1
|
Jue DW, Sang XL, Li ZX, Zhang WL, Liao QH, Tang J. Determination of the effects of pre-harvest bagging treatment on kiwifruit appearance and quality via transcriptome and metabolome analyses. Food Res Int 2023; 173:113276. [PMID: 37803588 DOI: 10.1016/j.foodres.2023.113276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Bagging is an effective cultivation strategy to produce attractive and pollution-free kiwifruit. However, the effect and metabolic regulatory mechanism of bagging treatment on kiwifruit quality remain unclear. In this study, transcriptome and metabolome analyses were conducted to determine the regulatory network of the differential metabolites and genes after bagging. Using outer and inner yellow single-layer fruit bags, we found that bagging treatment improved the appearance of kiwifruit, increased the soluble solid content (SSC) and carotenoid and anthocyanin levels, and decreased the chlorophyll levels. We also identified 41 differentially expressed metabolites and 897 differentially expressed genes (DEGs) between the bagged and control 'Hongyang' fruit. Transcriptome and metabolome analyses revealed that the increase in SSC after bagging treatment was mainly due to the increase in D-glucosamine metabolite levels and eight DEGs involved in amino sugar and nucleotide sugar metabolic pathways. A decrease in glutamyl-tRNA reductase may be the main reason for the decrease in chlorophyll. Downregulation of lycopene epsilon cyclase and 9-cis-epoxycarotenoid dioxygenase increased carotenoid levels. Additionally, an increase in the levels of the taxifolin-3'-O-glucoside metabolite, flavonoid 3'-monooxygenase, and some transcription factors led to the increase in anthocyanin levels. This study provides novel insights into the effects of bagging on the appearance and internal quality of kiwifruit and enriches our theoretical knowledge on the regulation of color pigment synthesis in kiwifruit.
Collapse
Affiliation(s)
- Deng-Wei Jue
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China; Southwest University, College of Horticulture and Landscape, Chongqing 400715, China
| | - Xue-Lian Sang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Zhe-Xin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Wen-Lin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Qin-Hong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| |
Collapse
|
2
|
García-García DJ, Pérez-Sánchez GF, Hernández-Cocoletzi H, Sánchez-Arzubide MG, Luna-Guevara ML, Rubio-Rosas E, Krishnamoorthy R, Morán-Raya C. Chitosan Coatings Modified with Nanostructured ZnO for the Preservation of Strawberries. Polymers (Basel) 2023; 15:3772. [PMID: 37765626 PMCID: PMC10536365 DOI: 10.3390/polym15183772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Strawberries are highly consumed around the world; however, the post-harvest shelf life is a market challenge to mitigate. It is necessary to guarantee the taste, color, and nutritional value of the fruit for a prolonged period of time. In this work, a nanocoating based on chitosan and ZnO nanoparticles for the preservation of strawberries was developed and examined. The chitosan was obtained from residual shrimp skeletons using the chemical method, and the ZnO nanoparticles were synthesized by the close-spaced sublimation method. X-ray diffraction, scanning electron microscopy, electron dispersion analysis, transmission electron microscopy, and infrared spectroscopy were used to characterize the hybrid coating. The spaghetti-like ZnO nanoparticles presented the typical wurtzite structure, which was uniformly distributed into the chitosan matrix, as observed by the elemental mapping. Measurements of color, texture, pH, titratable acidity, humidity content, and microbiological tests were performed for the strawberries coated with the Chitosan/ZnO hybrid coating, which was uniformly impregnated on the strawberries' surface. After eight days of storage, the fruit maintained a fresh appearance. The microbial load was reduced because of the synergistic effect between chitosan and ZnO nanoparticles. Global results confirm that coated strawberries are suitable for human consumption.
Collapse
Affiliation(s)
- Dulce J. García-García
- Ecocampus Valsequillo, ICUAP, Centro de Investigación en Fisicoquímica de Materiales, Benemérita Universidad Autónoma de Puebla, Edificio Val-3, San Pedro Zacachimapa, Puebla 72960, Mexico; (D.J.G.-G.); (C.M.-R.)
| | - G. F. Pérez-Sánchez
- Ecocampus Valsequillo, ICUAP, Centro de Investigación en Fisicoquímica de Materiales, Benemérita Universidad Autónoma de Puebla, Edificio Val-3, San Pedro Zacachimapa, Puebla 72960, Mexico; (D.J.G.-G.); (C.M.-R.)
| | - H. Hernández-Cocoletzi
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 sur S/N Edificio FIQ7 CU San Manuel, Puebla 72570, Mexico; (M.G.S.-A.); (M.L.L.-G.)
| | - M. G. Sánchez-Arzubide
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 sur S/N Edificio FIQ7 CU San Manuel, Puebla 72570, Mexico; (M.G.S.-A.); (M.L.L.-G.)
| | - M. L. Luna-Guevara
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 sur S/N Edificio FIQ7 CU San Manuel, Puebla 72570, Mexico; (M.G.S.-A.); (M.L.L.-G.)
| | - E. Rubio-Rosas
- Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Prol. 24 sur S/N CU San Manuel, Puebla 72570, Mexico;
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - C. Morán-Raya
- Ecocampus Valsequillo, ICUAP, Centro de Investigación en Fisicoquímica de Materiales, Benemérita Universidad Autónoma de Puebla, Edificio Val-3, San Pedro Zacachimapa, Puebla 72960, Mexico; (D.J.G.-G.); (C.M.-R.)
| |
Collapse
|
3
|
Fan Z, Wang L, Qin Y, Li P. Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Carbohydr Polym 2023; 306:120592. [PMID: 36746583 DOI: 10.1016/j.carbpol.2023.120592] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Chemical nematicide is the most common method of controlling plant-parasitic nematodes (PPN). Given the negative impact of chemical nematicides on the environment and ecosystem, it is necessary to seek their alternatives and novel modes of application. Chitin oligo/polysaccharide (COPS), including chitosan and chitosan oligosaccharide, has unique biological properties. By producing ammonia, encouraging the growth of antagonistic bacteria, and enhancing crop tolerance, COPSs help suppress PPN growth during soil remediation. COPS is also an effective sustained-release carrier that can be used to overcome the shortcomings of nematicidal substances. This review summarizes the advancements of COPS research in nematode control from three perspectives of action mechanism as well as in slow-release carrier-loaded nematicides. Further, it discusses potential agricultural applications for nematode disease management.
Collapse
Affiliation(s)
- Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
4
|
Li J, Huang B, Wu C, Sun Z, Xue L, Liu M, Chen J. nondestructive detection of kiwifruit textural characteristic based on near infrared hyperspectral imaging technology. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2098972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jing Li
- College of Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Key Laboratory of Modern Agricultural Equipment, Nanchang, Jiangxi, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, Jiangxi, China
| | - Bohan Huang
- College of Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chenpeng Wu
- College of Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zheng Sun
- College of Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Long Xue
- College of Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Key Laboratory of Modern Agricultural Equipment, Nanchang, Jiangxi, China
| | - Muhua Liu
- College of Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Key Laboratory of Modern Agricultural Equipment, Nanchang, Jiangxi, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, Jiangxi, China
| | - Jinyin Chen
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Elgadir MA, Mariod AA. Gelatin and Chitosan as Meat By-Products and Their Recent Applications. Foods 2022; 12:60. [PMID: 36613275 PMCID: PMC9818858 DOI: 10.3390/foods12010060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Meat by-products such as bones, skin, horns, hooves, feet, skull, etc., are produced from slaughtered mammals. Innovative solutions are very important to achieving sustainability and obtaining the added value of meat by-products with the least impact on the environment. Gelatin, which is obtained from products high in collagen, such as dried skin and bones, is used in food processing, and pharmaceuticals. Chitosan is derived from chitin and is well recognized as an edible polymer. It is a natural product that is non-toxic and environmentally friendly. Recently, chitosan has attracted researchers' interests due to its biological activities, including antimicrobial, antitumor, and antioxidant properties. In this review, article, we highlighted the recent available information on the application of gelatin and chitosan as antioxidants, antimicrobials, food edible coating, enzyme immobilization, biologically active compound encapsulation, water treatment, and cancer diagnosis.
Collapse
Affiliation(s)
- M. Abd Elgadir
- Department of Food Science & Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdalbasit Adam Mariod
- Department of Biology, College of Science and Arts, Alkamil Branch, University of Jeddah, Alkamil 21931, Saudi Arabia
- Indigenous Knowledge and Heritage Centre, Ghibaish College of Science and Technology, Ghibaish P.O. Box 100, Sudan
| |
Collapse
|
6
|
Zhang Q, Tang F, Cai W, Peng B, Ning M, Shan C, Yang X. Chitosan treatment reduces softening and chilling injury in cold-stored Hami melon by regulating starch and sucrose metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:1096017. [PMID: 36589112 PMCID: PMC9795072 DOI: 10.3389/fpls.2022.1096017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Cold-stored Hami melon is susceptible to chilling injury, resulting in quality deterioration and reduced sales. Pre-storage treatment with chitosan reduces fruit softening and chilling injury in melon; however, the underlying mechanism remains unclear. In this study, Gold Queen Hami melons were treated with 1.5% chitosan solution for 10 min before cold storage at 3°C and then the effect of chitosan was examined on fruit firmness, weight loss, chilling injury, soluble solid content (SSC), pectin, and soluble sugar contents of melon fruit. Also, the enzyme activities and gene expressions related to fruit softening and starch and sucrose metabolism were investigated. Chitosan treatment reduced the fruit softening and chilling injury, maintained the high levels of starch and sucrose contents, and regulated the enzyme activities and gene expressions related to starch and sucrose metabolism. Fruit firmness was significantly positively correlated with sucrose and starch contents. Altogether, we uncovered the potential mechanism of chitosan coating mitigating melon softening and chilling injury through the regulation of starch and sucrose metabolism.
Collapse
Affiliation(s)
- Qin Zhang
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Fengxian Tang
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Wenchao Cai
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Bo Peng
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ming Ning
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Chunhui Shan
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Xinquan Yang
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Effect of chitosan and thymol on physicochemical and qualitative properties of table grape fruits during the postharvest period. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Sinha A, Gill P, Jawandha S, Grewal S. Composite coating of chitosan with salicylic acid retards pear fruit softening under cold and supermarket storage. Food Res Int 2022; 160:111724. [DOI: 10.1016/j.foodres.2022.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
9
|
Effects of electrocatalytic treatment on the physicochemical properties of rice bran protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Sinha A, Gill PS, Jawandha SK, Grewal SK. Suppression of internal browning and maintenance of antioxidants in beeswax plus salicylic acid coated pear fruit during different storage conditions. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aeshna Sinha
- Department of Fruit Science Punjab Agricultural University Ludhiana Punjab 141004 India
| | - Parmpal Singh Gill
- Department of Fruit Science Punjab Agricultural University Ludhiana Punjab 141004 India
| | - Sukhit Kaur Jawandha
- Department of Fruit Science Punjab Agricultural University Ludhiana Punjab 141004 India
| | - Satvir Kaur Grewal
- Department of Biochemistry Punjab Agricultural University Ludhiana Punjab 141004 India
| |
Collapse
|
11
|
Physicochemical properties of chitosan-based films incorporated with limonene. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01337-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Li ZX, Chen M, Miao YX, Li Q, Ren Y, Zhang WL, Lan JB, Liu YQ. The role of AcPGIP in the kiwifruit (Actinidia chinensis) response to Botrytis cinerea. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1254-1263. [PMID: 34600600 DOI: 10.1071/fp21054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/05/2021] [Indexed: 05/23/2023]
Abstract
Kiwifruit (Actinidia chinensis) is rich in nutritional and medicinal value. However, the organism responsible for grey mould, Botrytis cinerea, causes great economic losses and food safety problems to the kiwifruit industry. Understanding the molecular mechanism underlying postharvest kiwifruit responses to B. cinerea is important for preventing grey mould decay and enhancing resistance breeding. Kiwifruit cv. 'Hongyang' was used as experimental material. The AcPGIP gene was cloned and virus-induced gene silencing (VIGS) was used to explore the function of the polygalacturonase inhibiting protein (PGIP) gene in kiwifruit resistance to B. cinerea. Virus-induced silencing of AcPGIP resulted in enhanced susceptibility of kiwifruit to B. cinerea. Antioxidant enzymes, secondary metabolites and endogenous hormones were analysed to investigate kiwifruit responses to B. cinerea infection. Kiwifruit effectively activated antioxidant enzymes and secondary metabolite production in response to B. cinerea, which significantly increased Indole-3-acetic acid (IAA), gibberellin 3 (GA3) and abscisic acid (ABA) content relative to those in uninfected fruit. Silencing of AcPGIP enabled kiwifruit to quickly activate hormone-signaling pathways through an alternative mechanism to trigger defence responses against B. cinerea infection. These results expand our understanding of the regulatory mechanism for disease resistance in kiwifruit; further, they provide gene-resource reserves for molecular breeding of kiwifruit for disease resistance.
Collapse
Affiliation(s)
- Zhe-Xin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Min Chen
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | | | - Qiang Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Yun Ren
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Wen-Lin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Jian-Bin Lan
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | | |
Collapse
|
13
|
Salgado-Cruz MDLP, Salgado-Cruz J, García-Hernández AB, Calderón-Domínguez G, Gómez-Viquez H, Oliver-Espinoza R, Fernández-Martínez MC, Yáñez-Fernández J. Chitosan as a Coating for Biocontrol in Postharvest Products: A Bibliometric Review. MEMBRANES 2021; 11:421. [PMID: 34073018 PMCID: PMC8228418 DOI: 10.3390/membranes11060421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
The aim of this work was to carry out a systematic literature review focused on the scientific production, trends, and characteristics of a knowledge domain of high worldwide importance, namely, the use of chitosan as a coating for postharvest disease biocontrol in fruits and vegetables, which are generated mainly by fungi and bacteria such as Aspergillus niger, Rhizopus stolonifera, and Botrytis cinerea. For this, the analysis of 875 published documents in the Scopus database was performed for the years 2011 to 2021. The information of the keywords' co-occurrence was visualized and studied using the free access VOSviewer software to show the trend of the topic in general. The study showed a research increase of the chitosan and nanoparticle chitosan coating applications to diminish the postharvest damage by microorganisms (fungi and bacteria), as well as the improvement of the shelf life and quality of the products.
Collapse
Affiliation(s)
- Ma de la Paz Salgado-Cruz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México 03940, Mexico
| | - Julia Salgado-Cruz
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - Alitzel Belem García-Hernández
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
| | - Georgina Calderón-Domínguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
| | - Hortensia Gómez-Viquez
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - Rubén Oliver-Espinoza
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - María Carmen Fernández-Martínez
- Laboratorio de Biotecnología Alimentaria, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico;
| | - Jorge Yáñez-Fernández
- Laboratorio de Biotecnología Alimentaria, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico;
| |
Collapse
|
14
|
Preharvest Application of Chitosan Improves the Postharvest Life of 'Garmrok' Kiwifruit through the Modulation of Genes Related to Ethylene Biosynthesis, Cell Wall Modification, and Lignin Metabolism. Foods 2021; 10:foods10020373. [PMID: 33572175 PMCID: PMC7915756 DOI: 10.3390/foods10020373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/19/2022] Open
Abstract
The influence of the preharvest application of chitosan on physicochemical properties and changes in gene expression of ‘Garmrok’ kiwifruit during postharvest cold storage (0 °C; RH 90–95%; 90 days) was investigated. Preharvest treatment of chitosan increased the fruit weight but had no significant effect on fruit size. The chitosan treatment suppressed the ethylene production and respiration rate of kiwifruit during the cold storage. The reduction of ethylene production of chitosan-treated kiwifruit was accompanied with the suppressed expression of ethylene biosynthesis genes. Moreover, preharvest application of chitosan diminished weight loss and delayed the changes in physicochemical properties that include firmness, soluble solids content, titratable acidity, total sugars, total acids, total phenols, and total lignin. As a result, the preharvest application of chitosan delayed the maturation and ripening of fruit. Expression of genes related to cell wall modification was down-regulated during the early maturation (ripening) period, while those related to gene expression for lignin metabolism were up-regulated at the later stages of ripening. These results demonstrate that the preharvest application of chitosan maintained the fruit quality and extends the postharvest life of ‘Garmrok’ kiwifruit, possibly through the modulation of genes related to ethylene biosynthesis, cell wall modification, and lignin metabolism.
Collapse
|
15
|
Passafiume R, Gaglio R, Sortino G, Farina V. Effect of Three Different Aloe vera Gel-Based Edible Coatings on the Quality of Fresh-Cut "Hayward" Kiwifruits. Foods 2020; 9:E939. [PMID: 32708692 PMCID: PMC7404722 DOI: 10.3390/foods9070939] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
In recent years, the market for minimally processed fruit has increased. Fresh-cut fruits are characterized by a short shelf life due to the processing phases that accelerate the ripening courses. The aim of this work is to analyze the effect on the quality of fresh-cut Hayward kiwis of three different edible coatings based on (1) Aloe vera gel, (2) Aloe vera gel + hydroxypropyl methylcellulose and (3) Aloe vera gel + lemon essential oil. Fruit firmness, weight loss, color, soluble solids content, titratable acidity, microbial load and sensory analysis were evaluated as fresh after 2, 4, 7 and 10 days. Aloe vera gel and Aloe vera gel + lemon essential oil maintained the best values, as they acted as a barrier to gas exchange and further reduced the microbial load. These results were confirmed by sensory analysis: Aloe vera gel + hydroxypropyl methylcellulose does not alter the natural taste of kiwi slices, Aloe vera gel + lemon essential oil gives the characteristic taste of lemon essential oil and Aloe vera gel gives an herbaceous taste. The Aloe vera gel, in combination with these additives, maintains the ability to preserve the quality of fresh-cut kiwifruit.
Collapse
Affiliation(s)
| | | | - Giuseppe Sortino
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.P.); (R.G.); (V.F.)
| | | |
Collapse
|
16
|
Barzegar H, Alizadeh Behbahani B, Mehrnia MA. Quality retention and shelf life extension of fresh beef using Lepidium sativum seed mucilage-based edible coating containing Heracleum lasiopetalum essential oil: an experimental and modeling study. Food Sci Biotechnol 2020; 29:717-728. [PMID: 32419970 PMCID: PMC7221043 DOI: 10.1007/s10068-019-00715-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022] Open
Abstract
The instability and strong flavor or odor of essential oils (EO) limit their direct incorporation into food products. In this study, the antioxidant and antimicrobial Heracleum lasiopetalum essential oil (HLEO) was added to Lepidium sativum seed mucilage (LSSM) solution at four concentrations (0, 0.5, 1, and 1.5%) to develop a novel edible coating and expand its food application. HLEO-loaded LSSM coating was then used to improve the shelf life and quality of beef as a model food system. The coated and control beef samples were periodically analyzed for physicochemical analysis, microbiological, and sensory characteristics over a period of 9 days at 4 °C. The HLEO-enriched LSSM coating, particularly 1.5% loaded one resulted in a significant (p < 0.05) increase in oxidative and microbiological stability and overall acceptance of the beef samples, compared to the control counterpart. HLEO-loaded LSSM coating, therefore, provides a promising alternative to preserve the meat products under cold storage.
Collapse
Affiliation(s)
- Hassan Barzegar
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Mohammad Amin Mehrnia
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
17
|
Monjazeb Marvdashti L, Abdulmajid Ayatollahi S, Salehi B, Sharifi‐Rad J, Abdolshahi A, Sharifi‐Rad R, Maggi F. Optimization of edible
Alyssum homalocarpum
seed gum‐chitosan coating formulation to improve the postharvest storage potential and quality of apricot (
Prunus armeniaca
L.). J Food Saf 2020. [DOI: 10.1111/jfs.12805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Leila Monjazeb Marvdashti
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of Mashhad (FUM) Mashhad Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of PharmacognosySchool of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Bahare Salehi
- Student Research CommitteeSchool of Medicine, Bam University of Medical Sciences Bam Iran
| | - Javad Sharifi‐Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Anna Abdolshahi
- Food Safety Research Center (salt)Semnan University of Medical Sciences Semnan Iran
| | - Razieh Sharifi‐Rad
- Zabol Medicinal Plants Research CenterZabol University of Medical Sciences Zabol Iran
| | - Filippo Maggi
- School of Pharmacy, University of Camerino Camerino Italy
| |
Collapse
|
18
|
He X, Fang J, Chen X, Zhao Z, Li Y, Meng Y, Huang L. Actinidia chinensis Planch.: A Review of Chemistry and Pharmacology. Front Pharmacol 2019; 10:1236. [PMID: 31736750 PMCID: PMC6833939 DOI: 10.3389/fphar.2019.01236] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Actinidia chinensis Planch. (A. chinensis), commonly known as Chinese kiwifruit, is a China native fruit, which becomes increasingly popular due to attractive economic, nutritional, and health benefits properties. The whole plant including fruits, leaves, vines, and roots of A. chinensis are used mainly as food or additive in food products and as folk medicine in China. It is a good source of triterpenoids, polyphenols, vitamin C, carbohydrate, amino acid, and minerals. These constituents render the A. chinensis with a wide range of pharmacological properties including antitumor, antioxidant, anti-inflammatory, immunoregulatory, hypolipemic, antidiabetic, and cardiovascular protective activities, suggesting that it may possibly be value in the prevention and treatment of pathologies associated to cancer, oxidative stress, and aging. This minireview provides a brief knowledge about the recent advances in chemistry, biological activities, utilization, and storage of Chinese kiwifruit. Future research directions on how to better use of this crop are suggested.
Collapse
Affiliation(s)
- Xirui He
- Department of Bioengineering, Zhuhai Campus Zunyi Medical University, Zhuhai, China
| | - Jiacheng Fang
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Xufei Chen
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Zefeng Zhao
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Yongsheng Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yibing Meng
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Linhong Huang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Supapvanich S, Anan W, Chimsonthorn V. Efficiency of combinative salicylic acid and chitosan preharvest-treatment on antioxidant and phytochemicals of ready to eat daikon sprouts during storage. Food Chem 2019; 284:8-15. [DOI: 10.1016/j.foodchem.2019.01.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
|
20
|
The surface characteristics of biopolymer-coated tomato and cucumber epicarps: effect of guar, Persian and tragacanth gums. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9996-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Noshad M, Savari M, Roueita G. A hybrid AHP‐TOPSIS method for prospectively modeling of ultrasound‐assisted osmotic dehydration of strawberry. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mohammad Noshad
- Department of Food Science and Technology, Faculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| | - Moslem Savari
- Department of Agricultural Extension and Education, Faculty of Agricultural Engineering and Rural DevelopmentAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| | - Ghaniye Roueita
- Department of Food Science and Technology, Faculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| |
Collapse
|
22
|
Maleki G, Sedaghat N, Woltering EJ, Farhoodi M, Mohebbi M. Chitosan-limonene coating in combination with modified atmosphere packaging preserve postharvest quality of cucumber during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9776-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Jogihalli P, Singh L, Kumar K, Sharanagat VS. Novel continuous roasting of chickpea (Cicer arietinum): Study on physico-functional, antioxidant and roasting characteristics. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Freshness evaluation of grass carp (Ctenopharyngodon idellus) by electronic nose. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9478-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|