1
|
Panwar S, Duggirala KS, Yadav P, Debnath N, Yadav AK, Kumar A. Advanced diagnostic methods for identification of bacterial foodborne pathogens: contemporary and upcoming challenges. Crit Rev Biotechnol 2023; 43:982-1000. [PMID: 35994308 DOI: 10.1080/07388551.2022.2095253] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
Abstract
It is a public health imperative to have safe food and water across the population. Foodborne infections are one of the primary causes of sickness and mortality in both developed and developing countries. An estimated 100 million foodborne diseases and 120 000 foodborne illness-related fatalities occur each year in India. Several factors affect foodborne illness, such as improper farming methods, poor sanitary and hygienic conditions at all levels of the food supply chain, the lack of preventative measures in the food processing industry, the misuse of food additives, as well as improper storage and handling. In addition, chemical and microbiological combinations also play a key role in disease development. But recent disease outbreaks indicated that microbial pathogens played a major role in the development of foodborne diseases. Therefore, prompt, rapid, and accurate detection of high-risk food pathogens is extremely vital to warrant the safety of the food items. Conventional approaches for identifying foodborne pathogens are labor-intensive and cumbersome. As a result, a range of technologies for the rapid detection of foodborne bacterial pathogens have been developed. Presently, many methods are available for the instantaneous detection, identification, and monitoring of foodborne pathogens, such as nucleic acid-based methods, biosensor-based methods, and immunological-based methods. The goal of this review is to provide a complete evaluation of several existing and emerging strategies for detecting food-borne pathogens. Furthermore, this review outlines innovative methodologies and their uses in food testing, along with their existing limits and future possibilities in the detection of live pathogens in food.
Collapse
Affiliation(s)
- Surbhi Panwar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | | | - Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, India
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Jammu, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
2
|
Gallucci A, Patterson KC, Weit AR, Van Der Pol WJ, Dubois LG, Percy AK, Morrow CD, Campbell SL, Olsen ML. Microbial community changes in a female rat model of Rett syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110259. [PMID: 33548354 PMCID: PMC8724884 DOI: 10.1016/j.pnpbp.2021.110259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/17/2021] [Indexed: 01/15/2023]
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that is predominantly caused by alterations of the methyl-CpG-binding protein 2 (MECP2) gene. Disease severity and the presence of comorbidities such as gastrointestinal distress vary widely across affected individuals. The gut microbiome has been implicated in neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) as a regulator of disease severity and gastrointestinal comorbidities. Although the gut microbiome has been previously characterized in humans with RTT compared to healthy controls, the impact of MECP2 mutation on the composition of the gut microbiome in animal models where the host and diet can be experimentally controlled remains to be elucidated. By evaluating the microbial community across postnatal development as behavioral symptoms appear and progress, we have identified microbial taxa that are differentially abundant across developmental timepoints in a zinc-finger nuclease rat model of RTT compared to WT. We have additionally identified p105 as a key translational timepoint. Lastly, we have demonstrated that fecal SCFA levels are not altered in RTT rats compared to WT rats across development. Overall, these results represent an important step in translational RTT research.
Collapse
Affiliation(s)
- A Gallucci
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, VA 24014, United States of America; Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, VA 24061, United States of America
| | - K C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, United States of America
| | - A R Weit
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061, United States of America
| | - W J Van Der Pol
- Biomedical Informatics, Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - L G Dubois
- Duke Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708, United States of America
| | - A K Percy
- Department of Pediatrics, Neurology, Neurobiology, Genetics, and Psychology, Civitan International Research Center, University of Alabama, Birmingham, AL 35233, United States of America
| | - C D Morrow
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, United States of America
| | - S L Campbell
- Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, VA 24061, United States of America.
| | - M L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061, United States of America.
| |
Collapse
|
4
|
Kumar A, Grover S, Batish VK. Exploring specific primers targeted against different genes for a multiplex PCR for detection of Listeria monocytogenes. 3 Biotech 2015; 5:261-269. [PMID: 28324291 PMCID: PMC4434410 DOI: 10.1007/s13205-014-0225-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/29/2014] [Indexed: 11/28/2022] Open
Abstract
The efficacy of six different sets of primers targeted against 16S rRNA and virulence genes such as ‘iap’, ‘hly’ and ‘prf’ was evaluated in separate PCR assays. The primer pairs targeted against 16S rRNA resulted into amplification of 1.2 kb PCR product. However, sets of primers targeted against different regions of ‘iap’ produced 371 and 660 bp PCR products, respectively. The primer pair targeted against ‘prf’ gene could produce 508 bp product. Three primer pairs targeted against different regions of ‘hly’, i.e., ‘hly’, ‘hly A’ and ‘hly K9’ were able to amplify 713, 276 and 384 bp products, respectively. The PCR conditions were also optimized in respect of two internal sets of primers falling within ‘iap’ and ‘hly’ genes that amplified 119 and 188 bp products to verify the PCR results obtained with respective external sets of primers. Three different combinations involving four sets of primers based on 16S rRNA, ‘iap’, ‘hly’ and ‘prf’ were explored in respective multiplex PCR assays in order to select a suitable combination. Combination 1 and 3 worked successfully as revealed by amplification of all the four bands of expected sizes on agarose gel. However, while optimizing the different parameters for developing a functional multiplex PCR, it was observed that in both these combinations, only two of the amplified products, i.e., 1.2 kb and 713 bp could be invariably detected. Hence, these two primers were combined in the multiplex PCR and the conditions were optimized for application in dairy foods for detection of Listeria monocytogenes.
Collapse
|
5
|
Phylogenetic analysis of the Listeria monocytogenes based on sequencing of 16S rRNA and hlyA genes. Mol Biol Rep 2014; 41:8219-29. [DOI: 10.1007/s11033-014-3724-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|