalized treatment strategies, thus improving patient prognosis and treatment outcomes.
Collapse
Affiliation(s)
- Yingfang She
- Neurology Center, The Seventh Affiliated Hospital of Sun yat-sen University, Shenzhen, China
| | - Liemin Zhou
- Neurology Center, The Seventh Affiliated Hospital of Sun yat-sen University, Shenzhen, China.
| | - Yide Li
- Department of Critical Care, The Seventh Affiliated Hospital of Sun yat-sen University, Shenzhen, China.
| |
Collapse
|
5
|
Yao L, Cheng N, Chen AQ, Wang X, Gao M, Kong QX, Kong Y. Advances in Neuroimaging and Multiple Post-Processing Techniques for Epileptogenic Zone Detection of Drug-Resistant Epilepsy. J Magn Reson Imaging 2023. [PMID: 38014782 DOI: 10.1002/jmri.29157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Among the approximately 20 million patients with drug-resistant epilepsy (DRE) worldwide, the vast majority can benefit from surgery to minimize seizure reduction and neurological impairment. Precise preoperative localization of epileptogenic zone (EZ) and complete resection of the lesions can influence the postoperative prognosis. However, precise localization of EZ is difficult, and the structural and functional alterations in the brain caused by DRE vary by etiology. Neuroimaging has emerged as an approach to identify the seizure-inducing structural and functional changes in the brain, and magnetic resonance imaging (MRI) and positron emission tomography (PET) have become routine noninvasive imaging tools for preoperative evaluation of DRE in many epilepsy treatment centers. Multimodal neuroimaging offers unique advantages in detecting EZ, especially in improving the detection rate of patients with negative MRI or PET findings. This approach can characterize the brain imaging characteristics of patients with DRE caused by different etiologies, serving as a bridge between clinical and pathological findings and providing a basis for individualized clinical treatment plans. In addition to the integration of multimodal imaging modalities and the development of special scanning sequences and image post-processing techniques for early and precise localization of EZ, the application of deep machine learning for extracting image features and deep learning-based artificial intelligence have gradually improved diagnostic efficiency and accuracy. These improvements can provide clinical assistance for precisely outlining the scope of EZ and indicating the relationship between EZ and functional brain areas, thereby enabling standardized and precise surgery and ensuring good prognosis. However, most existing studies have limitations imposed by factors such as their small sample sizes or hypothesis-based study designs. Therefore, we believe that the application of neuroimaging and post-processing techniques in DRE requires further development and that more efficient and accurate imaging techniques are urgently needed in clinical practice. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Lei Yao
- Clinical Medical College, Jining Medical University, Jining, China
| | - Nan Cheng
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - An-Qiang Chen
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xun Wang
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ming Gao
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yu Kong
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
6
|
Kaestner E, Rao J, Chang AJ, Wang ZI, Busch RM, Keller SS, Rüber T, Drane DL, Stoub T, Gleichgerrcht E, Bonilha L, Hasenstab K, McDonald C. Convolutional Neural Network Algorithm to Determine Lateralization of Seizure Onset in Patients With Epilepsy: A Proof-of-Principle Study. Neurology 2023; 101:e324-e335. [PMID: 37202160 PMCID: PMC10382265 DOI: 10.1212/wnl.0000000000207411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/30/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES A new frontier in diagnostic radiology is the inclusion of machine-assisted support tools that facilitate the identification of subtle lesions often not visible to the human eye. Structural neuroimaging plays an essential role in the identification of lesions in patients with epilepsy, which often coincide with the seizure focus. In this study, we explored the potential for a convolutional neural network (CNN) to determine lateralization of seizure onset in patients with epilepsy using T1-weighted structural MRI scans as input. METHODS Using a dataset of 359 patients with temporal lobe epilepsy (TLE) from 7 surgical centers, we tested whether a CNN based on T1-weighted images could classify seizure laterality concordant with clinical team consensus. This CNN was compared with a randomized model (comparison with chance) and a hippocampal volume logistic regression (comparison with current clinically available measures). Furthermore, we leveraged a CNN feature visualization technique to identify regions used to classify patients. RESULTS Across 100 runs, the CNN model was concordant with clinician lateralization on average 78% (SD = 5.1%) of runs with the best-performing model achieving 89% concordance. The CNN outperformed the randomized model (average concordance of 51.7%) on 100% of runs with an average improvement of 26.2% and outperformed the hippocampal volume model (average concordance of 71.7%) on 85% of runs with an average improvement of 6.25%. Feature visualization maps revealed that in addition to the medial temporal lobe, regions in the lateral temporal lobe, cingulate, and precentral gyrus aided in classification. DISCUSSION These extratemporal lobe features underscore the importance of whole-brain models to highlight areas worthy of clinician scrutiny during temporal lobe epilepsy lateralization. This proof-of-concept study illustrates that a CNN applied to structural MRI data can visually aid clinician-led localization of epileptogenic zone and identify extrahippocampal regions that may require additional radiologic attention. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in patients with drug-resistant unilateral temporal lobe epilepsy, a convolutional neural network algorithm derived from T1-weighted MRI can correctly classify seizure laterality.
Collapse
Affiliation(s)
- Erik Kaestner
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Jun Rao
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Allen J Chang
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Zhong Irene Wang
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Robyn M Busch
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Simon S Keller
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Theodor Rüber
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Daniel L Drane
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Travis Stoub
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Ezequiel Gleichgerrcht
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Leonardo Bonilha
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Kyle Hasenstab
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Carrie McDonald
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA.
| |
Collapse
|
7
|
Singh A, Velagala VR, Kumar T, Dutta RR, Sontakke T. The Application of Deep Learning to Electroencephalograms, Magnetic Resonance Imaging, and Implants for the Detection of Epileptic Seizures: A Narrative Review. Cureus 2023; 15:e42460. [PMID: 37637568 PMCID: PMC10457132 DOI: 10.7759/cureus.42460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures affecting millions worldwide. Medically intractable seizures in epilepsy patients are not only detrimental to the quality of life but also pose a significant threat to their safety. Outcomes of epilepsy therapy can be improved by early detection and intervention during the interictal window period. Electroencephalography is the primary diagnostic tool for epilepsy, but accurate interpretation of seizure activity is challenging and highly time-consuming. Machine learning (ML) and deep learning (DL) algorithms enable us to analyze complex EEG data, which can not only help us diagnose but also locate epileptogenic zones and predict medical and surgical treatment outcomes. DL models such as convolutional neural networks (CNNs), inspired by visual processing, can be used to classify EEG activity. By applying preprocessing techniques, signal quality can be enhanced by denoising and artifact removal. DL can also be incorporated into the analysis of magnetic resonance imaging (MRI) data, which can help in the localization of epileptogenic zones in the brain. Proper detection of these zones can help in good neurosurgical outcomes. Recent advancements in DL have facilitated the implementation of these systems in neural implants and wearable devices, allowing for real-time seizure detection. This has the potential to transform the management of drug-refractory epilepsy. This review explores the application of ML and DL techniques to Electroencephalograms (EEGs), MRI, and wearable devices for epileptic seizure detection. This review briefly explains the fundamentals of both artificial intelligence (AI) and DL, highlighting these systems' potential advantages and undeniable limitations.
Collapse
Affiliation(s)
- Arihant Singh
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vivek R Velagala
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanishq Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rajoshee R Dutta
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tushar Sontakke
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
8
|
Shi D, Ren Z, Zhang H, Wang G, Guo Q, Wang S, Ding J, Yao X, Li Y, Ren K. Amplitude of low-frequency fluctuation-based regional radiomics similarity network: Biomarker for Parkinson's disease. Heliyon 2023; 9:e14325. [PMID: 36950566 PMCID: PMC10025115 DOI: 10.1016/j.heliyon.2023.e14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disorder that is difficult to diagnose. Therefore, reliable biomarkers are needed. We implemented a method constructing a regional radiomics similarity network (R2SN) based on the amplitude of low-frequency fluctuation (ALFF). We classified patients with PD and healthy individuals by using a machine learning approach in accordance with the R2SN connectome. The ALFF-based R2SN exhibited great reproducibility with different brain atlases and datasets. Great classification performances were achieved both in primary (AUC = 0.85 ± 0.02 and accuracy = 0.81 ± 0.03) and independent external validation (AUC = 0.77 and accuracy = 0.70) datasets. The discriminative R2SN edges correlated with the clinical evaluations of patients with PD. The nodes of discriminative R2SN edges were primarily located in the default mode, sensorimotor, executive control, visual and frontoparietal network, cerebellum and striatum. These findings demonstrate that ALFF-based R2SN is a robust potential neuroimaging biomarker for PD and could provide new insights into connectome reorganization in PD.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhendong Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangsong Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu Guo
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Siyuan Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Ding
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Yao
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yanfei Li
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ke Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Corresponding author. Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Chang AJ, Roth R, Bougioukli E, Ruber T, Keller SS, Drane DL, Gross RE, Welsh J, Abrol A, Calhoun V, Karakis I, Kaestner E, Weber B, McDonald C, Gleichgerrcht E, Bonilha L. MRI-based deep learning can discriminate between temporal lobe epilepsy, Alzheimer's disease, and healthy controls. COMMUNICATIONS MEDICINE 2023; 3:33. [PMID: 36849746 PMCID: PMC9970972 DOI: 10.1038/s43856-023-00262-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Radiological identification of temporal lobe epilepsy (TLE) is crucial for diagnosis and treatment planning. TLE neuroimaging abnormalities are pervasive at the group level, but they can be subtle and difficult to identify by visual inspection of individual scans, prompting applications of artificial intelligence (AI) assisted technologies. METHOD We assessed the ability of a convolutional neural network (CNN) algorithm to classify TLE vs. patients with AD vs. healthy controls using T1-weighted magnetic resonance imaging (MRI) scans. We used feature visualization techniques to identify regions the CNN employed to differentiate disease types. RESULTS We show the following classification results: healthy control accuracy = 81.54% (SD = 1.77%), precision = 0.81 (SD = 0.02), recall = 0.85 (SD = 0.03), and F1-score = 0.83 (SD = 0.02); TLE accuracy = 90.45% (SD = 1.59%), precision = 0.86 (SD = 0.03), recall = 0.86 (SD = 0.04), and F1-score = 0.85 (SD = 0.04); and AD accuracy = 88.52% (SD = 1.27%), precision = 0.64 (SD = 0.05), recall = 0.53 (SD = 0.07), and F1 score = 0.58 (0.05). The high accuracy in identification of TLE was remarkable, considering that only 47% of the cohort had deemed to be lesional based on MRI alone. Model predictions were also considerably better than random permutation classifications (p < 0.01) and were independent of age effects. CONCLUSIONS AI (CNN deep learning) can classify and distinguish TLE, underscoring its potential utility for future computer-aided radiological assessments of epilepsy, especially for patients who do not exhibit easily identifiable TLE associated MRI features (e.g., hippocampal sclerosis).
Collapse
Affiliation(s)
- Allen J Chang
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca Roth
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eleni Bougioukli
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Theodor Ruber
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - James Welsh
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Anees Abrol
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Vince Calhoun
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ioannis Karakis
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Erik Kaestner
- Department of Psychology, University of California, San Diego, CA, USA
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carrie McDonald
- Department of Psychology, University of California, San Diego, CA, USA
| | | | - Leonardo Bonilha
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Vedaei F, Mashhadi N, Zabrecky G, Monti D, Navarreto E, Hriso C, Wintering N, Newberg AB, Mohamed FB. Identification of chronic mild traumatic brain injury using resting state functional MRI and machine learning techniques. Front Neurosci 2023; 16:1099560. [PMID: 36699521 PMCID: PMC9869678 DOI: 10.3389/fnins.2022.1099560] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a major public health concern that can result in a broad spectrum of short-term and long-term symptoms. Recently, machine learning (ML) algorithms have been used in neuroscience research for diagnostics and prognostic assessment of brain disorders. The present study aimed to develop an automatic classifier to distinguish patients suffering from chronic mTBI from healthy controls (HCs) utilizing multilevel metrics of resting-state functional magnetic resonance imaging (rs-fMRI). Sixty mTBI patients and forty HCs were enrolled and allocated to training and testing datasets with a ratio of 80:20. Several rs-fMRI metrics including fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree centrality (DC), voxel-mirrored homotopic connectivity (VMHC), functional connectivity strength (FCS), and seed-based FC were generated from two main analytical categories: local measures and network measures. Statistical two-sample t-test was employed comparing between mTBI and HCs groups. Then, for each rs-fMRI metric the features were selected extracting the mean values from the clusters showing significant differences. Finally, the support vector machine (SVM) models based on separate and multilevel metrics were built and the performance of the classifiers were assessed using five-fold cross-validation and via the area under the receiver operating characteristic curve (AUC). Feature importance was estimated using Shapley additive explanation (SHAP) values. Among local measures, the range of AUC was 86.67-100% and the optimal SVM model was obtained based on combined multilevel rs-fMRI metrics and DC as a separate model with AUC of 100%. Among network measures, the range of AUC was 80.42-93.33% and the optimal SVM model was obtained based on the combined multilevel seed-based FC metrics. The SHAP analysis revealed the DC value in the left postcentral and seed-based FC value between the motor ventral network and right superior temporal as the most important local and network features with the greatest contribution to the classification models. Our findings demonstrated that different rs-fMRI metrics can provide complementary information for classifying patients suffering from chronic mTBI. Moreover, we showed that ML approach is a promising tool for detecting patients with mTBI and might serve as potential imaging biomarker to identify patients at individual level. Clinical trial registration [clinicaltrials.gov], identifier [NCT03241732].
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Najmeh Mashhadi
- Department of Computer Science and Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Emily Navarreto
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B. Newberg
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Shi D, Zhang H, Wang G, Yao X, Li Y, Wang S, Ren K. Neuroimaging biomarkers for detecting schizophrenia: A resting-state functional MRI-based radiomics analysis. Heliyon 2022; 8:e12276. [PMID: 36582679 PMCID: PMC9793282 DOI: 10.1016/j.heliyon.2022.e12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/19/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SZ) is a common psychiatric disorder that is difficult to accurately diagnose in clinical practice. Quantifiable biomarkers are urgently required to explore the potential physiological mechanism of SZ and improve its diagnostic accuracy. Thus, this study aimed to identify biomarkers that classify SZ patients and healthy control subjects and investigate the potential neural mechanisms of SZ using degree centrality (DC)- and voxel-mirrored homotopic connectivity (VMHC)-based radiomics. Radiomics features were extracted from DC and VMHC metrics generated via resting-state functional magnetic resonance imaging, and significant features were selected and dimensionality was reduced using t-tests and least absolute shrinkage and selection operator. Subsequently, we built our model using a support vector machine classifier. We observed that our method obtained great classification performance (area under the curve, 0.808; accuracy, 74.02%), and it could be generalized to different brain atlases. The regions that we identified as discriminative features mainly included bilateral dorsal caudate and front-parietal, somatomotor, limbic, and default mode networks. Our findings showed that the radiomics-based machine learning method could facilitate us to understand the potential pathological mechanism of SZ more comprehensively and contribute to the accurate diagnosis of patients with SZ.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| |
Collapse
|
12
|
Kim D, Lee J, Moon J, Moon T. Interpretable deep learning-based hippocampal sclerosis classification. Epilepsia Open 2022; 7:747-757. [PMID: 36177546 PMCID: PMC9712484 DOI: 10.1002/epi4.12655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To evaluate the performance of a deep learning model for hippocampal sclerosis classification on the clinical dataset and suggest plausible visual interpretation for the model prediction. METHODS T2-weighted oblique coronal images of the brain MRI epilepsy protocol performed on patients were used. The training set included 320 participants with 160 no, 100 left and 60 right hippocampal sclerosis, and cross-validation was implemented. The test set consisted of 302 participants with 252 no, 25 left and 25 right hippocampal sclerosis. As the test set was imbalanced, we took an average of the accuracy achieved within each group to measure a balanced accuracy for multiclass and binary classifications. The dataset was composed to include not only healthy participants but also participants with abnormalities besides hippocampal sclerosis in the control group. We visualized the reasons for the model prediction using the layer-wise relevance propagation method. RESULTS When evaluated on the validation of the training set, we achieved multiclass and binary classification accuracy of 87.5% and 88.8% from the voting ensemble of six models. Evaluated on the test sets, we achieved multiclass and binary classification accuracy of 91.5% and 89.76%. The distinctly sparse visual interpretations were provided for each individual participant and group to suggest the contribution of each input voxel to the prediction on the MRI. SIGNIFICANCE The current interpretable deep learning-based model is promising for adapting effectively to clinical settings by utilizing commonly used data, such as MRI, with realistic abnormalities faced by neurologists to support the diagnosis of hippocampal sclerosis with plausible visual interpretation.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Artificial IntelligenceSungkyunkwan UniversitySuwonSouth Korea
| | - Jungtae Lee
- Application Engineering Team, Memory BusinessSamsung Electronics Co., Ltd.SuwonSouth Korea
| | - Jangsup Moon
- Department of NeurologySeoul National University HospitalSeoulSouth Korea,Department of Genomic MedicineSeoul National University HospitalSeoulSouth Korea
| | - Taesup Moon
- Department of Electrical and Computer EngineeringSeoul National UniversitySeoulSouth Korea,ASRI/INMC/IPAI/AIISSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
13
|
Gong Y, Xu C, Wang S, Wang Y, Chen Z. Computerized application for epilepsy in China: Does the era of artificial intelligence comes? Acta Neurol Scand 2022; 146:732-742. [PMID: 36156212 DOI: 10.1111/ane.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/01/2022]
Abstract
Epilepsy, one of the most common neurological diseases in China, is notorious for its spontaneous, unprovoked and recurrent seizures. The etiology of epilepsy varies among individual patients, including congenital gene mutation, traumatic injury, infections, etc. This heterogeneity partly hampered the accurate diagnosis and choice of appropriate treatments. Encouragingly, great achievements have been achieved in computational science, making it become a key player in medical fields gradually and bringing new hope for rapid and accurate diagnosis as well as targeted therapies in epilepsy. Here, we historically review the advances of computerized applications in epilepsy-especially those tremendous findings achieved in China-for different purposes including seizure prediction, localization of epileptogenic zone, post-surgical prognosis, etc. Special attentions are paid to the great progress based on artificial intelligence (AI), which is more "sensitive", "smart" and "in-depth" than human capacities. At last, we give a comprehensive discussion about the disadvantages and limitations of current computerized applications for epilepsy and propose some future directions as further stepping stones to embrace "the era of AI" in epilepsy.
Collapse
Affiliation(s)
- Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Li Y, Qin B, Chen Q, Chen J. Impaired Functional Homotopy and Topological Properties Within the Default Mode Network of Children With Generalized Tonic-Clonic Seizures: A Resting-State fMRI Study. Front Neurosci 2022; 16:833837. [PMID: 35720710 PMCID: PMC9201640 DOI: 10.3389/fnins.2022.833837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction The aim of the present study was to examine interhemispheric functional connectivity (FC) and topological organization within the default-mode network (DMN) in children with generalized tonic-clonic seizures (GTCS). Methods Resting-state functional MRI was collected in 24 children with GTCS and 34 age-matched typically developing children (TDC). Between-group differences in interhemispheric FC were examined by an automated voxel-mirrored homotopic connectivity (VMHC) method. The topological properties within the DMN were also analyzed using graph theoretical approaches. Consistent results were detected and the VMHC values were extracted as features in machine learning for subject classification. Results Children with GTCS showed a significant decrease in VMHC in the DMN, including the hippocampal formation (HF), lateral temporal cortex (LTC), and angular and middle frontal gyrus. Although the patients exhibited efficient small-world properties of the DMN similar to the TDC, significant changes in regional topological organization were found in the patients, involving the areas of the bilateral temporal parietal junction, bilateral LTC, left temporal pole, and HF. Within the DMN, disrupted interhemispheric FC was found between the bilateral HF and LTC, which was consistent with the VMHC results. The VMHC values in bilateral HF and LTC were significantly correlated with clinical information in patients. Support vector machine analysis using average VMHC information in the bilateral HF and LTC as features achieved a correct classification rate of 89.34% for the classification. Conclusion These results indicate that decreased homotopic coordination in the DMN can be used as an effective biomarker to reflect seizure effects and to distinguish children with GTCSs from TDC.
Collapse
Affiliation(s)
- Yongxin Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Yongxin Li,
| | - Bing Qin
- Department of Neurosurgery, Epilepsy Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children’s Hospital, Shenzhen, China
- Qian Chen,
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Jiaxu Chen,
| |
Collapse
|
15
|
Classification of Parkinson's disease using a region-of-interest- and resting-state functional magnetic resonance imaging-based radiomics approach. Brain Imaging Behav 2022; 16:2150-2163. [PMID: 35650376 DOI: 10.1007/s11682-022-00685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
To investigate the value of combining amplitude of low-frequency fluctuations-based radiomics and the support vector machine classifier method in distinguishing patients with Parkinson's disease from healthy controls. A total of 123 patients with Parkinson's disease and 90 healthy controls from three centers with functional and structural MRI images were included in this study. We extracted radiomics features using the Brainnetome 246 atlas from the mean amplitude of low-frequency fluctuations maps. Two-sample t-tests and recursive feature elimination combined with support vector machine method were applied for feature selection and dimensionality reduction. We used support vector machine classifier to construct model and identify the discriminative features. The automated anatomical labeling 90 atlas and fivefold cross-validation were used to evaluate the robustness and generalization of the classifier. We found our model obtained a high classification performance with an accuracy of 78.07%, and AUC, sensitivity, and specificity of 0.8597, 78.80%, and 76.08%, respectively. We detected 7 discriminative brain subregions. The fivefold cross-validation and automated anatomical labeling 90 atlas also got high classification accuracy, and we found Brainnetome 246 atlas achieved a higher classification performance than the automated anatomical labeling 90 atlas both with tenfold and fivefold cross-validation. Our findings may help the early diagnosis of Parkinson's disease and provide support for research on Parkinson's disease mechanisms and clinical evaluation.
Collapse
|
16
|
Shi D, Zhang H, Wang G, Wang S, Yao X, Li Y, Guo Q, Zheng S, Ren K. Machine Learning for Detecting Parkinson's Disease by Resting-State Functional Magnetic Resonance Imaging: A Multicenter Radiomics Analysis. Front Aging Neurosci 2022; 14:806828. [PMID: 35309885 PMCID: PMC8928361 DOI: 10.3389/fnagi.2022.806828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/19/2022] [Indexed: 12/03/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common progressive degenerative diseases, and its diagnosis is challenging on clinical grounds. Clinically, effective and quantifiable biomarkers to detect PD are urgently needed. In our study, we analyzed data from two centers, the primary set was used to train the model, and the independent external validation set was used to validate our model. We applied amplitude of low-frequency fluctuation (ALFF)-based radiomics method to extract radiomics features (including first- and high-order features). Subsequently, t-test and least absolute shrinkage and selection operator (LASSO) were harnessed for feature selection and data dimensionality reduction, and grid search method and nested 10-fold cross-validation were applied to determine the optimal hyper-parameter λ of LASSO and evaluate the performance of the model, in which a support vector machine was used to construct the classification model to classify patients with PD and healthy controls (HCs). We found that our model achieved good performance [accuracy = 81.45% and area under the curve (AUC) = 0.850] in the primary set and good generalization in the external validation set (accuracy = 67.44% and AUC = 0.667). Most of the discriminative features were high-order radiomics features, and the identified brain regions were mainly located in the sensorimotor network and lateral parietal cortex. Our study indicated that our proposed method can effectively classify patients with PD and HCs, ALFF-based radiomics features that might be potential biomarkers of PD, and provided further support for the pathological mechanism of PD, that is, PD may be related to abnormal brain activity in the sensorimotor network and lateral parietal cortex.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangsong Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Siyuan Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Yao
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yanfei Li
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu Guo
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuang Zheng
- School of Medicine, Xiamen University, Xiamen, China
| | - Ke Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Sollee J, Tang L, Igiraneza AB, Xiao B, Bai HX, Yang L. Artificial Intelligence for Medical Image Analysis in Epilepsy. Epilepsy Res 2022; 182:106861. [DOI: 10.1016/j.eplepsyres.2022.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/18/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
|
18
|
Machine learning models for decision support in epilepsy management: A critical review. Epilepsy Behav 2021; 123:108273. [PMID: 34507093 DOI: 10.1016/j.yebeh.2021.108273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE There remain major challenges for the clinician in managing patients with epilepsy effectively. Choosing anti-seizure medications (ASMs) is subject to trial and error. About one-third of patients have drug-resistant epilepsy (DRE). Surgery may be considered for selected patients, but time from diagnosis to surgery averages 20 years. We reviewed the potential use of machine learning (ML) predictive models as clinical decision support tools to help address some of these issues. METHODS We conducted a comprehensive search of Medline and Embase of studies that investigated the application of ML in epilepsy management in terms of predicting ASM responsiveness, predicting DRE, identifying surgical candidates, and predicting epilepsy surgery outcomes. Original articles addressing these 4 areas published in English between 2000 and 2020 were included. RESULTS We identified 24 relevant articles: 6 on ASM responsiveness, 3 on DRE prediction, 2 on identifying surgical candidates, and 13 on predicting surgical outcomes. A variety of potential predictors were used including clinical, neuropsychological, imaging, electroencephalography, and health system claims data. A number of different ML algorithms and approaches were used for prediction, but only one study utilized deep learning methods. Some models show promising performance with areas under the curve above 0.9. However, most were single setting studies (18 of 24) with small sample sizes (median number of patients 55), with the exception of 3 studies that utilized large databases and 3 studies that performed external validation. There was a lack of standardization in reporting model performance. None of the models reviewed have been prospectively evaluated for their clinical benefits. CONCLUSION The utility of ML models for clinical decision support in epilepsy management remains to be determined. Future research should be directed toward conducting larger studies with external validation, standardization of reporting, and prospective evaluation of the ML model on patient outcomes.
Collapse
|
19
|
Beheshti I, Sone D, Maikusa N, Kimura Y, Shigemoto Y, Sato N, Matsuda H. Accurate lateralization and classification of MRI-negative 18F-FDG-PET-positive temporal lobe epilepsy using double inversion recovery and machine-learning. Comput Biol Med 2021; 137:104805. [PMID: 34464851 DOI: 10.1016/j.compbiomed.2021.104805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The main objective of this study was to determine the ability of double inversion recovery (DIR) data coupled with machine-learning algorithms to distinguish normal individuals from epileptic subjects and to identify the laterality of the focus side in MRI-negative, PET-positive temporal lobe epilepsy (TLE) patients. MATERIALS AND METHODS We used whole-brain DIR data as the input features with which to train a linear support-vector machine model in 63 participants who underwent high-resolution structural MRI and DIR scans. The subjects included 20 left TLE patients, 19 right TLE patients, and 24 healthy controls (HCs). RESULTS Using the DIR data, we achieved a robust accuracy of 87.30% for discriminating among the left TLE, right TLE, and HC groups as well as 84.61%, 97.72%, and 93.02% prediction accuracies for distinguishing left TLE from right TLE, HC from right TLE, and HC from left TLE, respectively. INTERPRETATION Our experimental results suggest that DIR data coupled with machine-learning algorithms provide a promising approach to identifying MRI-negative TLE patients, especially when fluorodeoxyglucose-PET is not available.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Cyclotron and Drug Discovery Research Center, Southern TOHOKU Research Institute for Neuroscience, 7- 61-2, Yatsuyamada, Koriyama, 963-8052, Japan.
| | - Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom; Department of Psychiatry, The Jikei University School of Medicine, 3-25-8, Nishishimbashi, Minato, Tokyo, 105-8461, Japan
| | - Norihide Maikusa
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| | - Hiroshi Matsuda
- Cyclotron and Drug Discovery Research Center, Southern TOHOKU Research Institute for Neuroscience, 7- 61-2, Yatsuyamada, Koriyama, 963-8052, Japan; Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| |
Collapse
|
20
|
Lee DA, Ko J, Kim HC, Shin KJ, Park BS, Kim IH, Park JH, Park S, Park KM. Identifying juvenile myoclonic epilepsy via diffusion tensor imaging using machine learning analysis. J Clin Neurosci 2021; 91:327-333. [PMID: 34373048 DOI: 10.1016/j.jocn.2021.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the feasibility of using a machine learning approach based on diffusion tensor imaging (DTI) to identify patients with juvenile myoclonic epilepsy. We analyzed the usefulness of combining conventional DTI measures and structural connectomic profiles. This retrospective study was conducted at a tertiary hospital. We enrolled 55 patients with juvenile myoclonic epilepsy. All of the subjects underwent DTI from January 2017 to March 2020. We also enrolled 58 healthy subjects as a normal control group. We extracted conventional DTI measures and structural connectomic DTI profiles. We employed the support vector machines (SVM) algorithm to classify patients with juvenile myoclonic epilepsy and healthy subjects based on the conventional DTI measures and structural connectomic profiles. The SVM classifier based on conventional DTI measures had an accuracy of 68.1% and an area under the curve (AUC) of 0.682. Another SVM classifier based on the structural connectomic profiles demonstrated an accuracy of 72.7% and an AUC of 0.727. The SVM classifier based on combining the conventional DTI measures and structural connectomic profiles had an accuracy of 81.8% and an AUC of 0.818. DTI using machine learning is useful for classifying patients with juvenile myoclonic epilepsy and healthy subjects. Combining both the conventional DTI measures and structural connectomic profiles results in a better classification performance than using conventional DTI measures or the structural connectomic profiles alone to identify juvenile myoclonic epilepsy.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Junghae Ko
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Hyung Chan Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kyong Jin Shin
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Bong Soo Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Il Hwan Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jin Han Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sihyung Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
21
|
Application of machine learning analysis based on diffusion tensor imaging to identify REM sleep behavior disorder. Sleep Breath 2021; 26:633-640. [PMID: 34236578 DOI: 10.1007/s11325-021-02434-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE We evaluated the feasibility of machine learning analysis using diffusion tensor imaging (DTI) parameters to identify patients with idiopathic rapid eye movement (REM) sleep behavior disorder (RBD). We hypothesized that patients with idiopathic RBD could be identified via machine learning analysis based on DTI. METHODS We enrolled 20 patients with newly diagnosed idiopathic RBD at a tertiary hospital. We also included 20 healthy subjects as a control group. All of the subjects underwent DTI. We obtained the conventional DTI parameters and structural connectomic profiles from the DTI. We investigated the differences in conventional DTI measures and structural connectomic profiles between patients with idiopathic RBD and healthy controls. We then used machine learning analysis using a support vector machine (SVM) algorithm to identify patients with idiopathic RBD using conventional DTI and structural connectomic profiles. RESULTS Several regions showed significant differences in conventional DTI measures and structural connectomic profiles between patients with idiopathic RBD and healthy controls. The SVM classifier based on conventional DTI measures revealed an accuracy of 87.5% and an area under the curve of 0.900 to identify patients with idiopathic RBD. Another SVM classifier based on structural connectomic profiles yielded an accuracy of 75.0% and an area under the curve of 0.833. CONCLUSION Our findings demonstrate the feasibility of machine learning analysis based on DTI to identify patients with idiopathic RBD. The conventional DTI parameters might be more important than the structural connectomic profiles in identifying patients with idiopathic RBD.
Collapse
|
22
|
Sone D, Beheshti I. Clinical Application of Machine Learning Models for Brain Imaging in Epilepsy: A Review. Front Neurosci 2021; 15:684825. [PMID: 34239413 PMCID: PMC8258163 DOI: 10.3389/fnins.2021.684825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common neurological disorder characterized by recurrent and disabling seizures. An increasing number of clinical and experimental applications of machine learning (ML) methods for epilepsy and other neurological and psychiatric disorders are available. ML methods have the potential to provide a reliable and optimal performance for clinical diagnoses, prediction, and personalized medicine by using mathematical algorithms and computational approaches. There are now several applications of ML for epilepsy, including neuroimaging analyses. For precise and reliable clinical applications in epilepsy and neuroimaging, the diverse ML methodologies should be examined and validated. We review the clinical applications of ML models for brain imaging in epilepsy obtained from a PubMed database search in February 2021. We first present an overview of typical neuroimaging modalities and ML models used in the epilepsy studies and then focus on the existing applications of ML models for brain imaging in epilepsy based on the following clinical aspects: (i) distinguishing individuals with epilepsy from healthy controls, (ii) lateralization of the temporal lobe epilepsy focus, (iii) the identification of epileptogenic foci, (iv) the prediction of clinical outcomes, and (v) brain-age prediction. We address the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan.,Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
23
|
Shi D, Li Y, Zhang H, Yao X, Wang S, Wang G, Ren K. Machine Learning of Schizophrenia Detection with Structural and Functional Neuroimaging. DISEASE MARKERS 2021; 2021:9963824. [PMID: 34211615 PMCID: PMC8208855 DOI: 10.1155/2021/9963824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Schizophrenia (SZ) is a severe psychiatric illness, and it affects around 1% of the general population; however, its reliable diagnosis is challenging. Functional MRI (fMRI) and structural MRI (sMRI) are useful techniques for investigating the functional and structural abnormalities of the human brain, and a growing number of studies have reported that multimodal brain data can improve diagnostic accuracy. Machine learning (ML) is widely used in the diagnosis of neuroscience and neuropsychiatry diseases, and it can obtain high accuracy. However, the conventional ML which concatenated the features into a longer feature vector could not be sufficiently effective to combine different features from different modalities. There are considerable controversies over the use of global signal regression (GSR), and few studies have explored the role of GSR in ML in diagnosing neurological diseases. The current study utilized fMRI and sMRI data to implement a new method named multimodal imaging and multilevel characterization with multiclassifier (M3) to classify SZs and healthy controls (HCs) and investigate the influence of GSR in SZ classification. We found that when we used Brainnetome 246 atlas and without performed GSR, our method obtained a classification accuracy of 83.49%, with a sensitivity of 68.69%, a specificity of 93.75%, and an AUC of 0.8491, respectively. We also got great classification performances with different processing methods (with/without GSR and different brain parcellation schemes). We found that the accuracy and specificity of the models without GSR were higher than that of the models with GSR. Our findings indicate that the M3 method is an effective tool to distinguish SZs from HCs, and it can identify discriminative regions to detect SZ to explore the neural mechanisms underlying SZ. The global signal may contain important neuronal information; it can improve the accuracy and specificity of SZ detection.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| |
Collapse
|
24
|
Shi D, Zhang H, Wang S, Wang G, Ren K. Application of Functional Magnetic Resonance Imaging in the Diagnosis of Parkinson's Disease: A Histogram Analysis. Front Aging Neurosci 2021; 13:624731. [PMID: 34045953 PMCID: PMC8144304 DOI: 10.3389/fnagi.2021.624731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/22/2021] [Indexed: 01/08/2023] Open
Abstract
This study aimed to investigate the value of amplitude of low-frequency fluctuation (ALFF)-based histogram analysis in the diagnosis of Parkinson's disease (PD) and to investigate the regions of the most important discriminative features and their contribution to classification discrimination. Patients with PD (n = 59) and healthy controls (HCs; n = 41) were identified and divided into a primary set (80 cases, including 48 patients with PD and 32 HCs) and a validation set (20 cases, including 11 patients with PD and nine HCs). The Automated Anatomical Labeling (AAL) 116 atlas was used to extract the histogram features of the regions of interest in the brain. Machine learning methods were used in the primary set for data dimensionality reduction, feature selection, model construction, and model performance evaluation. The model performance was further validated in the validation set. After feature data dimension reduction and feature selection, 23 of a total of 1,276 features were entered in the model. The brain regions of the selected features included the frontal, temporal, parietal, occipital, and limbic lobes, as well as the cerebellum and the thalamus. In the primary set, the area under the curve (AUC) of the model was 0.974, the sensitivity was 93.8%, the specificity was 90.6%, and the accuracy was 93.8%. In the validation set, the AUC, sensitivity, specificity, and accuracy were 0.980, 90.9%, 88.9%, and 90.0%, respectively. ALFF-based histogram analysis can be used to classify patients with PD and HCs and to effectively identify abnormal brain function regions in PD patients.
Collapse
Affiliation(s)
| | | | | | | | - Ke Ren
- Department of Radiology, Xiang’an Hospital of Xia Men University, Xiamen, China
| |
Collapse
|