1
|
Hassan SS, Aly SA, Al-Sulami AI, Albohy SAH, Salem MF, Nasr GM, Abdalla EM. Synthesis, characterization, PXRD studies, and theoretical calculation of the effect of gamma irradiation and antimicrobial studies on novel Pd(II), Cu(II), and Cu(I) complexes. Front Chem 2024; 12:1357330. [PMID: 38410818 PMCID: PMC10894937 DOI: 10.3389/fchem.2024.1357330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
The main objective of this study is to synthesize and characterize of a new three complexes of Pd (II), Cu (II), and Cu (I) metal ions with novel ligand ((Z)-2-(phenylamino)-N'-(thiophen-2-ylmethylene)acetohydrazide) H2LB. The structural composition of new compounds was assessed using several analytical techniques including FT-IR, 1H-NMR, electronic spectra, powder X-ray diffraction, and thermal behavior analysis. The Gaussian09 program employed the Density Functional Theory (DFT) approach to optimize the geometry of all synthesized compounds, therefore obtaining the most favorable structures and crucial parameters. An investigation was conducted to examine the impact of γ-irradiation on ligands and complexes. Before and after γ-irradiation, the antimicrobial efficiency was investigated for the activity of ligands and their chelates. The Cu(I) complex demonstrated enhanced antibacterial activity after irradiation, as well as other standard medications such as ampicillin and gentamicin. Similarly, the Cu(I) complex exhibited superior activity against antifungal species relative to the standard drug Nystatin. The docking investigation utilized the target location of the topoisomerase enzyme (2xct) chain A.
Collapse
Affiliation(s)
- Safaa S. Hassan
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Samar A. Aly
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ahlam I. Al-Sulami
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Salwa A. H. Albohy
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr, Cairo, Egypt
| | - Mohamed F. Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ghada M. Nasr
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ehab M. Abdalla
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga, Egypt
| |
Collapse
|
2
|
Hassan SS, Nader M, Nagy M, Mohamed M, Nader M, Zakaria M, Mohamed N, Waleed R, Rashidi FB. Antimicrobial screening involving Helicobacter pylori of nano-therapeutic compounds based on the amoxicillin antibiotic drug. Helicobacter 2023; 28:e13004. [PMID: 37391943 DOI: 10.1111/hel.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Nano-structure Cu(II) complex [Cu(AMAB)2 ]Cl2 with Schiff base (AMAB) derived from the condensation between 4-(dimethylamino)benzaldehyde and amoxicillin trihydrate was prepared. (AMAB) Schiff base and its Cu(II) complex were identified and confirmed by different physicochemical techniques. The Schiff base (AMAB) was coordinated to copper ion through carbonyl oxygen and imine nitrogen donor sites. X-ray powder diffraction shows a cubic crystal system of the Cu(II) complex. The density functional theory was used to optimize the structure geometries of the investigated compounds. The molecular docking of the active amino acids of the investigated proteins' interactions with the tested compounds was evaluated. The bactericidal or bacteriostatic effect of the compounds was screened against some bacterial strains. The activity of Cu-chelate against Gram-negative bacteria was mainly more effective than its (AMAB) ligand and vice versa in the case of Gram-positive bacteria. The biological activity of the prepared compounds with biomolecules calf thymus DNA (CT-DNA) was determined by electronic absorption spectra and DNA gel electrophoresis technique. All studies revealed that the Cu-chelate derivative exhibited better binding affinity to both CT-DNA than the AMAB and amoxicillin itself. The anti-inflammatory effect of the designed compounds was determined by testing their protein denaturation inhibitory activity spectrophotometrically. All obtained data supported that the designed nano-Cu(II) complex with Schiff base (AMAB) is a potent bactericide against H. pylori, and exhibits anti-inflammatory activity. The dual inhibition effects of the designed compound represent a modern therapeutic approach with extended spectrum of action. Therefore, it can act as good drug target in antimicrobial and anti-inflammtory therapies. Finally, H. pylori resistance to amoxicillin is absent or rare in many countries, thus amoxicillin nanoparticles may be beneficial for countries where amoxicillin resistance is reported.
Collapse
Affiliation(s)
- Safaa S Hassan
- Department of Chemistry, Inorganic Chemistry Division, Faculty of Science, Cairo University, Giza, Egypt
| | - Madonna Nader
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Maria Nagy
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mennatallah Mohamed
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mennatulla Nader
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mina Zakaria
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Nada Mohamed
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Rawan Waleed
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma B Rashidi
- Department of Chemistry, Biochemistry Division, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Hassan SS, Bedir EA, Hamza AEM, Ahmed AM, Ibrahim NM, Abd El‐Ghany MS, Khattab NN, Emeira BM, Salama MM, Mohamed EF, Fayed DB. The dual therapeutic effect of metformin nuclei‐based drugs modified with one of Tulbaghia violacea extract compounds. Appl Organomet Chem 2022; 36. [DOI: 10.1002/aoc.6804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 09/01/2023]
Abstract
Novel Schiff base was synthesized from the condensation reaction of metformin with [4‐(Diethylamino) benzaldehyde (NBM). Different metal complexes were prepared using Pd (II), Pt (II), Cu (II), and V (IV) metal ions. All complexes showed the nonelectrolytic behavior. So, the expected molecular formulas for complexes were [Pd (NBM)Cl2], [Pt (NBM)Cl2], [Cu (NBM)2Cl2] and [VO (NBM)2]. The cytotoxicity of (NBM) Schiff base and its metal complexes on human cancer cell line, MCF‐7, was investigated. V (IV) and Cu (II) complexes showed potential blood glucose lowering effect higher than the commercial metformin drug. VO (II) complex has superior antioxidant activity more than the other synthesized compounds and the standard ascorbic acid. Molecular docking investigation proved the presence of interesting interactions between all synthesized compounds with the active site amino acids of EGFR tyrosine kinase (anticancer activity). The molecular docking of metal complexes has observed effective inhibition for the specific mTOR protein that is expected to aid the growth of the COVID‐19 virus.
Collapse
Affiliation(s)
- Safaa S. Hassan
- Department of Chemistry, Faculty of Science Cairo University Giza Egypt
| | - Elaria A. Bedir
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | | | - Ahmed M. Ahmed
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | - Nouran M. Ibrahim
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | | | - Nada N. Khattab
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | - Bassant M. Emeira
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | - Mabrook M. Salama
- Department of Chemistry, Faculty of Science University of Benghazi Benghazi Libya
| | - Eman F. Mohamed
- Department of Chemistry, Faculty of Science (Girls) Al‐Azhar University Nasr City Egypt
| | - Dalia B. Fayed
- Therapeutic Chemistry Department National Research Centre Cairo Egypt
| |
Collapse
|
4
|
Dincel ED, Hasbal-Celikok G, Yilmaz-Ozden T, Ulusoy-Güzeldemirci N. Design, synthesis, biological evaluation, molecular docking, and dynamic simulation study of novel imidazo[2,1-b]thiazole derivatives as potent antioxidant agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Hefnawy MA, Medany SS, Fadlallah SA, El-Sherif RM, Hassan SS. Novel Self-assembly Pd(II)-Schiff Base Complex Modified Glassy Carbon Electrode for Electrochemical Detection of Paracetamol. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00741-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractA self-assembly Pd-Schiff base complex was synthesized and used as an electrochemical sensor in phosphate buffer solution, where it enhanced the electrocatalytic activity toward the paracetamol detection. The Schiff base {(HL) = (4-(((Z)-3-(hydroxyimino) butan-2-ylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one)} was selected to prepare Pd-based complexes due to its high antimicrobial activity. A linear calibration curve was constructed using GC/Pd-SB in paracetamol concentration range of 1–50 μM and its detection limit was calculated as 0.067 μM. The modified electrode, GC/Pd-SB, could successfully determine the paracetamol concentration in human blood serum and commercial drug tablets with high sensitivity. The prepared metal complex was characterized using techniques, namely, X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, electrochemical studies were performed using different electrochemical techniques like cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). DFT calculations were used to estimate the equilibrium geometry, molecular orbital, ground-state properties, and interaction energy between paracetamol and palladium.
Graphical Abstract
Collapse
|
6
|
Hassan S, Bedir EA, Hamza AERM, Ahmed AM, Ibrahim NM, El-Ghany MSA, Sayed NN, Eimera BM, Salama M, Mohamed EF, Mohamed DB. The Dual Therapeutic Effect of Metformin Nuclei Based Drugs Modified with One of Tulbaghia Violacea Extract Compounds. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4015275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Dincel ED, Hasbal-Celikok G, Yilmaz-Ozden T, Ulusoy-Güzeldemirci N. Design, biological evaluation, molecular docking study and in silico ADME prediction of novel imidazo[2,1-b]thiazole derivatives as a novel class of α-glucosidase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Abdalla EM, Hassan SS, Elganzory HH, Aly SA, Alshater H. Molecular Docking, DFT Calculations, Effect of High Energetic Ionizing Radiation, and Biological Evaluation of Some Novel Metal (II) Heteroleptic Complexes Bearing the Thiosemicarbazone Ligand. Molecules 2021; 26:molecules26195851. [PMID: 34641396 PMCID: PMC8512603 DOI: 10.3390/molecules26195851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
New Pb(II), Mn(II), Hg(II), and Zn(II) complexes, derived from 4-(4-chlorophenyl)-1-(2-(phenylamino)acetyl)thiosemicarbazone, were synthesized. The compounds with general formulas, [Pb(H2L)2(OAc)2]ETOH.H2O, [Mn(H2L)(HL)]Cl, [Hg2(H2L)(OH)SO4], and [Zn(H2L)(HL)]Cl, were characterized by physicochemical and theoretical studies. X-ray diffraction studies showed a decrease in the crystalline size of compounds that were exposed to gamma irradiation (γ-irradiation). Thermal studies of the synthesized complexes showed thermal stability of the Mn(II) and Pb(II) complexes after γ-irradiation compared to those before γ–irradiation, while no changes in the Zn(II) and Hg(II) complexes were observed. The optimized geometric structures of the ligand and metal complexes are discussed regarding density functional theory calculations (DFT). The antimicrobial activities of the ligand and metal complexes against several bacterial and fungal stains were screened before and after irradiation. The Hg(II) complex has shown excellent antibacterial activity before and after γ-irradiation. In vitro cytotoxicity screening of the ligand and the Mn(II) and Zn(II) complexes before and after γ-irradiation disclosed that both the ligand and Mn(II) complex exhibited higher activity against human liver (Hep-G2) than Zn(II). Molecular docking was performed on the active site of MK-2 and showed good results.
Collapse
Affiliation(s)
- Ehab M. Abdalla
- Chemistry Department, Faculty of Science, New Valley University, Alkharga 72511, Egypt;
| | - Safaa S. Hassan
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Hussein H. Elganzory
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: ; Tel.: +966-56-810-9592
| | - Samar A. Aly
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32958, Egypt;
| | - Heba Alshater
- Department of Forensic Medicine and Clinical Toxicology, University Hospital, Menoufia University, Shebin El-Kom 32511, Egypt;
| |
Collapse
|
9
|
Dincel ED, Ulusoy‐Güzeldemirci N, Şatana D, Küçükbasmacı Ö. Design, synthesis, characterization and antimicrobial evaluation of some novel hydrazinecarbothioamide, 4‐thiazolidinone and 1,2,4‐triazole‐3‐thione derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Efe Doğukan Dincel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy İstanbul University İstanbul Turkey
| | | | - Dilek Şatana
- Department of Microbiology, İstanbul Faculty of Medicine İstanbul University İstanbul Turkey
| | - Ömer Küçükbasmacı
- Department of Microbiology, Cerrahpaşa Faculty of Medicine İstanbul University Cerrahpaşa İstanbul Turkey
| |
Collapse
|
10
|
Hassan SS, Khalf‐Alla PA. Anti‐hepatocellular carcinoma, antioxidant, anti‐inflammation and antimicrobial investigation of some novel first and second transition metal complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Safaa S. Hassan
- Department of chemistry, Faculty of ScienceCairo University Giza Egypt
| | | |
Collapse
|
11
|
Lotfy VF, Hassan SS, Khalf-Alla PA, Basta AH. The role of side chain of amino acid on performance of their conjugates with carboxymethyl cellulose and their Pd(II) complexes as bioactive agents. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1670179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Vivian F. Lotfy
- Cellulose and Paper Department, National Research Centre, Cairo, Egypt
| | - Safaa S. Hassan
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Altaf H. Basta
- Cellulose and Paper Department, National Research Centre, Cairo, Egypt
| |
Collapse
|