1
|
The protective effect of low-dose minocycline on brain microvascular ultrastructure in a rodent model of subarachnoid hemorrhage. Histochem Cell Biol 2023; 159:91-114. [PMID: 36153470 PMCID: PMC9899762 DOI: 10.1007/s00418-022-02150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 02/07/2023]
Abstract
The multifaceted nature of subarachnoid hemorrhage (SAH) pathogenesis is poorly understood. To date, no pharmacological agent has been found to be efficacious for the prevention of brain injury when used for acute SAH intervention. This study was undertaken to evaluate the beneficial effects of low-dose neuroprotective agent minocycline on brain microvascular ultrastructures that have not been studied in detail. We studied SAH brain injury using an in vivo prechiasmatic subarachnoid hemorrhage rodent model. We analyzed the qualitative and quantitative ultrastructural morphology of capillaries and surrounding neuropil in the rodent brains with SAH and/or minocycline administration. Here, we report that low-dose minocycline (1 mg/kg) displayed protective effects on capillaries and surrounding cells from significant SAH-induced changes. Ultrastructural morphology analysis revealed also that minocycline stopped endothelial cells from abnormal production of vacuoles and vesicles that compromise blood-brain barrier (BBB) transcellular transport. The reported ultrastructural abnormalities as well as neuroprotective effects of minocycline during SAH were not directly mediated by inhibition of MMP-2, MMP-9, or EMMPRIN. However, SAH brain tissue treated with minocycline was protected from development of other morphological features associated with oxidative stress and the presence of immune cells in the perivascular space. These data advance the knowledge on the effect of SAH on brain tissue ultrastructure in an SAH rodent model and the neuroprotective effect of minocycline when administered in low doses.
Collapse
|
2
|
Chen H, Zheng H, Li T, Jiang Q, Liu S, Zhou X, Ding Y, Xiang X. Protective Effect of Oyster Peptides Derived From Crassostrea gigas on Intestinal Oxidative Damage Induced by Cyclophosphamide in Mice Mediated Through Nrf2-Keap1 Signaling Pathway. Front Nutr 2022; 9:888960. [PMID: 35651503 PMCID: PMC9149377 DOI: 10.3389/fnut.2022.888960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Oyster peptide (OP) has exhibited useful biological activities and can be used in multi-functional foods. OP has been reported to play a significant role in intestinal protection, but its specific mechanism is still not completely understood. The aim of this study was to analyze the potential effect of OP on oxidative damage of mice intestine induced by cyclophosphamide (Cy). The experimental results revealed that intragastric administration of OP significantly increased average bodyweight, improved ileum tissue morphology and villus structure, as well as increased the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in oxidized mice serum and liver. The content of malondialdehyde (MDA) in the mice serum and liver homogenate was found to be markedly decreased. Moreover, OP significantly increased the relative mRNA expression levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), quinone oxidoreductase (NQO1) and heme oxidase-1 (HO-1) in ileum. Western-blot results indicated that prior administration of OP significantly up-regulated the Nrf2 production in ileum, and substantially decreased then Keap1 gene expression. In conclusion, intake of OP was found to markedly improve intestinal oxidative stress in vivo, and this effect was primarily mediated through the simulation of antioxidant Nrf2-Keap1 signaling pathway. This study is beneficial to the application of peptide nutrients in the prevention or mitigation of intestinal oxidative damage.
Collapse
Affiliation(s)
- Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Huizhen Zheng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Ileal transposition helps to regulate plasma hepatokine levels in obese Zucker (Crl:ZUC(ORL)-Lepr fa) rats. Sci Rep 2021; 11:7774. [PMID: 33833309 PMCID: PMC8032747 DOI: 10.1038/s41598-021-87293-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
We studied the long-term effect of ileal transposition (IT) metabolic surgery on the hepatokines: retinol-binding protein-4 (RBP4), α-2-HS-glycoprotein (aHSG/fetuin-A), and fibroblast growth factor 21 (FGF21), C-reactive protein (CRP) plasma levels, glucose metabolism, body weight, liver histology, as well as total lipids concentration in muscle, liver, and fat tissue of obese Zucker (Crl:ZUC(ORL)-Leprfa) rats. 14 adult males were randomly submitted either to IT or SHAM (control) surgery. Pre-operative hepatokines plasma levels were not significantly different in rats submitted to IT or SHAM protocol. Three months after the procedures the plasma levels of RBP4, aHSG, FGF21, and CRP were significantly lower in IT-operated animals when compared to SHAM-operated group. Three and 12 weeks after the IT and SHAM surgery, the AUCOGTT were significantly lower than AUCOGTT before the surgery. HOMA-IR was lower in rats after IT surgery in comparison to the SHAM-operated rats. Muscle and liver total lipids concentration was reduced after the IT procedure when compared to pre-IT conditions. IT had a significant reductive impact on the body weight in comparison to SHAM surgery in the 4th, 6th, 8th, and 10th week after the surgery. We conclude that IT reduces hepatokines' plasma concentrations, muscle and liver total lipids concentration but not the inflammatory processes in the liver of Zucker (Crl:ZUC(ORL)-Leprfa) rats.
Collapse
|
4
|
Sawczyn T, Stygar D, Nabrdalik K, Kukla M, Skrzep-Poloczek B, Wesołowski B, Olszańska E, Dulska A, Gumprecht J, Karcz WK, Jochem J. The influence of high fat diet on plasma incretins and insulin concentrations in Sprague-Dawley rats with diet-induced obesity and glucose intolerance undergoing ileal transposition. Peptides 2019; 115:75-84. [PMID: 30954533 DOI: 10.1016/j.peptides.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND The benefits of IT surgery are based on incretin effects. In this study we show the influence of high fat diet (HFD) used both before and after surgery, on ileal transposition (IT) effects. METHODS Forty-eight male rats were assigned to two groups: HFD and control diet (CD) fed rats. After eight weeks, HFD and CD fed rats were randomly assigned to two types of surgery: IT and SHAM, then for 50% of animals of each group the diet was changed, whereas the other 50% received the same type of diet. Eight weeks after surgery the incretin level, glucose tolerance as well as body mass and insulin level were assessed. RESULTS GLP-1 plasma concentration was significantly higher in the IT operated CD/CD group compared to fasting state and did not differ significantly from the SHAM operated CD/CD animals. IT influenced the glucose stimulated PYY plasma level when compared with SHAM operated animals in the CD/HFD group, where the PYY plasma level was higher than in the SHAM operated animals. The effect of IT as well as of pre and postoperative diet on GIP plasma levels were insignificant. The IT group members maintained on the CD were characterised by a lower fasting glucose level, both pre and postoperatively, compared with the SHAM operated animals. The effect of IT on the fasting glucose level in groups preoperatively maintained on an HFD was insignificant. CONCLUSIONS IT surgery itself seems to have rather limited incretin effects in rats, whose obesity is the result of HFD.
Collapse
Affiliation(s)
- Tomasz Sawczyn
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland.
| | - Dominika Stygar
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Michał Kukla
- Department of Gastroenterology and Hepatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bronisława Skrzep-Poloczek
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Bartosz Wesołowski
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Ewa Olszańska
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Dulska
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Konrad Karcz
- Department of General, Visceral, Transplantation and Vascular Surgery, Hospital of the Ludwig Maximilian University, Munich, Germany
| | - Jerzy Jochem
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|