1
|
Kang X, Li D, Chu L, Zhao X, Song X. Efficient removal of 3,6-dichlorocarbazole with Fe 0-activated peroxymonosulfate: performance, intermediates and mechanism. ENVIRONMENTAL TECHNOLOGY 2023; 44:2201-2214. [PMID: 34967702 DOI: 10.1080/09593330.2021.2024888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/18/2021] [Indexed: 06/04/2023]
Abstract
Nowadays, polyhalogenated carbazoles (PHCZs) are a major pollutant that has recently sparked widespread concern. In this work, peroxymonosulfate (PMS) was activated by zero valent iron (Fe0) to remove 3,6-dichlorocarbazole (3,6-CCZ). First, the key parameters influencing 3,6-CCZ degradation (PMS dosage, Fe0 dosage, initial pH, temperature and co-existing ions) were determined. Under the determined optimum conditions, the removal rate of 3,6-CCZ reached 100% within 1.5 h. Sulfate radicals (SO4·-), hydroxyl radicals (OH·), and singlet oxygen (1O2) generated in the reaction were directly identified with 0.1 M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO) by in-situ electron paramagnetic resonance (EPR) and indirectly identified by radical quenching experiments. The main reactive oxygen species (ROS) were different from most reported hydroxyl radicals (OH·) and sulfate radicals (SO4·-). In this study, it was found that OH· and 1O2 play a major role. Then, fresh and reacted Fe0 were characterized by XRD, SEM, and XPS. Iron corrosion products such as Fe2O3, Fe3O4, and FeOOH were generated. Finally, 3,6-CCZ degradation intermediates were identified by GC-MS and its degradation pathway was speculated. The intermediate pathway confirmed the combined action of (OH·) and (1O2) in 3,6-CCZ removal. This study provides new insight into the activation mechanism of Fe0-activated PMS and the removal mechanism of 3,6-CCZ.Highlights Fe0 is a long-lasting and efficient catalyst of PMS for the degradation of 3,6-CCZ.The key parameters influencing 3,6-CCZ degradation were determined.The degradation pathways of 3,6-CCZ were inferred.OH· and 1O2 were the main ROS in Fe0-activated PMS system.
Collapse
Affiliation(s)
- Xin Kang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Linglong Chu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Wang S, Zhang Y. Degradation of methylene blue by an E-Fenton process coupled with peroxymonosulfate via free radical and non-radical oxidation pathways. NEW J CHEM 2023. [DOI: 10.1039/d2nj05504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This paper reports a combined advanced oxidation process to degrade methylene blue and investigates its oxidation mechanism and degradation pathway.
Collapse
Affiliation(s)
- Song Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yonggang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
3
|
Tan C, Li P, Xu T, Yu H, Chen K, Xiang H, Su L. Crystal boron significantly enhances pollutants removal kinetics by Fe0/PMS system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Chen G, Wu G, Li N, Lu X, Zhao J, He M, Yan B, Zhang H, Duan X, Wang S. Landfill leachate treatment by persulphate related advanced oxidation technologies. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126355. [PMID: 34329014 DOI: 10.1016/j.jhazmat.2021.126355] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Landfill leachate is produced from garbage decomposition with highly toxic and bio-refractory compounds, which poses serious harm to environmental security and human health. Thus, it is urgent to treat landfill leachate properly. Persulfate (PS) oxidation has attracted extensive attentions in terms of fast reaction speed, non-selectivity to target pollutants and thorough oxidation. In recent years, PS oxidation has been widely adopted for landfill leachate purification. However, the related results have been rarely summarized. In this review, the treatment of landfill leachate by PS oxidation system is discussed systematically including oxidants, activation modes and oxidation mechanisms. In addition, the current situation of PS oxidation system and other coupled systems for landfill leachate treatment is also summarized. Finally, the challenges and future research directions of landfill leachate treatment based on PS oxidation process are proposed. Meaningfully, this review will provide valuable references for the development of landfill leachate treatment process, promoting the application of advanced oxidation technology in landfill leachate treatment.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Guanyun Wu
- Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, China
| | - Ning Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China.
| | - Xukai Lu
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Jianhui Zhao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Mengting He
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Hongqiong Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Li W, Zhang Y, Zhao P, Zhou P, Liu Y, Cheng X, Wang J, Yang B, Guo H. Enhanced kinetic performance of peroxymonosulfate/ZVI system with the addition of copper ions: Reactivity, mechanism, and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122399. [PMID: 32151931 DOI: 10.1016/j.jhazmat.2020.122399] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Advanced oxidation processes (AOPs) based on the bimetallic system has been demonstrated as a promising way to enhance the degradation of pollutants in the water. In this study, the degradation of Rhodamine B (RhB) in a zero-valent iron (ZVI)/ peroxymonosulfate system with Cu2+ was thoroughly investigated. RhB could be efficiently removed (99.3 %) in the optimal ZVI/PMS/Cu2+ system, while only 58.2 % of RhB could be degraded in the ZVI/PMS system. The influence of reaction parameters on the degradation of RhB was further investigated. Quenching experiments and electron paramagnetic resonance (EPR) tests revealed that various reactive oxygen species could be generated in the ternary system, of which, 1O2 and O2- were identified for the first time. The effect of various anions, NOM and different water matrix were also considered at different concentrations. A variety of byproducts and degradation pathways were identified using HPLC/MS/MS. Finally, the Quantitative Structure Activity Relationship (QSAR) method of Toxicity Estimation Software Tool (TEST) was applied to estimate the toxicity of the byproducts and the results indicated that the overall toxicity of the target was relatively reduced. This study demonstrated the potential for the removal of environmental reluctant pollutants in water via the combined radical and non-radical pathways.
Collapse
Affiliation(s)
- Wei Li
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yongli Zhang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Pingju Zhao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Patent Examination Cooperation Sichuan Center of the Patent Office, CNIPA, Chengdu 610213, China
| | - Peng Zhou
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xin Cheng
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bo Yang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195-2700, United States.
| |
Collapse
|
6
|
Xu L, Sun P, Meng X, Shen H, Li W, Wang J, Yang J. Enhanced heterogeneous Fenton-like degradation of nuclear-grade cationic exchange resin by nanoscale zero-valent iron: experiments and DFT calculations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13773-13789. [PMID: 32034596 DOI: 10.1007/s11356-019-07566-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Nanoscale zero-valent iron (nZVI) was prepared and used as a heterogeneous Fenton-like catalyst for the degradation of nuclear-grade cationic exchange resin. The properties of nZVI before and after reaction were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface area analysis. The results showed that nZVI-H2O2 system exhibited the enhanced degradation of cationic resins, compared with Fe2+-H2O2, Cu0-H2O2, and Fe0/Cu0-H2O2 systems. The effects of initial temperature, nZVI dose, and H2O2 concentration were studied, and the higher temperature and nZVI dose with relatively low H2O2 concentration brought faster degradation rate. The degradation of cationic resins followed the pseudo-first-order kinetics with the apparent activation energy of 53.29 kJ/mol. According to the experimental and calculated infrared and UV-visible spectra, the carbon skeleton of cationic resins was broken with the detachment of benzene ring and the desulfonation of resin polymer by hydroxyl radicals (•OH), generating long-chain alkenes. These intermediates were further oxidized through the hydroxyl substitution, hydrogen abstraction, ring cleavage, or carbonylation reactions, finally forming carboxylic acids remained in solution.
Collapse
Affiliation(s)
- Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Peijie Sun
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiang Meng
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Huiyi Shen
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Wuyang Li
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing, 100084, People's Republic of China
- Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jun Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
7
|
Silveira JE, Zazo JA, Casas JA. Coupled heat-activated persulfate - Electrolysis for the abatement of organic matter and total nitrogen from landfill leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 97:47-51. [PMID: 31447026 DOI: 10.1016/j.wasman.2019.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/05/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
This work analyzes the viability of a coupled heat-activated persulfate (PS) and electro-oxidation treatment toabatetheorganic matter and nitrogen from ahigh polluted landfill leachate (5500 mg L-1 TOC; 5849 mg L-1 TN, pH: 8.4). These characteristics makes PS as a suitable oxidant to deal with the recalcitrant organic matter. Under the optimal conditions (70 °C and 60% of the stoichiometric amount of PS), around 60% of the initial organic load was mineralized. On the contrary, the nitrogen removal was below 20%. A subsequent electrolytic stage using Ti/IrO2-TaO2 anode at 175 mA cm-2 and 0.42 M NaCl during 60 min, led to overall organic matter and nitrogen removal above 85% and 90%, respectively, with energy requirement of 38 kWh per kg of nitrogen removed. In this sense, the combined process achieves a significant reduction in terms of energy consumption, up to one fifth in relation to sole electrolysis. These results confirm the feasibility of this combined process to treat landfill leachate.
Collapse
Affiliation(s)
- Jefferson E Silveira
- Chemical Engineering, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Juan A Zazo
- Chemical Engineering, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jose A Casas
- Chemical Engineering, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Yao J, Gao M, Guo X, Ai F, Wang Z. Enhanced degradation performance of bisphenol M using peroxymonosulfate activated by zero-valent iron in aqueous solution: Kinetic study and product identification. CHEMOSPHERE 2019; 221:314-323. [PMID: 30641372 DOI: 10.1016/j.chemosphere.2019.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
In the present work, we first examined the performance of zero-valent iron (Fe0) activated peroxymonosulfate (PMS) for the removal of that bisphenol M (BPM). In 90 min, 95.9 ± 1.0% of BPM (initial concentration of 10 μM) could be removed in the optimal reaction conditions: [BPM]0:[PMS]0 = 1:40 (molar ratio), [PMS]0:[Fe0]0 = 1:3 (molar ratio), pH = 8.0 (maintained by 0.1 M phosphate buffer solution), T = 35 °C. Common environmental ions like HCO3-, Cl-, NO3- accelerated BPM degradation while NH4+ hindered it. In radical quenching tests, sulfate radicals (SO4-) were found to play a dominant role in BPM degradation, while hydroxyl radicals (OH) were also detected. By high-performance liquid chromatography-tandem mass spectrometry analysis, 13 products of BPM including small molecules, oligomers and hydroxylated derivatives were identified, and five possible degradation pathways were then proposed. The predicted acute toxicity of the reaction products was reduced after BPM was treated by Fe0/PMS. All these results prove that Fe0/PMS is an efficient, convenient, and environmentally friendly treatment method for the removal of BPM.
Collapse
Affiliation(s)
- Jiayi Yao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Manqi Gao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Xiaofeng Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| |
Collapse
|