1
|
Huang M, Xu H, Zhou Q, Xiao J, Su Y, Wang M. The nutritional profile of chia seeds and sprouts: tailoring germination practices for enhancing health benefits-a comprehensive review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38622873 DOI: 10.1080/10408398.2024.2337220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chia seeds have gained significant attention due to their unique composition and potential health benefits, including high dietary fibers, omega-3 fatty acids, proteins, and phenolic compounds. These components contribute to their antioxidant, anti-inflammatory effects, as well as their ability to improve glucose metabolism and dyslipidemia. Germination is recognized as a promising strategy to enhance the nutritional value and bioavailability of chia seeds. Chia seed sprouts have been found to exhibit increased essential amino acid content, elevated levels of dietary fiber and total phenols, and enhanced antioxidant capability. However, there is limited information available concerning the dynamic changes of bioactive compounds during the germination process and the key factors influencing these alterations in biosynthetic pathways. Additionally, the influence of various processing conditions, such as temperature, light exposure, and duration, on the nutritional value of chia seed sprouts requires further investigation. This review aims to provide a comprehensive analysis of the nutritional profile of chia seeds and the dynamic changes that occur during germination. Furthermore, the potential for tailored germination practices to produce chia sprouts with personalized nutrition, targeting specific health needs, is also discussed.
Collapse
Affiliation(s)
- Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Bai L, Geng S, Zhou Y, Ma H, Liu B. Ultrasound-assisted fabrication and stability evaluation of okra seed protein stabilized nanoemulsion. ULTRASONICS SONOCHEMISTRY 2024; 104:106807. [PMID: 38367307 PMCID: PMC10883816 DOI: 10.1016/j.ultsonch.2024.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
The structure and functional properties of okra seed protein (OSP) were characterized, the ultrasonic homogenization process of OSP nano-emulsion was optimized by response surface methodology (RSM), and its stability was also evaluated in this study. The results suggested that OSP was a high-quality plant protein, rich in glutamic acid. The molecular weight of its main subunits distributed in the range of 10-55 kDa, and some subunits were connected by disulfide bonds. Although the water and oil holding capacities of OSP were inferior to those of soy protein isolate (SPI), its emulsifying ability was superior to that of SPI. And the OSP concentration, ultrasonic time and ultrasonic power had obvious effects on the droplet size of nanoemulsion. The optimum process of OSP emulsion was determined as follows: OSP concentration 2.4 %, ultrasonic power 600 W, ultrasonic time 340 s. Under these conditions, the median droplet size of the nanoemulsion was 192.03 ± 3.48 nm, close to the predicted value (191.195 nm). And the obtained nano-emulsion exhibited high stability to the changes of pH, temperature and ionic strength in the environment. Our results can provide reference for the application of OSP, and promote the development of plant protein-based nanoemulsions.
Collapse
Affiliation(s)
- Lu Bai
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yingxuan Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
3
|
Wang Y, Hernández-Alvarez AJ, Goycoolea FM, Martínez-Villaluenga C. A comparative study of the digestion behavior and functionality of protein from chia ( Salvia hispanica L.) ingredients and protein fractions. Curr Res Food Sci 2024; 8:100684. [PMID: 38323027 PMCID: PMC10845256 DOI: 10.1016/j.crfs.2024.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Protein derived from chia (Salvia hispanica L.), characterized by a balanced amino acid composition, represents a potentially healthier and environmentally friendly alternative poised for innovation within the plant-based food sector. It was hypothesized that the growing location of chia seeds and processing techniques used might influence protein digestion patterns, which in turn could affect the biological functions of the digestion products. To examine this hypothesis, we assessed the gastrointestinal fate of degummed-defatted flour (DDF), protein concentrate (PC), and isolated albumin (Alb) and globulin (Glo) fractions. Furthermore, we compared the antioxidant and anti-inflammatory activities of the resulting digesta by means of in vitro and cellular assays. Post-gastrointestinal digestion, the PC exhibited elevated levels of soluble protein (7.6 and 6.3 % for Mexican and British PC, respectively) and peptides (24.8 and 27.9 %, respectively) of larger molecular sizes compared to DDF, Alb, and Glo. This can be attributed to differences in the extraction/fractionation processes. Leucine was found to be the most prevalent amino acids in all chia digesta. Such variations in the digestive outcomes of chia protein components significantly influenced the bioactivity of the intestinal digestates. During gastrointestinal transit, British Glo exhibited the best reactive oxygen species (ROS) inhibition activity in oxidative-stressed RAW264.7 macrophages, while Mexican digesta outperformed British samples in terms of ROS inhibition within the oxidative-stressed Caco-2 cells. Additionally, both Mexican and British Alb showed effectively anti-inflammatory potential, with keratinocyte chemoattractant (KC) inhibition rate of 82 and 91 %, respectively. Additionally, Mexican PC and Alb generally demonstrated an enhanced capacity to mitigate oxidative stress and inflammatory conditions in vitro. These findings highlight the substantial potential of chia seeds as functional food ingredients, resonating with the shifting preferences of health-conscious consumers.
Collapse
Affiliation(s)
- Yan Wang
- School of Food Science & Nutrition, University of Leeds, LS2 9JT, Leeds, UK
| | | | | | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040, Madrid, Spain
| |
Collapse
|
4
|
Senna C, Soares L, Egea MB, Fernandes SS. The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs. Molecules 2024; 29:440. [PMID: 38257357 PMCID: PMC10819138 DOI: 10.3390/molecules29020440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Eating practices are changing due to awareness about meat consumption associated with social, ethical, environmental, and nutritional issues. Plant-based meat analogs are alternatives to conventional meat products that attempt to mimic all the inherent characteristics of meat fully. Therefore, the search for raw materials that provide these characteristics is increasing. Chia seeds have excellent potential as a functional ingredient in these products since they are a source of proteins, lipids, and fibers. Allied with this, the full use of chia through the seed and its fractions highlights the numerous beneficial characteristics of the formulation regarding nutritional characteristics and techno-functionality. Therefore, this review aims to highlight the potential of chia seed and its fractions for applications in meat-like products. Chia seeds are protein sources. Chia oil is rich in polyunsaturated fatty acids, and its application in emulsions ensures the oil's nutritional quality and maintains its technological characteristics. Defatted chia flour has a high protein content and can be used to extract chia mucilage. Due to its high emulsification capacity, chia mucilage is an effective ingredient for meat products and, consequently, meat-like products. Therefore, this literature review demonstrates the strategic potential of using chia seeds and their fractions to develop meat analogs.
Collapse
Affiliation(s)
- Caroline Senna
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| | - Luiza Soares
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| | - Mariana Buranelo Egea
- Goiano Federal Institute, Campus Rio Verde, Km 01, Rural Area, Rio Verde 75901-970, Brazil
| | - Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| |
Collapse
|
5
|
Gao H, Wang Z, Dai Y, Zeng J, Li W. Effects of chia seed gum on the physicochemical properties of frozen dough and the quality of dumplings. Int J Biol Macromol 2023; 253:127280. [PMID: 37806419 DOI: 10.1016/j.ijbiomac.2023.127280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
This study was designed to investigate the properties of chia seed gum (CSG) and its use in frozen dough. The CSG prepared by vacuum freeze-drying had the lowest water separation (4.22 ± 0.11 %) after three freeze-thaw cycles and the best color among the samples. The addition of 0.4 % to 1.0 % CSG significantly increased the peak, trough and final viscosity and decreased the breakdown and setback of the flour. The water absorption and cooking stability of the dough increased with increasing CSG content. The addition of 0.8 %-1.0 % CSG significantly increased the content of strongly bound water in dough during frozen storage. The CSG improved the texture of dough, and there were no significant differences in hardness, springiness, cohesiveness or chewiness of dough with 0.8 %-1.0 % CSG during frozen storage for 30 days. The cooking loss rate and the cracking rate of the dumpling wrappers with 0.8 % CSG were reduced by 2.31 % and 21.34 %, respectively. In conclusion, CSG can be used to improve the quality of wheat dough and its products and has promising applications in flour products.
Collapse
Affiliation(s)
- Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Xinxiang Key Laboratory of Development and Quality Control of Frozen Flour Products, Xinxiang 453003, China; Grain Deep Processing Product Quality Improvement Engineering Technology Research Center of Henan Province, Xinxiang 453003, China.
| | - Zhaojun Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yunfei Dai
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Xinxiang Key Laboratory of Development and Quality Control of Frozen Flour Products, Xinxiang 453003, China; Grain Deep Processing Product Quality Improvement Engineering Technology Research Center of Henan Province, Xinxiang 453003, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Tavera-Hernández R, Jiménez-Estrada M, Alvarado-Sansininea JJ, Huerta-Reyes M. Chia ( Salvia hispanica L.), a Pre-Hispanic Food in the Treatment of Diabetes Mellitus: Hypoglycemic, Antioxidant, Anti-Inflammatory, and Inhibitory Properties of α-Glucosidase and α-Amylase, and in the Prevention of Cardiovascular Disease. Molecules 2023; 28:8069. [PMID: 38138560 PMCID: PMC10745661 DOI: 10.3390/molecules28248069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus (DM) is considered one of the major health diseases worldwide, one that requires immediate alternatives to allow treatments for DM to be more effective and less costly for patients and also for health-care systems. Recent approaches propose treatments for DM based on that; in addition to focusing on reducing hyperglycemia, they also consider multitargets, as in the case of plants. Among these, we find the plant known as chia to be highlighted, a crop native to Mexico and one cultivated in Mesoamerica from pre-Hispanic times. The present work contributes to the review of the antidiabetic effects of chia for the treatment of DM. The antidiabetic effects of chia are effective in different mechanisms involved in the complex pathogenesis of DM, including hypoglycemic, antioxidant, and anti-inflammatory mechanisms, and the inhibition of the enzymes α-glucosidase and α-amylase, as well as in the prevention of the risk of cardiovascular disease. The tests reviewed included 16 in vivo assays on rodent models, 13 clinical trials, and 4 in vitro tests. Furthermore, chia represents advantages over other natural products due to its availability and its acceptance and, in addition, as a component of the daily diet worldwide, especially due to its omega-3 fatty acids and its high concentration of dietary fiber. Thus, chia in the present work represents a source of antidiabetic agents that would perhaps be useful in novel clinical treatments.
Collapse
Affiliation(s)
- Rosario Tavera-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - J. Javier Alvarado-Sansininea
- Herbario FEZA, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo S/N, Col. Ejército de Oriente, Ciudad de México 09230, Mexico;
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
7
|
Zhang M, Wang O, Cai S, Zhao L, Zhao L. Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Res Int 2023; 171:113061. [PMID: 37330842 DOI: 10.1016/j.foodres.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Common oilseeds, such as soybean, peanut, rapeseed, sunflower seed, sesame seed and chia seed, are key sources of edible vegetable oils. Their defatted meals are excellent natural sources of plant proteins that can meet consumers' demand for health and sustainable substitutes for animal proteins. Oilseed proteins and their derived peptides are also associated with many health benefits, including weight loss and reduced risks of diabetes, hypertension, metabolic syndrome and cardiovascular events. This review summarizes the current status of knowledge on the protein and amino acid composition of common oilseeds as well as the functional properties, nutrition, health benefits and food applications of oilseed protein. Currently, oilseeds are widely applied in the food industry regarding for their health benefits and good functional properties. However, most oilseed proteins are incomplete proteins and their functional properties are not promising compared to animal proteins. They are also limited in the food industry due to their off-flavor, allergenic and antinutritional factors. These properties can be improved by protein modification. Therefore, in order to make better use of oilseed proteins, methods for improving their nutrition value, bioactive activity, functional and sensory characteristics, as well as the strategies for reducing their allergenicity were also discussed in this paper. Finally, examples for the application of oilseed proteins in the food industry are presented. Limitations and future perspectives for developing oilseed proteins as food ingredients are also pointed out. This review aims to foster thinking and generate novel ideas for future research. It will also provide novel ideas and broad prospects for the application of oilseeds in the food industry.
Collapse
Affiliation(s)
- Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
8
|
Qin X, Li L, Yu X, Deng Q, Xiang Q, Zhu Y. Comparative Composition Structure and Selected Techno-Functional Elucidation of Flaxseed Protein Fractions. Foods 2022; 11:foods11131820. [PMID: 35804636 PMCID: PMC9265867 DOI: 10.3390/foods11131820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to comparatively elucidate the composition structure and techno-functionality of flaxseed protein isolate (FPI), globulin (FG), and albumin (FA) fractions. The results showed that FA possessed smaller particle dimensions and superior protein solubility compared to that of FG (p < 0.05) due to the lower molecular weight and hydrophobicity. FA and FG manifested lamellar structure and nearly spherical morphology, respectively, whereas FPI exhibited small lamellar strip structure packed by the blurring spheres. The Far-UV CD, FTIR spectrum, and intrinsic fluorescence confirmed more flexible conformation of FA than that of FG, followed by FPI. The preferential retention of free phenolic acids was observed for FA, leading to excellent antioxidant activities compared with that of FG in FPI (p < 0.05). FA contributed to the foaming properties of FPI, relying on the earlier interfacial adsorption and higher viscoelastic properties. FA displayed favorable emulsifying capacity but inferior stability due to the limited interfacial adsorption and deformation, as well as loose/porous interface. By comparison, an interlayer anchoring but no direct interface coating was observed for lipid droplets constructed by FG, thereby leading to preferable emulsion stability. However, FPI produced lipid droplets with dense interface owing to the effective migration of FA and FG from bulk phase, concomitant with the easy flocculation and coalescence. Thus, the techno-functionality of flaxseed protein could be tailed by modulating the retention of albumin fraction and specific phenolic acids.
Collapse
Affiliation(s)
- Xiaopeng Qin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.Q.); (L.L.); (Q.X.); (Y.Z.)
| | - Linbo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.Q.); (L.L.); (Q.X.); (Y.Z.)
| | - Xiao Yu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.Q.); (L.L.); (Q.X.); (Y.Z.)
- Correspondence: (X.Y.); (Q.D.)
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Correspondence: (X.Y.); (Q.D.)
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.Q.); (L.L.); (Q.X.); (Y.Z.)
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.Q.); (L.L.); (Q.X.); (Y.Z.)
| |
Collapse
|
9
|
Abstract
Proteins obtained from alternative sources such as plants, microorganisms, and insects have attracted considerable interest in the formulation of new food products that have a lower environmental footprint and offer means to feed a growing world population. In contrast to many established proteins, and protein fractions for which a substantial amount of knowledge has accumulated over the years, much less information is available on these emerging proteins. This article reviews the current state of knowledge on alternative proteins and their sources, highlighting gaps that currently pose obstacles to their more widespread application in the food industry. The compositional, structural, and functional properties of alternative proteins from various sources, including plants, algae, fungi, and insects, are critically reviewed. In particular, we focus on the factors associated with the creation of protein-rich functional ingredients from alternative sources. The various protein fractions in these sources are described as well as their behavior under different environmental conditions (e.g., pH, ionic strength, and temperature). The extraction approaches available to produce functional protein ingredients from these alternative sources are introduced as well as challenges associated with designing large-scale commercial processes. The key technofunctional properties of alternative proteins, such as solubility, interfacial activity, emulsification, foaming, and gelation properties, are introduced. In particular, we focus on the formation of isotropic and anisotropic structures suitablefor creating meat and dairy product analogs using various structuring techniques. Finally, selected studies on consumer acceptance and sustainability of alternative protein products are considered.
Collapse
Affiliation(s)
- Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
10
|
Salazar‐Vega IM, Julio LM, Segura‐Campos MR, Tomás MC. Chia protein hydrolysates: characterisation and emulsifying properties. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ine M. Salazar‐Vega
- Facultad de Ingeniería Química Campus de Ciencias Exactas e Ingenierías Universidad Autónoma de Yucatán Periférico Nte. Km. 33.5Tablaje Catastral 13615Col. Chuburná de Hidalgo Inn Mérida Yucatán97203México
| | - Luciana M. Julio
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos) CONICET‐CICPBA‐Facultad de Ciencias Exactas‐Universidad Nacional de La Plata (UNLP)47 y 116 La Plata Buenos Aires1900Argentina
| | - Maira R. Segura‐Campos
- Facultad de Ingeniería Química Campus de Ciencias Exactas e Ingenierías Universidad Autónoma de Yucatán Periférico Nte. Km. 33.5Tablaje Catastral 13615Col. Chuburná de Hidalgo Inn Mérida Yucatán97203México
| | - Mabel C. Tomás
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos) CONICET‐CICPBA‐Facultad de Ciencias Exactas‐Universidad Nacional de La Plata (UNLP)47 y 116 La Plata Buenos Aires1900Argentina
| |
Collapse
|