1
|
Cardini A. Allometry and phylogenetic divergence: Correspondence or incongruence? Anat Rec (Hoboken) 2025; 308:868-891. [PMID: 39045807 PMCID: PMC11791389 DOI: 10.1002/ar.25544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The potential connection between trends of within species variation, such as those of allometric change in morphology, and phylogenetic divergence has been a central topic in evolutionary biology for more than a century, including in the context of human evolution. In this study, I focus on size-related shape change in craniofacial proportions using a sample of more than 3200 adult Old World monkeys belonging to 78 species, of which 2942 specimens of 51 species are selected for the analysis. Using geometric morphometrics, I assess whether the divergence in the direction of static allometries increases in relation to phyletic differences. Because both small samples and taxonomic sampling may bias the results, I explore the sensitivity of the main analyses to the inclusion of more or less taxa depending on the choice of a threshold for the minimum sample size of a species. To better understand the impact of sampling error, I also use randomized subsampling experiments in the largest species samples. The study shows that static allometries vary broadly in directions without any evident phylogenetic signal. This variation is much larger than previously found in ontogenetic trajectories of Old World monkeys, but the conclusion of no congruence with phylogenetic divergence is the same. Yet, the effect of sampling error clearly contributes to inaccuracies and tends to magnify the differences in allometric change. Thus, morphometric research at the boundary between micro- and macro-evolution in primates, and more generally in mammals, critically needs very large and representative samples. Besides sampling error, I suggest other non-mutually exclusive explanations for the lack of correspondence between allometric and phylogenetic divergence in Old World monkeys, and also discuss why directions might be more variable in static compared to ontogenetic trajectories. Even if allometric variation may be a poor source of information in relation to phylogeny, the evolution of allometry is a fascinating subject and the study of size-related shape changes remains a fundamental piece of the puzzle to understand morphological variation within and between species in primates and other animals.
Collapse
Affiliation(s)
- Andrea Cardini
- Dipartimento di Scienze Chimiche e GeologicheUniversità di Modena e Reggio EmiliaModenaItaly
- Centre for Forensic Anatomy and Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
2
|
Ganapathee DS, Gunz P. Insights into brain evolution through the genotype-phenotype connection. PROGRESS IN BRAIN RESEARCH 2023; 275:73-92. [PMID: 36841571 DOI: 10.1016/bs.pbr.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.
Collapse
Affiliation(s)
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
3
|
Bruner E, Holloway R, Baab KL, Rogers MJ, Semaw S. The endocast from Dana Aoule North (DAN5/P1): A 1.5 million year-old human braincase from Gona, Afar, Ethiopia. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:206-215. [PMID: 36810873 DOI: 10.1002/ajpa.24717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5-1.6 Ma, and assigned to the species Homo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the species Homo habilis or in the genus Australopithecus. Similarities with the genus Homo include a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability of Homo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.
Collapse
Affiliation(s)
- Emiliano Bruner
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Ralph Holloway
- Department of Anthropology, Columbia University, New York, New York, USA
| | - Karen L Baab
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Michael J Rogers
- Department of Anthropology, Southern Connecticut State University, New Haven, Connecticut, USA
| | - Sileshi Semaw
- Programa de Arqueología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain.,Stone Age Institute, Gosport, Indiana, USA
| |
Collapse
|
4
|
Reilly PF, Tjahjadi A, Miller SL, Akey JM, Tucci S. The contribution of Neanderthal introgression to modern human traits. Curr Biol 2022; 32:R970-R983. [PMID: 36167050 PMCID: PMC9741939 DOI: 10.1016/j.cub.2022.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neanderthals, our closest extinct relatives, lived in western Eurasia from 400,000 years ago until they went extinct around 40,000 years ago. DNA retrieved from ancient specimens revealed that Neanderthals mated with modern human contemporaries. As a consequence, introgressed Neanderthal DNA survives scattered across the human genome such that 1-4% of the genome of present-day people outside Africa are inherited from Neanderthal ancestors. Patterns of Neanderthal introgressed genomic sequences suggest that Neanderthal alleles had distinct fates in the modern human genetic background. Some Neanderthal alleles facilitated human adaptation to new environments such as novel climate conditions, UV exposure levels and pathogens, while others had deleterious consequences. Here, we review the body of work on Neanderthal introgression over the past decade. We describe how evolutionary forces shaped the genomic landscape of Neanderthal introgression and highlight the impact of introgressed alleles on human biology and phenotypic variation.
Collapse
Affiliation(s)
| | - Audrey Tjahjadi
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - Joshua M Akey
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Pérez-Claros JA, Palmqvist P. Heterochronies and allometries in the evolution of the hominid cranium: a morphometric approach using classical anthropometric variables. PeerJ 2022; 10:e13991. [PMID: 36042865 PMCID: PMC9420405 DOI: 10.7717/peerj.13991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
This article studies the evolutionary change of allometries in the relative size of the two main cranial modules (neurocranium and splanchnocranium) in the five living hominid species and a diverse sample of extinct hominins. We use six standard craniometric variables as proxies for the length, width and height of each cranial module. Factor analysis and two-block partial least squares (2B-PLS) show that the great apes and modern humans share a pervasive negative ontogenetic allometry in the neurocranium and a positive one in the splanchnocranium. This developmental constraint makes it possible to interpret the cranial heterochronies in terms of ontogenetic scaling processes (i.e., extensions or truncations of the ancestral ontogenetic trajectory) and lateral transpositions (i.e., parallel translations of the entire trajectory starting from a different shape for a given cranial size). We hypothesize that ontogenetic scaling is the main evolutionary modality in the australopithecines while in the species of Homo it is also necessary to apply transpositions. Both types of processes are coordinated in Homo, which result in an evolutionary trend toward an increase in brain size and in the degree of paedomorphosis from the earliest habilines.
Collapse
|
6
|
Baab KL, Nesbitt A, Hublin JJ, Neubauer S. Assessing the status of the KNM-ER 42700 fossil using Homo erectus neurocranial development. J Hum Evol 2021; 154:102980. [PMID: 33794419 DOI: 10.1016/j.jhevol.2021.102980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Based on ontogenetic data of endocranial shape, it has been proposed that a younger than previously assumed developmental status of the 1.5-Myr-old KNM-ER 42700 calvaria could explain why the calvaria of this fossil does not conform to the shape of other Homo erectus individuals. Here, we investigate (ecto)neurocranial ontogeny in H. erectus and assess the proposed juvenile status of this fossil using recent Homo sapiens, chimpanzees (Pan troglodytes), and Neanderthals (Homo neanderthalensis) to model and discuss changes in neurocranial shape from the juvenile to adult stages. We show that all four species share common patterns of developmental shape change resulting in a relatively lower cranial vault and expanded supraorbital torus at later developmental stages. This finding suggests that ectoneurocranial data from extant hominids can be used to model the ontogenetic trajectory for H. erectus, for which only one well-preserved very young individual is known. However, our study also reveals differences in the magnitudes and, to a lesser extent, directions of the species-specific trajectories that add to the overall shared pattern of neurocranial shape changes. We demonstrate that the very young H. erectus juvenile from Mojokerto together with subadult and adult H. erectus individuals cannot be accommodated within the pattern of the postnatal neurocranial trajectory for humans. Instead, the chimpanzee pattern might be a better 'fit' for H. erectus despite their more distant phylogenetic relatedness. The data are also compatible with an ontogenetic shape trajectory that is in some regards intermediate between that of recent H. sapiens and chimpanzees, implying a unique trajectory for H. erectus that combines elements of both extant species. Based on this new knowledge, neurocranial shape supports the assessment that KNM-ER 42700 is a young juvenile H. erectus if H. erectus followed an ontogenetic shape trajectory that was more similar to chimpanzees than humans.
Collapse
Affiliation(s)
- Karen L Baab
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA; NYCEP Morphometrics Group, New York, NY, 10016, USA.
| | - Allison Nesbitt
- Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Collège de France, Paris, France
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
7
|
Schuh A, Gunz P, Villa C, Kupczik K, Hublin JJ, Freidline SE. Intraspecific variability in human maxillary bone modeling patterns during ontogeny. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:655-670. [PMID: 33029815 DOI: 10.1002/ajpa.24153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/12/2020] [Accepted: 09/15/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES This study compares the ontogenetic bone modeling patterns of the maxilla to the related morphological changes in three human populations to better understand how morphological variability within a species is established during ontogeny at both micro- and macroscopic levels. MATERIALS AND METHODS The maxillary bones of an ontogenetic sample of 145 subadult and adult individuals from Greenland (Inuit), Western Europe (France, Germany, and Portugal), and South Africa (Khoekhoe and San) were analyzed. Bone formation and resorption were quantified using histological methods to visualize the bone modeling patterns. In parallel, semilandmark geometric morphometric techniques were used on 3D models of the same individuals to capture the morphological changes. Multivariate statistics were applied and shape differences between age groups were visualized through heat maps. RESULTS The three populations show differences in the degree of shape change acquired during ontogeny, leading to divergences in the developmental trajectories. Only subtle population differences in the bone modeling patterns were found, which were maintained throughout ontogeny. Bone resorption in adults mirrors the pattern found in subadults, but is expressed at lower intensities. DISCUSSION Our data demonstrate that maxillary morphological differences observed in three geographically distinct human populations are also reflected at the microscopic scale. However, we suggest that these differences are mostly driven by changes in rates and timings of the cellular activities, as only slight discrepancies in the location of bone resorption could be observed. The shared general bone modeling pattern is likely characteristic of all Homo sapiens, and can be observed throughout ontogeny.
Collapse
Affiliation(s)
- Alexandra Schuh
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Chiara Villa
- Laboratory of Advanced Imaging and 3D modelling, Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kornelius Kupczik
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah E Freidline
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
8
|
Gunz P, Neubauer S, Falk D, Tafforeau P, Le Cabec A, Smith TM, Kimbel WH, Spoor F, Alemseged Z. Australopithecus afarensis endocasts suggest ape-like brain organization and prolonged brain growth. SCIENCE ADVANCES 2020; 6:eaaz4729. [PMID: 32270044 PMCID: PMC7112758 DOI: 10.1126/sciadv.aaz4729] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/09/2020] [Indexed: 05/05/2023]
Abstract
Human brains are three times larger, are organized differently, and mature for a longer period of time than those of our closest living relatives, the chimpanzees. Together, these characteristics are important for human cognition and social behavior, but their evolutionary origins remain unclear. To study brain growth and organization in the hominin species Australopithecus afarensis more than 3 million years ago, we scanned eight fossil crania using conventional and synchrotron computed tomography. We inferred key features of brain organization from endocranial imprints and explored the pattern of brain growth by combining new endocranial volume estimates with narrow age at death estimates for two infants. Contrary to previous claims, sulcal imprints reveal an ape-like brain organization and no features derived toward humans. A comparison of infant to adult endocranial volumes indicates protracted brain growth in A. afarensis, likely critical for the evolution of a long period of childhood learning in hominins.
Collapse
Affiliation(s)
- Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
- Corresponding author.
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Dean Falk
- Department of Anthropology, Florida State University, Tallahassee, FL 32310, USA
- School for Advanced Research, 660 Garcia St., Santa Fe, NM 87505, USA
| | - Paul Tafforeau
- European Synchotron Radiation Facility, 71 Avenue des Martyrs, CS-40220, F-38043, Grenoble cedex 09, France
| | - Adeline Le Cabec
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
- European Synchotron Radiation Facility, 71 Avenue des Martyrs, CS-40220, F-38043, Grenoble cedex 09, France
| | - Tanya M. Smith
- Australian Research Centre for Human Evolution, Griffith University, 170 Kessels Rd., Nathan 4111, Queensland, Australia
| | - William H. Kimbel
- Institute of Human Origins, and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Fred Spoor
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
- Centre for Human Evolution Research, Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Anthropology, UCL, London WC1H 0BW, UK
| | - Zeresenay Alemseged
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Neubauer S, Gunz P, Scott NA, Hublin JJ, Mitteroecker P. Evolution of brain lateralization: A shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes. SCIENCE ADVANCES 2020; 6:eaax9935. [PMID: 32110727 PMCID: PMC7021492 DOI: 10.1126/sciadv.aax9935] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Brain lateralization is commonly interpreted as crucial for human brain function and cognition. However, as comparative studies among primates are rare, it is not known which aspects of lateralization are really uniquely human. Here, we quantify both pattern and magnitude of brain shape asymmetry based on endocranial imprints of the braincase in humans, chimpanzees, gorillas, and orangutans. Like previous studies, we found that humans were more asymmetric than chimpanzees, however so were gorillas and orangutans, highlighting the need to broaden the comparative framework for interpretation. We found that the average spatial asymmetry pattern, previously considered to be uniquely human, was shared among humans and apes. In humans, however, it was less directed, and different local asymmetries were less correlated. We, thus, found human asymmetry to be much more variable compared with that of apes. These findings likely reflect increased functional and developmental modularization of the human brain.
Collapse
Affiliation(s)
- Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nadia A. Scott
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | | |
Collapse
|
10
|
Gunz P, Kozakowski S, Neubauer S, Le Cabec A, Kullmer O, Benazzi S, Hublin JJ, Begun DR. Skull reconstruction of the late Miocene ape Rudapithecus hungaricus from Rudabánya, Hungary. J Hum Evol 2020; 138:102687. [DOI: 10.1016/j.jhevol.2019.102687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
|
11
|
Alatorre Warren JL, Ponce de León MS, Hopkins WD, Zollikofer CPE. Evidence for independent brain and neurocranial reorganization during hominin evolution. Proc Natl Acad Sci U S A 2019; 116:22115-22121. [PMID: 31611399 PMCID: PMC6825280 DOI: 10.1073/pnas.1905071116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Throughout hominin evolution, the brain of our ancestors underwent a 3-fold increase in size and substantial structural reorganization. However, inferring brain reorganization from fossil hominin neurocrania (=braincases) remains a challenge, above all because comparative data relating brain to neurocranial structures in living humans and great apes are still scarce. Here we use MRI and same-subject spatially aligned computed tomography (CT) and MRI data of humans and chimpanzees to quantify the spatial relationships between these structures, both within and across species. Results indicate that evolutionary changes in brain and neurocranial structures are largely independent of each other. The brains of humans compared to chimpanzees exhibit a characteristic posterior shift of the inferior pre- and postcentral gyri, indicative of reorganization of the frontal opercular region. Changes in human neurocranial structure do not reflect cortical reorganization. Rather, they reflect constraints related to increased encephalization and obligate bipedalism, resulting in relative enlargement of the parietal bones and anterior displacement of the cerebellar fossa. This implies that the relative position and size of neurocranial bones, as well as overall endocranial shape (e.g., globularity), should not be used to make inferences about evolutionary changes in the relative size or reorganization of adjacent cortical regions of fossil hominins.
Collapse
Affiliation(s)
| | | | - William D Hopkins
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
| | | |
Collapse
|
12
|
Mori T, Harvati K. Basicranial ontogeny comparison in
Pan troglodytes
and
Homo sapiens
and its use for developmental stage definition of KNM‐ER 42700. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:579-594. [DOI: 10.1002/ajpa.23926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/29/2019] [Accepted: 08/25/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Tommaso Mori
- Palaeoanthropology, Senckenberg Centre for Human Evolution and PalaeoenvironmentEberhard Karls Universität Tübingen Tübingen Germany
| | - Katerina Harvati
- Palaeoanthropology, Senckenberg Centre for Human Evolution and PalaeoenvironmentEberhard Karls Universität Tübingen Tübingen Germany
- DFG Centre for Advanced Studies “Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past”Eberhard Karls Universität Tübingen Tübingen Germany
| |
Collapse
|
13
|
Durão AF, Ventura J, Muñoz-Muñoz F. Comparative post-weaning ontogeny of the mandible in fossorial and semi-aquatic water voles. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Scott NA, Strauss A, Hublin JJ, Gunz P, Neubauer S. Covariation of the endocranium and splanchnocranium during great ape ontogeny. PLoS One 2018; 13:e0208999. [PMID: 30566462 PMCID: PMC6300334 DOI: 10.1371/journal.pone.0208999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022] Open
Abstract
That great ape endocranial shape development persists into adolescence indicates that the splanchnocranium succeeds brain growth in driving endocranial development. However, the extent of this splanchnocranial influence is unknown. We applied two-block partial least squares analyses of Procrustes shape variables on an ontogenetic series of great ape crania to explore the covariation of the endocranium (the internal braincase) and splanchnocranium (face, or viscerocranium). We hypothesized that a transition between brain growth and splanchnocranial development in the establishment of final endocranial form would be manifest as a change in the pattern of shape covariation between early and adolescent ontogeny. Our results revealed a strong pattern of covariation between endocranium and splanchnocranium, indicating that chimpanzees, gorillas, and orangutans share a common tempo and mode of morphological integration from the eruption of the deciduous dentition onwards to adulthood: a reflection of elongating endocranial shape and continuing splanchnocranial prognathism. Within this overarching pattern, we noted that species variation exists in magnitude and direction, and that the covariation between the splanchnocranium and endocranium is somewhat weaker in early infancy compared to successive age groups. When correcting our covariation analyses for allometry, we found that an ontogenetic signal remains, signifying that allometric variation alone is insufficient to account for all endocranial-splanchnocranial developmental integration. Finally, we assessed the influence of the cranial base, which acts as the interface between the face and endocranium, on the shape of the vault using thin-plate spline warping. We found that not all splanchnocranial shape changes during development are tightly integrated with endocranial shape. This suggests that while the developmental expansion of the brain is the main driver of endocranial shape during early ontogeny, endocranial development from infancy onwards is moulded by the splanchnocranium in conjunction with the neurocranium.
Collapse
Affiliation(s)
- Nadia A. Scott
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstrasse, Klosterneuburg, Austria
| | - André Strauss
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| |
Collapse
|
15
|
Watanabe J. Clade-specific evolutionary diversification along ontogenetic major axes in avian limb skeleton. Evolution 2018; 72:2632-2652. [PMID: 30328113 DOI: 10.1111/evo.13627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022]
Abstract
The evolutionary diversification of birds has been facilitated by specializations for various locomotor modes, with which the proportion of the limb skeleton is closely associated. However, recent studies have identified phylogenetic signals in this system, suggesting the presence of historical factors that have affected its evolutionary variability. In this study, to explore potential roles of ontogenetic integration in biasing the evolution in the avian limb skeleton, evolutionary diversification patterns in six avian families (Anatidae, Procellariidae, Ardeidae, Phalacrocoracidae, Laridae, and Alcidae) were examined and compared to the postnatal ontogenetic trajectories in those taxa, based on measurement of 2641 specimens and recently collected ontogenetic series, supplemented by published data. Morphometric analyses of lengths of six limb bones (humerus, ulna, carpometacarpus, femur, tibiotarsus, and tarsometatarsus) demonstrated that: (1) ontogenetic trajectories are diverse among families; (2) evolutionary diversification is significantly anisotropic; and, most importantly, (3) major axes of evolutionary diversification are correlated with clade-specific ontogenetic major axes in the shape space. These results imply that the evolutionary variability of the avian limbs has been biased along the clade-specific ontogenetic trajectories. It may explain peculiar diversification patterns characteristic to some avian groups, including the long-leggedness in Ardeidae and tendency for flightlessness in Anatidae.
Collapse
Affiliation(s)
- Junya Watanabe
- Department of Geology and Mineralogy, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Neubauer S, Gunz P, Leakey L, Leakey M, Hublin JJ, Spoor F. Reconstruction, endocranial form and taxonomic affinity of the early Homo calvaria KNM-ER 42700. J Hum Evol 2018; 121:25-39. [DOI: 10.1016/j.jhevol.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
|
17
|
Neubauer S, Hublin JJ, Gunz P. The evolution of modern human brain shape. SCIENCE ADVANCES 2018; 4:eaao5961. [PMID: 29376123 PMCID: PMC5783678 DOI: 10.1126/sciadv.aao5961] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/19/2017] [Indexed: 05/05/2023]
Abstract
Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.
Collapse
|
18
|
Abstract
This article offers a succinct overview of the hypothesis that the evolution of cognition could benefit from a close examination of brain changes reflected in the shape of the neurocranium. I provide both neurological and genetic evidence in support of this hypothesis, and conclude that the study of language evolution need not be regarded as a mystery.
Collapse
|
19
|
Ponce de León MS, Bienvenu T, Akazawa T, Zollikofer CPE. Brain development is similar in Neanderthals and modern humans. Curr Biol 2017; 26:R665-6. [PMID: 27458909 DOI: 10.1016/j.cub.2016.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
While the braincase of adult Neanderthals had a similar volume to that of modern humans from the same period, differences in endocranial shape suggest that brain morphology differed between modern humans and Neanderthals. When and how these differences arose during evolution and development is a topic of ongoing research, with potential implications for species-specific differences in brain and cognitive development, and in life history [1,2]. Earlier research suggested that Neanderthals followed an ancestral mode of brain development, similar to that of our closest living relatives, the chimpanzees [2-4]. Modern humans, by contrast, were suggested to follow a uniquely derived mode of brain development just after birth, giving rise to the characteristically globular shape of the adult human brain case [2,4,5]. Here, we re-examine this hypothesis using an extended sample of Neanderthal infants. We document endocranial development during the decisive first two years of postnatal life. The new data indicate that Neanderthals followed largely similar modes of endocranial development to modern humans. These findings challenge the notion that human brain and cognitive development after birth is uniquely derived [2,4].
Collapse
Affiliation(s)
- Marcia S Ponce de León
- Anthropologisches Institut und Museum, University of Zurich, CH-8057 Zurich, Switzerland
| | - Thibaut Bienvenu
- Anthropologisches Institut und Museum, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
20
|
Bermúdez de Castro JM, Martinón-Torres M, Arsuaga JL, Carbonell E. Twentieth anniversary of Homo antecessor (1997-2017): a review. Evol Anthropol 2017; 26:157-171. [PMID: 28815959 DOI: 10.1002/evan.21540] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 01/09/2023]
Abstract
It has been twenty years since diagnosis and publication of the species Homo antecessor.1 Since then, new human fossils recovered from the TD6 level of the Gran Dolina site (Sierra de Atapuerca, northern Spain) have helped to refine its taxonomic and phylogenetic position. In this paper, we present a synthesis of the most characteristic features of this species, as well as our interpretation derived from the latest investigations. We focus on the phylogenetic interpretation of Homo antecessor, taking into account the most recent paleogenetic analyses and a reassessment of the European Middle Pleistocene hominin record. We try to show that, twenty years after its publication, H. antecessor provides a good opportunity to address the morphology of the last common ancestor of Neandertals and modern humans.
Collapse
Affiliation(s)
- José María Bermúdez de Castro
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo de la Sierra de Atapuerca 3, 09002, Burgos, Spain.,Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| | - María Martinón-Torres
- Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK.,Departamento de la Ciencias Históricas y Geografía, Universidad de Burgos, Hospital del Rey S/N, 09001, Burgos, Spain
| | - Juan Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
| | - Eudald Carbonell
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES), C/ Escorxador s/n, 43003, Tarragona, Spain.,Laboratory of Human Evolution, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, 100044, Beijing, China
| |
Collapse
|
21
|
Precuneus proportions and cortical folding: A morphometric evaluation on a racially diverse human sample. Ann Anat 2017; 211:120-128. [PMID: 28279731 DOI: 10.1016/j.aanat.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/30/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Abstract
Recent analyses have suggested that the size and proportions of the precuneus are remarkably variable among adult humans, representing a major source of geometrical difference in midsagittal brain morphology. The same area also represents the main midsagittal brain difference between humans and chimpanzees, being more expanded in our species. Enlargement of the upper parietal surface is a specific feature of Homo sapiens, when compared with other fossil hominids, suggesting the involvement of these cortical areas in recent modern human evolution. Here, we provide a survey on midsagittal brain morphology by investigating whether precuneus size represents the largest component of variance within a larger and racially diverse sample of 265 adult humans. Additionally, we investigate the relationship between precuneus shape variation and folding patterns. Precuneus proportions are confirmed to be a major source of human brain variation even when racial variability is considered. Larger precuneus size is associated with additional precuneal gyri, generally in its anterior district. Spatial variation is most pronounced in the dorsal areas, with no apparent differences between hemispheres, between sexes, or among different racial groups. These dorsal areas integrate somatic and visual information together with the lateral elements of the parietal cortex, representing a crucial node for self-centered mental imagery. The histological basis and functional significance of this intra-specific variation in the upper precuneus remains to be evaluated.
Collapse
|
22
|
Zollikofer CPE, Bienvenu T, Ponce de León MS. Effects of cranial integration on hominid endocranial shape. J Anat 2017; 230:85-105. [PMID: 27503252 PMCID: PMC5192801 DOI: 10.1111/joa.12531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Because brains do not fossilize, the internal surface of the braincase (endocast) serves as an important source of information about brain growth, development, and evolution. Recent studies of endocranial morphology and development in great apes, fossil hominins, and modern humans have revealed taxon-specific differences. However, it remains to be investigated to which extent differences in endocranial morphology reflect differences in actual brain morphology and development, and to which extent they reflect different interactions of the brain and its case with the cranial base and face. Here we address this question by analyzing the effects of cranial integration on endocranial morphology. We test the 'spatial packing' and 'facial orientation' hypotheses, which propose that size and orientation of the neurocranium relative to the viscerocranium influence endocranial shape. Results show that a substantial proportion of endocranial shape variation along and across ontogenetic trajectories is due to cranial integration. Specifically, the uniquely globular shape of the human endocast mainly results from the combination of an exceptionally large brain with a comparatively small face. Overall, thus, cranial integration has pervasive effects on endocranial morphology, and only a comparatively small proportion of inter- and intra-taxon variation can directly be associated with variation in brain morphology.
Collapse
Affiliation(s)
| | - Thibaut Bienvenu
- Anthropological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | | |
Collapse
|
23
|
Carlson KB, de Ruiter DJ, DeWitt TJ, Carlson KB, Carlson KJ, Tafforeau P, Berger LR. Developmental simulation of the adult cranial morphology of Australopithecus sediba. S AFR J SCI 2016. [DOI: 10.17159/sajs.2016/20160012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract The type specimen of Australopithecus sediba (MH1) is a late juvenile, prompting some commentators to suggest that had it lived to adulthood its morphology would have changed sufficiently so as to render hypotheses regarding its phylogenetic relations suspect. Considering the potentially critical position of this species with regard to the origins of the genus Homo, a deeper understanding of this change is especially vital. As an empirical response to this critique, a developmental simulation of the MH1 cranium was carried out using geometric morphometric techniques to extrapolate adult morphology using extant male and female chimpanzees, gorillas and humans by modelling remaining development. Multivariate comparisons of the simulated adult A. sediba crania with other early hominin taxa indicate that subsequent cranial development primarily reflects development of secondary sexual characteristics and would not likely be substantial enough to alter suggested morphological affinities of A. sediba. This study also illustrates the importance of separating developmental vectors by sex when estimating ontogenetic change. Results of the ontogenetic projections concur with those from mandible morphology, and jointly affirm the taxonomic validity of A. sediba.
Collapse
|
24
|
Hublin JJ, Neubauer S, Gunz P. Brain ontogeny and life history in Pleistocene hominins. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140062. [PMID: 25602066 DOI: 10.1098/rstb.2014.0062] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A high level of encephalization is critical to the human adaptive niche and emerged among hominins over the course of the past 2 Myr. Evolving larger brains required important adaptive adjustments, in particular regarding energy allocation and life history. These adaptations included a relatively small brain at birth and a protracted growth of highly dependent offspring within a complex social environment. In turn, the extended period of growth and delayed maturation of the brain structures of humans contribute to their cognitive complexity. The current palaeoanthropological evidence shows that, regarding life history and brain ontogeny, the Pleistocene hominin taxa display different patterns and that one cannot simply contrast an 'ape-model' to a 'human-model'. Large-brained hominins such as Upper Pleistocene Neandertals have evolved along their own evolutionary pathway and can be distinguished from modern humans in terms of growth pattern and brain development. The life-history pattern and brain ontogeny of extant humans emerged only recently in the course of human evolution.
Collapse
Affiliation(s)
- Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| |
Collapse
|
25
|
Evidence for expansion of the precuneus in human evolution. Brain Struct Funct 2016; 222:1053-1060. [PMID: 26725108 DOI: 10.1007/s00429-015-1172-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023]
Abstract
The evolution of neurocranial morphology in Homo sapiens is characterized by bulging of the parietal region, a feature unique to our species. In modern humans, expansion of the parietal surface occurs during the first year of life, in a morphogenetic stage which is absent in chimpanzees and Neandertals. A similar variation in brain shape among living adult humans is associated with expansion of the precuneus. Using MRI-derived structural brain templates, we compare medial brain morphology between humans and chimpanzees through shape analysis and geometrical modeling. We find that the main spatial difference is a prominent expansion of the precuneus in our species, providing further evidence of evolutionary changes associated with this area. The precuneus is a major hub of brain organization, a central node of the default-mode network, and plays an essential role in visuospatial integration. Together, the comparative neuroanatomical and paleontological evidence suggest that precuneus expansion is a neurological specialization of H. sapiens that evolved in the last 150,000 years that may be associated with recent human cognitive specializations.
Collapse
|
26
|
Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo. Nature 2015; 519:83-6. [DOI: 10.1038/nature14224] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 01/08/2015] [Indexed: 11/08/2022]
|
27
|
Neubauer S. Endocasts: possibilities and limitations for the interpretation of human brain evolution. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:117-34. [PMID: 25247826 DOI: 10.1159/000365276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brains are not preserved in the fossil record but endocranial casts are. These are casts of the internal bony braincase, revealing approximate brain size and shape, and they are also informative about brain surface morphology. Endocasts are the only direct evidence of human brain evolution, but they provide only limited data ('paleoneurology'). This review discusses some new fossil endocasts and recent methodological advances that have allowed novel analyses of old endocasts, leading to intriguing findings and hypotheses. The interpretation of paleoneurological data always relies on comparative information from living species whose brains and behavior can be directly investigated. It is therefore important that future studies attempt to better integrate different approaches. Only then will we be able to gain a better understanding about hominin brain evolution. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|