1
|
Caccamo M, Luciano G, Rapisarda T, Marino VM, Pasta C, Natalello A, Mangione G, Valenti B, Campione A, Marino G, Pauselli M. Cocoa byproduct inclusion in dairy sheep diet: Effects on sensory, volatile, and antioxidant properties of cheese. J Dairy Sci 2024; 107:6460-6473. [PMID: 38642650 DOI: 10.3168/jds.2023-24428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 04/22/2024]
Abstract
The possibility of inclusion of agro-industrial byproducts in the diet of small ruminants represents both an economic and an environmental strategy for reducing waste management by industries and costs of feeding as well as the impact of livestock farming. Large amounts of wastes from the cocoa industry are produced annually, with a considerable part represented by cocoa bean shells, considered a suitable ingredient to be included in the diet of ruminants within the limits established by European legislation. The aim of this study was to assess the effect of including cocoa bean shells in the diet of dairy sheep on the sensory, volatile, and antioxidant properties of cheese. To this purpose, 20 lactating Comisana ewes were randomly assigned to 2 experimental groups: control (CTRL) and cocoa bean shells (CBS), and received alfalfa hay ad libitum and 800 g of conventional (CTRL) or experimental (CBS) concentrate containing 11.7% CBS to partially replace corn and barley of the CTRL concentrate. Bulk milk collected from each group was used to produce a total of 15 cheeses per group, obtained in 5 different days of cheesemaking (3 cheeses a day per group). After 60 d of aging, each cheese of each experimental group was sampled for the analyses. The results on chemical composition revealed a greater content of monounsaturated fatty acids and an increase in the nutritional indices, suggesting a favorable role of cocoa bean shell dietary inclusion on the nutritive value of cheese. The cheese sensory profile was affected by the cocoa bean shell inclusion, with more pronounced appearance, odor, aroma, and taste attributes in the product. The volatile profile showed only a few significant differences, mainly related to the cheese ripening process, and no differences were found in α-tocopherol contents in cheese fat between the 2 groups. Therefore, the inclusion of coca bean shells in the diet of dairy sheep allowed us to obtain a good-quality cheese, without altering the characteristics associated with the typical profiles of sheep cheese. Furthermore, the use of this byproduct could contribute to decreasing feed costs and waste management, representing a good practice for increasing the sustainability of dairy products.
Collapse
Affiliation(s)
- M Caccamo
- Consorzio per la Ricerca nel settore della Filiera Lattiero-Casearia e dell'agroalimentare (CoRFiLaC), Regione Siciliana, 97100 Ragusa, Italy
| | - G Luciano
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy
| | - T Rapisarda
- Consorzio per la Ricerca nel settore della Filiera Lattiero-Casearia e dell'agroalimentare (CoRFiLaC), Regione Siciliana, 97100 Ragusa, Italy
| | - V M Marino
- Consorzio per la Ricerca nel settore della Filiera Lattiero-Casearia e dell'agroalimentare (CoRFiLaC), Regione Siciliana, 97100 Ragusa, Italy
| | - C Pasta
- Consorzio per la Ricerca nel settore della Filiera Lattiero-Casearia e dell'agroalimentare (CoRFiLaC), Regione Siciliana, 97100 Ragusa, Italy
| | - A Natalello
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy.
| | - G Mangione
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy
| | - B Valenti
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, 06121 Perugia, Italy
| | - A Campione
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, 06121 Perugia, Italy
| | - G Marino
- Consorzio per la Ricerca nel settore della Filiera Lattiero-Casearia e dell'agroalimentare (CoRFiLaC), Regione Siciliana, 97100 Ragusa, Italy
| | - M Pauselli
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, 06121 Perugia, Italy
| |
Collapse
|
2
|
Disca V, Jaouhari Y, Carrà F, Martoccia M, Travaglia F, Locatelli M, Bordiga M, Arlorio M. Effect of Carbohydrase Treatment on the Dietary Fibers and Bioactive Compounds of Cocoa Bean Shells (CBSs). Foods 2024; 13:2545. [PMID: 39200472 PMCID: PMC11353957 DOI: 10.3390/foods13162545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Cocoa bean shells (CBSs) are a byproduct of the chocolate production process, representing the external layer of the cocoa bean. CBSs exhibit many interesting chemical and nutritional characteristics resulting in a very rich content of dietary fiber (DF) and antioxidant compounds such as phenolic acids and flavan-3-ols. The DF fraction of CBSs is notably rich in soluble dietary fibers (SDFs), which may be associated with fermentability and prebiotic properties. The objective of this study was the valorization of CBSs through enzymatic treatments, thereby increasing the solubility of DF and potentially augmenting fermentability. CBSs were treated both raw and defatted. Three sets of carbohydrases were used in order to impact the dietary fiber profile. Cellulase, xylanase, pectinase and their combinations were used to perform enzymatic treatments. The application of cellulase, xylanase and a combination of both enzymes proved effective in achieving a high SDF destructuring of the insoluble dietary fiber (IDF) fraction in both defatted and raw CBSs. Notably, the SDF/IDF ratio was significantly elevated in the enzymatically hydrolyzed samples (1.13-1.33) compared to the untreated CBSs (0.33). Furthermore, the various treatments did not affect the antioxidant activity or the content of the main bioactive compounds. These results provide a foundation for new opportunities in the biovalorization of CBSs through green techniques for a range of potential industrial applications in the food and nutraceutical sectors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (V.D.); (Y.J.); (F.C.); (M.M.); (F.T.); (M.L.); (M.A.)
| | | |
Collapse
|
3
|
Djali M, Santasa K, Indiarto R, Subroto E, Fetriyuna F, Lembong E. Proximate Composition and Bioactive Compounds of Cocoa Bean Shells as a By-Product from Cocoa Industries in Indonesia. Foods 2023; 12:3316. [PMID: 37685248 PMCID: PMC10486910 DOI: 10.3390/foods12173316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Cocoa bean shell (CBS) is a by-product from cocoa processing which is abundant in Indonesia, one of the largest cocoa-producing countries. It has a great potential for being processed into food ingredients due to its comparable composition to cocoa nibs. The present study was conducted to identify the proximate composition and bioactive compounds in CBS produced at several cocoa industries in Indonesia utilizing different cocoa varieties (Criollo and Forastero) and processing techniques (fermented, non-fermented, pulp washing, and drying), which remain unknown. The results showed that the CBS derived from roasted Criollo cocoa pods in the Kendeng Lembu cocoa industry had ash and protein content of about 8.21% and 18.79%, respectively, which was higher than other industries. Additionally, the concentration of bioactive substances was higher here than it was elsewhere. This included total phenolic (136.2 mg GAE g-1) and theobromine (22.50 mg g-1). The lowest ash and protein concentration found in CBS was from Forastero cocoa pods, non-fermented like Sulawesi cocoa. These values were 6.48% and 15.70%, respectively. The concentration of theobromine (15.40 mg g-1) was also lower compared to other industries.
Collapse
Affiliation(s)
- Mohamad Djali
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia; (K.S.); (R.I.); (E.S.); (F.F.); (E.L.)
| | | | | | | | | | | |
Collapse
|
4
|
Drees A, Brockelt J, Cvancar L, Fischer M. Rapid determination of the shell content in cocoa products using FT-NIR spectroscopy and chemometrics. Talanta 2023; 256:124310. [PMID: 36758502 DOI: 10.1016/j.talanta.2023.124310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
The determination of the cocoa shell content is of interest because a high shell content causes a reduction in the quality of cocoa products. Consequently, the aim of the present study was the development of a routinely applicable method for the quantitation of shell material in cocoa nibs. For this, 51 fermented cocoa samples of different varieties from 14 cocoa growing countries covering the crop years 2012-2017 were acquired. Admixtures of cocoa nibs with shell material were prepared in a range of 0-20% cocoa shell and subsequently analysed by Fourier transform near-infrared spectroscopy (FT-NIRS). Support vector machine regression models were created, which enabled the prediction of the cocoa shell content in a mixing ratio range of 0-20% with an RMSE of 2.05% and a R2 of 0.88 and in a range of 0-10% with an RMSE of 1.70% and a R2 of 0.72. This predictive capability suggests that the presented method is suitable for rapid determination of cocoa shell content in cocoa nibs. In addition, it was demonstrated that the method is applicable to other relevant cocoa matrices, as the prediction of the shell content of several industrial cocoa masses by the FT-NIRS-based model showed good consistency with the prediction by liquid chromatography-mass spectrometry. This emphasizes that FT-NIRS combined with chemometrics has great potential for the determination of cocoa shell content in cocoa nibs and cocoa masses in routine analysis, such as incoming inspection.
Collapse
Affiliation(s)
- Alissa Drees
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Johannes Brockelt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Lina Cvancar
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany; Center for Hybrid Nanostructures (CHyN), Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
5
|
Sánchez M, Laca A, Laca A, Díaz M. Cocoa Bean Shell: A By-Product with High Potential for Nutritional and Biotechnological Applications. Antioxidants (Basel) 2023; 12:antiox12051028. [PMID: 37237894 DOI: 10.3390/antiox12051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cocoa bean shell (CBS) is one of the main solid wastes derived from the chocolate industry. This residual biomass could be an interesting source of nutrients and bioactive compounds due to its high content in dietary fibres, polyphenols and methylxanthines. Specifically, CBS can be employed as a raw material for the recovery of, for example, antioxidants, antivirals and/or antimicrobials. Additionally, it can be used as a substrate to obtain biofuels (bioethanol or biomethane), as an additive in food processing, as an adsorbent and, even, as a corrosion-inhibiting agent. Together with the research on obtaining and characterising different compounds of interest from CBS, some works have focused on the employment of novel sustainable extraction methods and others on the possible use of the whole CBS or some derived products. This review provides insight into the different alternatives of CBS valorisation, including the most recent innovations, trends and challenges for the biotechnological application of this interesting and underused by-product.
Collapse
Affiliation(s)
- Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
6
|
Lopes P, Sobral MMC, Lopes GR, Martins ZE, Passos CP, Petronilho S, Ferreira IMPLVO. Mycotoxins’ Prevalence in Food Industry By-Products: A Systematic Review. Toxins (Basel) 2023; 15:toxins15040249. [PMID: 37104187 PMCID: PMC10142126 DOI: 10.3390/toxins15040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The recovery of biomolecules from food industry by-products is of major relevance for a circular economy strategy. However, by-products’ contamination with mycotoxins represents a drawback for their reliable valorization for food and feed, hampering their application range, especially as food ingredients. Mycotoxin contamination occurs even in dried matrices. There is a need for the implantation of monitoring programs, even for by-products used as animal feed, since very high levels can be reached. This systematic review aims to identify the food by-products that have been studied from 2000 until 2022 (22 years) concerning mycotoxins’ contamination, distribution, and prevalence in those by-products. PRISMA (“Preferred Reporting Items for Systematic Reviews and MetaAnalyses”) protocol was performed via two databases (PubMed and SCOPUS) to summarize the research findings. After the screening and selection process, the full texts of eligible articles (32 studies) were evaluated, and data from 16 studies were considered. A total of 6 by-products were assessed concerning mycotoxin content; these include distiller dried grain with solubles, brewer’s spent grain, brewer’s spent yeast, cocoa shell, grape pomace, and sugar beet pulp. Frequent mycotoxins in these by-products are AFB1, OTA, FBs, DON, and ZEA. The high prevalence of contaminated samples, which surpasses the limits established for human consumption, thus limiting their valorization as ingredients in the food industry. Co-contamination is frequent, which can cause synergistic interactions and amplify their toxicity.
Collapse
|
7
|
Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers (Basel) 2023; 15:polym15030745. [PMID: 36772046 PMCID: PMC9921167 DOI: 10.3390/polym15030745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cocoa bean shells (CBS), a by-product of the cocoa industry, from two cacao varieties and obtained after selected processing conditions (fermentation, drying, roasting) were characterized in terms of their chemical composition, where they were found to be a great source of carbohydrates, specifically dietary fiber, protein, ash, and polyphenols, namely quercetin, epicatechin, and catechin. Cell wall polysaccharides were isolated by alkaline extraction (0.5 M or 4 M KOH) and were found to be enriched primarily in pectic polysaccharides (80.6-86%) namely rhamnogalacturonan and arabinogalactan as well as hemi- cellulosic polysaccharides (13.9-19.4%). Overall, 0.5 M KOH polysaccharides were favored having provided a diverse profile of neutral sugars and uronic acids. When tested for the promotion of the growth of selected probiotic strains, CBS cell wall polysaccharides performed similarly or more than inulin and rhamnogalacturonan based on the prebiotic activity scores. The short-chain fatty acid profiles were characterized by high amounts of lactic acid, followed by acetic and propionic acid.
Collapse
|
8
|
Quality Evaluation of Fair-Trade Cocoa Beans from Different Origins Using Portable Near-Infrared Spectroscopy (NIRS). Foods 2022; 12:foods12010004. [PMID: 36613219 PMCID: PMC9818779 DOI: 10.3390/foods12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Determining cocoa bean quality is crucial for many players in the international supply chain. However, actual methods rely on a cut test protocol, which is limited by its subjective nature, or on time-consuming, expensive and destructive wet-chemistry laboratory procedures. In this context, the application of near infrared (NIR) spectroscopy, particularly with the recent developments of portable NIR spectrometers, may represent a valuable solution for providing a cocoa beans' quality profile, in a rapid, non-destructive, and reliable way. Monitored parameters in this work were dry matter (DM), ash, shell, fat, protein, total polyphenols, fermentation index (FI), titratable acidity (TA) and pH. Different chemometric analyses were performed on the spectral data and calibration models were developed using modified partial least squares regression. Prediction equations were validated using a fivefold cross-validation and a comparison between the different prediction performances for the portable and benchtop NIR spectrometers was provided. The NIRS benchtop instrument provided better performance of quantification considering the whole than the portable device, showing excellent prediction capability in protein and DM quantification. On the other hand, the NIRS portable device, although showing lower but valuable performance of prediction, can represent an appealing alternative to benchtop instruments for food business operators, being applicable in the field.
Collapse
|
9
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
10
|
Soares TF, Oliveira MBPP. Cocoa By-Products: Characterization of Bioactive Compounds and Beneficial Health Effects. Molecules 2022; 27:1625. [PMID: 35268725 PMCID: PMC8912039 DOI: 10.3390/molecules27051625] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
The annual production of cocoa is approximately 4.7 million tons of cocoa beans, of which only 10% corresponds to the cocoa bean and the remaining value corresponds to a high number of residues, cocoa bean shell, pulp and husk. These by-products are a source of nutrients and compounds of notable interest in the food industry as possible ingredients, or even additives. The assessment of such by-products is relevant to the circular economy at both environmental and economic levels. Investigations carried out with these by-products have shown that cocoa husk can be used for the production of useful chemicals such as ketones, carboxylic acids, aldehydes, furans, heterocyclic aromatics, alkylbenzenes, phenols and benzenediols, as well as being efficient for the removal of lead from acidic solutions, without decay in the process due to the other metals in this matrix. The fibre present in the cocoa bean shell has a considerable capacity to adsorb a large amount of oil and cholesterol, thus reducing its bioavailability during the digestion process, as well as preventing lipid oxidation in meats, with better results compared to synthetic antioxidants (butylated hydroxytoluene and β-tocopherol). Finally, cocoa pulp can be used to generate a sweet and sour juice with a natural flavour. Thus, this review aimed to compile information on these by-products, focusing mainly on their chemical and nutritional composition, simultaneously, the various uses proposed in the literature based on a bibliographic review of articles, books and theses published between 2000 and 2021, using databases such as Scopus, Web of Science, ScieLO, PubMed and ResearchGate.
Collapse
Affiliation(s)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. J. Viterbo, 4050-313 Porto, Portugal;
| |
Collapse
|
11
|
Jean-Marie E, Bereau D, Robinson JC. Benefits of Polyphenols and Methylxanthines from Cocoa Beans on Dietary Metabolic Disorders. Foods 2021; 10:2049. [PMID: 34574159 PMCID: PMC8470844 DOI: 10.3390/foods10092049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Theobroma cacao L. is an ancestral cultivated plant which has been consumed by various populations throughout history. Cocoa beans are the basic material occurring in the most consumed product in the world, namely chocolate. Their composition includes polyphenols, methylxanthines, lipids and other compounds that may vary qualitatively and quantitatively according to criteria such as variety or culture area. Polyphenols and methylxanthines are known as being responsible for many health benefits, particularly by preventing cardiovascular and neurodegenerative diseases. Recent studies emphasized their positive role in dietary metabolic disorders, such as diabetes and weight gain. After a brief presentation of cocoa bean, this review provides an overview of recent research activities highlighting promising strategies which modulated and prevented gastro-intestinal metabolism dysfunctions.
Collapse
Affiliation(s)
| | | | - Jean-Charles Robinson
- Laboratoire COVAPAM, UMR Qualisud, Université de Guyane, 97300 Cayenne, France; (E.J.-M.); (D.B.)
| |
Collapse
|
12
|
Febrianto NA, Wang S, Zhu F. Chemical and biological properties of cocoa beans affected by processing: a review. Crit Rev Food Sci Nutr 2021; 62:8403-8434. [PMID: 34047627 DOI: 10.1080/10408398.2021.1928597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cocoa (Theobroma cacao L.) is widely cultivated in tropical countries. The cocoa beans are a popular ingredient of confectionery. Cocoa beans contain various chemicals that contribute to their bioactivity and nutritional properties. There has been increasing interest in developing cocoa beans for "healthy" food products. Cocoa beans have special combination of nutrients such as lipids, carbohydrates, proteins and other compounds of biological activities. The bioactive phytochemicals include methylxanthines, polyphenols, biogenic amines, melanoidins, isoprostanoids and oxalates. These phytochemicals of cocoa are related to various in vivo and in vitro biological activities such as antioxidation, anti-cancer, anti-microbial, anti-inflammation, anti-diabetes, cardiovascular protection, physical improvement, anti-photoaging, anti-depression and blood glucose regulation. The potential of bioactive compounds in cocoa remains to be maximized for food and nutritional applications. The current processing technology promotes the degradation of beneficial bioactive compounds, while maximizing the flavors and its precursors. It is not optimized for the utilization of cocoa beans for "healthy" product formulations. Modifications of the current processing line and non-conventional processing are needed to better preserve and utilize the beneficial bioactive compounds in cocoa beans.
Collapse
Affiliation(s)
- Noor Ariefandie Febrianto
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Indonesian Coffee and Cocoa Research Institute (ICCRI), Jember, East Java, Indonesia
| | - Sunan Wang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Canadian Food and Wine Institute, Niagara College, Ontario, Canada
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Comparison of Thermal Characteristics and Fatty Acids Composition in Raw and Roasted Cocoa Beans from Peru (Criollo) and Ecuador (Forastero). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this research was to complete the characteristics of cocoa beans and cocoa butter extracted from two different Theobroma cacao species: Criollo originated from Peru and Forastero originated from Ecuador, both in the version of raw (unroasted) and roasted beans. Before extraction, the cocoa beans were characterized by proximate analysis. The determination of fatty acids composition was carried out by gas chromatography (GC). The positional distribution of fatty acids in the sn-2 positions of triacylglycerols (TAGs) was also determined. The thermogravimetric analyses (TGA/DTG) were performed under the nitrogen and oxygen atmosphere of roasted and unroasted cocoa beans. The kinetic information was helpful to assess the oxidative stability of cocoa butter. The cocoa butter extracted from unroasted Forastero from Ecuador had the highest values of oxidation activation energy Ea. The melting characteristics of cocoa butter extracted from roasted Criollo species were very similar to their unroasted versions. The same trend was not observed for Forastero species. TGA and DTG were revealed to be useful tools for the analysis of whole cocoa beans and the fats extracted from these cocoa beans.
Collapse
|
14
|
Chagas Junior GCA, Ferreira NR, Andrade EHDA, do Nascimento LD, de Siqueira FC, Lopes AS. Profile of Volatile Compounds of On-Farm Fermented and Dried Cocoa Beans Inoculated with Saccharomyces cerevisiae KY794742 and Pichia kudriavzevii KY794725. Molecules 2021; 26:molecules26020344. [PMID: 33440885 PMCID: PMC7827241 DOI: 10.3390/molecules26020344] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
This study aimed to identify the volatile compounds in the fermented and dried cocoa beans conducted with three distinct inoculants of yeast species due to their high fermentative capacity: Saccharomyces cerevisiae, Pichia kudriavzevii, the mixture in equal proportions 1:1 of both species, and a control fermentation (with no inoculum application). Three starter cultures of yeasts, previously isolated and identified in cocoa fermentation in the municipality of Tomé-Açu, Pará state, Brazil. The seeds with pulp were removed manually and placed in wooden boxes for the fermentation process that lasted from 6 to 7 days. On the last day of fermentation, the almonds were packaged properly and placed to dry (36 °C), followed by preparation for the analysis of volatile compounds by GC-MS technique. In addition to the control fermentation, a high capacity for the formation of desirable compounds in chocolate by the inoculants with P. kudriavzevii was observed, which was confirmed through multivariate analyses, classifying these almonds with the highest content of aldehydes, esters, ketones and alcohols and low concentration of off-flavours. We conclude that the addition of mixed culture starter can be an excellent alternative for cocoa producers, suggesting obtaining cocoa beans with desirable characteristics for chocolate production, as well as creating a product identity for the producing region.
Collapse
Affiliation(s)
- Gilson Celso Albuquerque Chagas Junior
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
- Correspondence: (G.C.A.C.J.); (N.R.F.); (A.S.L.)
| | - Nelson Rosa Ferreira
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
- Correspondence: (G.C.A.C.J.); (N.R.F.); (A.S.L.)
| | - Eloisa Helena de Aguiar Andrade
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1900, Terra Firme, Belém 66077-830, Brazil; (E.H.d.A.A.); (L.D.d.N.)
| | - Lidiane Diniz do Nascimento
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1900, Terra Firme, Belém 66077-830, Brazil; (E.H.d.A.A.); (L.D.d.N.)
| | - Francilia Campos de Siqueira
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
| | - Alessandra Santos Lopes
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
- Correspondence: (G.C.A.C.J.); (N.R.F.); (A.S.L.)
| |
Collapse
|
15
|
Rojo-Poveda O, Barbosa-Pereira L, Zeppa G, Stévigny C. Cocoa Bean Shell-A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020; 12:E1123. [PMID: 32316449 PMCID: PMC7230451 DOI: 10.3390/nu12041123] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023] Open
Abstract
Cocoa bean shells (CBS) are one of the main by-products from the transformation of cocoa beans, representing 10%‒17% of the total cocoa bean weight. Hence, their disposal could lead to environmental and economic issues. As CBS could be a source of nutrients and interesting compounds, such as fiber (around 50% w/w), cocoa volatile compounds, proteins, minerals, vitamins, and a large spectrum of polyphenols, CBS may be a valuable ingredient/additive for innovative and functional foods. In fact, the valorization of food by-products within the frame of a circular economy is becoming crucial due to economic and environmental reasons. The aim of this review is to look over the chemical and nutritional composition of CBS and to revise the several uses that have been proposed in order to valorize this by-product for food, livestock feed, or industrial usages, but also for different medical applications. A special focus will be directed to studies that have reported the biofunctional potential of CBS for human health, such as antibacterial, antiviral, anticarcinogenic, antidiabetic, or neuroprotective activities, benefits for the cardiovascular system, or an anti-inflammatory capacity.
Collapse
Affiliation(s)
- Olga Rojo-Poveda
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, 1050 Brussels, Belgium
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy
| | - Letricia Barbosa-Pereira
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Giuseppe Zeppa
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy
| | - Caroline Stévigny
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
16
|
Pereira APM, Stelari HA, Carlin F, Sant’Ana AS. Inactivation kinetics of Bacillus cereus and Geobacillus stearothermophilus spores through roasting of cocoa beans and nibs. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|